JP3693097B2 - Vehicle weight detection device - Google Patents

Vehicle weight detection device Download PDF

Info

Publication number
JP3693097B2
JP3693097B2 JP2000118130A JP2000118130A JP3693097B2 JP 3693097 B2 JP3693097 B2 JP 3693097B2 JP 2000118130 A JP2000118130 A JP 2000118130A JP 2000118130 A JP2000118130 A JP 2000118130A JP 3693097 B2 JP3693097 B2 JP 3693097B2
Authority
JP
Japan
Prior art keywords
vehicle
acceleration
calculation
vehicle weight
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000118130A
Other languages
Japanese (ja)
Other versions
JP2001304948A (en
Inventor
良治 加藤
滋樹 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2000118130A priority Critical patent/JP3693097B2/en
Publication of JP2001304948A publication Critical patent/JP2001304948A/en
Application granted granted Critical
Publication of JP3693097B2 publication Critical patent/JP3693097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走行中の車両の重量を検出する車両重量検出装置に関するものである。
【0002】
【関連する背景技術】
近年、走行中の車両の駆動力や加速度等に基づいて車両重量を検出する車両重量検出装置が提案されている。この種の検出装置は、例えば積荷状態に応じて車両重量が大きく変動するトラック等に装備され、その検出結果をエンジンや自動変速機の制御に反映させて制御の適切化を図っている。
【0003】
車両重量は、公知の車両の運動方程式を車両重量で整理した次式(1)により算出される。
【0004】
【数1】

Figure 0003693097
【0005】
ここに、gは重力加速度、Fはエンジントルクにより発生する車両の駆動力、Rlは車両に作用する空気抵抗、Wrは車両の動力伝達系の回転部分が有する慣性重量、αvは車速から求めた車両の実加速度、sinθは車両が走行している道路勾配、μはタイヤの転がり抵抗係数である。つまり、式(1)中の分子は、駆動力Fに対し空気抵抗Rlや回転部分の慣性重量Wrを加味した車両に作用する推進力を表し、分母は、その推進力によって得られた道路勾配sinθや転がり抵抗μを加味した車両加速度を表し、推進力に対して車両加速度が小のときには車両重量Wが大きな値に算出され、逆に推進力に対して車両加速度が大のときには車両重量Wが小さな値に算出される。
【0006】
【発明が解決しようとする課題】
上記式(1)において、例えばアクセル全開のフル加速時には分子及び分母が共に大となり、アクセル開度小の緩加速時には分子及び分母が共に小となるものの、実際の車両重量Wが変化しない限り、何れの場合も同一の車両重量Wが算出されるべきである。しかしながら、式(1)に用いられるパラメータには誤差が含まれており、走行状態によっては誤差が算出結果に重大な影響を及ぼして実際から大きくかけ離れた車両重量Wが算出される場合がある。よって、このような誤った車両重量Wに基づいて不適切な制御が実行されてしまうという問題があった。
【0007】
本発明の目的は、車両の走行状態に拘わらず常に正確に車両重量を算出し、ひいては、その算出結果に基づいて的確な制御を実現することができる車両重量検出装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、重力加速度g、エンジントルクにより発生する車両の駆動力F、車両に作用する空気抵抗Rl、車両の動力伝達系の回転部分が有する慣性重量Wr、車速から求めた車両の実加速度αvに基づき、車両の推進力{g(F−R1)−Wr・αv}を算出する車両推進力算出手段と、車両の実加速度αv、重力加速度g、車両が走行している道路勾配sinθ、タイヤの転がり抵抗係数μに基づき、勾配成分を含む車両加速度(αv+g・sinθ+g・μ)を算出する車両加速度算出手段と、車両推進力算出手段にて算出された車両の推進力{g(F−R1)−Wr・αv}と、車両加速度算出手段にて算出された勾配成分を含む車両加速度(αv+g・sinθ+g・μ)とに基づいて、車両重量を算出する車両重量算出手段と、車両加速度算出手段にて算出された勾配成分を含む車両加速度(αv+g・sinθ+g・μ)が所定値以上のときに、車両重量算出手段に算出処理の実行を許可する算出許可手段とを備えた。
【0009】
従って、勾配成分を含む車両加速度(αv+g・sinθ+g・μ)が所定値以上で算出許可手段が許可判定を下したときに、車両重量算出手段による車両重量の算出処理が実行される。車両加速度(αv+g・sinθ+g・μ)の算出に適用する実加速度αvは、車速を微分処理して求められることから比較的大きな誤差を含んでいるが、車両加速度(αv+g・sinθ+g・μ)が大のときほど、この実加速度αvの誤差の影響度は小さくなる。よって、車両加速度(αv+g・sinθ+g・μ)が所定値以上のときに算出処理を実行すれば、実加速度αvに含まれる誤差の影響をそれほど受けることなく高い精度で車両重量を算出可能となる。
【0010】
又、請求項2の発明では、車両が積載量を変化可能な状況にあることを判定する判定手段を備え、車両重量算出手段は、算出した車両重量を積算平均すると共に、判定手段にて積載量を変化可能な状況と判定されたときに、過去の算出結果をリセットするものである。従って、積算平均により車両重量の算出精度が高められると共に、判定手段の判定に基づいて積載量と共に車両重量が変化したと推測されるときには、過去の算出結果がリセットされて不適切な算出結果に基づく積算平均が防止される。
又、請求項3の発明では、車両重量算出手段は、フットブレーキ操作時、クラッチ遮断による変速中、所定の低変速段での走行時の何れかに該当するときには、上記車両重量の算出を中止するものである。従って、フットブレーキ操作時には車両の駆動力Fに対して制動力が外乱として作用し、変速中にはクラッチ遮断により駆動力が0となり、所定の低変速段での走行時には駆動力Fの算出に用いるエンジントルクの推定精度が低下することから、何れの場合も車両の推進力{g(F−R1)−Wr・α v }と車両加速度(α v +g・ sin θ+g・μ)との所定の関係が成立しなくなるが、このときには車両重量の算出が中止される。
【0011】
【発明の実施の形態】
以下、本発明を大型トラックに搭載された車両重量検出装置に具体化した一実施形態を説明する。
図1は実施形態の車両重量検出装置を示す全体構成図である。この図に示すように、車両にはディーゼルエンジン1が搭載され、そのエンジン1の回転は変速機2により変速された後に図示しないデファレンシャルギア等を介して駆動輪3に伝達されるようになっている。変速機2は、トルクコンバータを備えない機械式の変速機として構成されると共に、その変速操作とクラッチの断接操作は図示しないアクチュエータで自動的に行われるようになっている。
【0012】
車両の室内には図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(電子制御ユニット)11が設置されている。ECU11の入力側にはディーゼルエンジン1の回転速度Neを検出するエンジン回転速度センサ12、ディーゼルエンジン1に備えられた燃料噴射ポンプ1aのコントロールラック位置Rwを検出するラック位置検出センサ13、自動変速機2のギア位置itを検出するギア位置センサ14、車速Vを検出する車速センサ15、車両に作用する前後Gを検出するGセンサ16等が接続されている。又、ECU11の出力側にはエンジン1の燃料噴射ポンプ1a、自動変速機2の変速操作やクラッチの断接操作を行うアクチュエータ等が接続されている。
【0013】
ECU11は各センサからの情報に基づいて燃料噴射ポンプ1aによる燃料噴射量や噴射時期を制御してエンジン1を運転すると共に、車両の走行状態に応じた目標変速段を決定し、その目標変速段を達成すべくアクチュエータにより変速操作とクラッチの断接操作を実行する。又、車両の走行中において、ECU11は各センサからの情報に基づいて車両重量Wを算出し、その検出結果を上記したエンジン1や自動変速機2の制御に反映させて制御の適切化を図る。
【0014】
以下、このECU11により実行される車両重量Wの算出処理を詳述する。
図2はECUが実行する車両重量算出ルーチンを示している。ECU11は図2のルーチンを所定の制御インターバルで実行し、まず、ステップS2で車両重量Wを算出可能な状態か否かを判定する。本実施形態の車両重量検出装置においても、実際の算出処理は従来例と同様に上記(1)式に基づいて行われるが、同式が成立するには、車両が走行して分子側の車両の推進力と分母側の車両加速度とを比較可能であることが必要であり、更に走行中であっても、例えば駆動力に対して制動力が外乱として作用するフットブレーキ操作時(式ではこの状況を想定していない)、或いはクラッチ遮断により駆動力が0となる変速中、車両の駆動力Fの算出に用いるエンジントルクTeを正確に推定不能な2速走行時等には、車両重量Wを算出できない。よって、これらの状態に車両があるときには、ステップS2でNO(否定)の判定を下してルーチンを終了する。
【0015】
又、車両が上記のような状況にないときには、ステップS2でYES(肯定)の判定を下してステップS4に移行する。ステップS4では式(1)の分母の絶対値が所定値以上か否かを判定し(算出許可手段)、NOのときにはルーチンを終了する。又、ステップS4の判定がYESのときにはステップS6に移行し、式(1)に基づいて車両重量Wの算出処理を実行する(車両推進力算出手段、車両加速度算出手段、車両重量算出手段)。尚、本実施形態では、分母の絶対値を判定するときの所定値として0.6が設定されているが、その値は車両のエンジン1や自動変速機2の仕様等に応じて任意に変更可能である。
【0016】
その後、ステップS8でリセット条件が成立しているか否かを判定する(判定手段)。このリセット条件は積荷を積み下ろし可能な状況となったときに成立し、具体的には、イグニションキーのオフ操作、パーキングブレーキ操作、所定時間以上の停車時に、車両が上記状況に至ったと見なしてリセット条件の成立判定を下す。ステップS8の判定がNOのときには、ステップS10で算出した車両重量Wを過去の算出結果に対して積算平均し、その後にルーチンを終了する。
【0017】
又、ステップS8の判定がYESのときには、上記ステップS12で、上記ステップS10で用いられる過去の算出結果をリセットする。つまり、この場合には、積荷の積み下ろしにより車両重量Wが変化して、過去の算出結果が現状の車両重量Wに対応しなくなるためである。そして、このようにして算出された車両重量W(積算平均値)がエンジン1や自動変速機2の制御に適用される。
【0018】
ステップS6で実行される車両重量Wの算出手順を説明すると、図3の説明図に示すように、エンジン回転速度センサ12にて検出されたエンジン回転速度Ne、及びラック位置検出センサ13にて検出された燃料噴射ポンプ1aのラック位置Rwに基づき、予め設定されたエンジントルクマップから現在のエンジントルクTeが推定され、このエンジントルクTeに対して、ギア位置検出センサ14にて検出されたギア位置itから求めたトランスミッションギア比、及び予め判明しているデファレンシャルギア比やタイヤの動半径等による補正が加えられて、式(1)中の車両の駆動力Fが算出される。又、動力伝達系の回転部分の慣性重量Wrは、各ギア位置itのトランスミッションギア比毎に定数として予め設定されており、ギア位置itに応じて式(1)に適用する慣性重量Wrが選択される。
【0019】
一方、車速センサ15にて検出された車速Vを微分処理して車両加速度αvが算出されると共に、その車両加速度αvとGセンサ16にて検出された前後Gとに基づいて、路面勾配sinθが算出される。車速Vは車両に作用する空気抵抗Rlの算出にも用いられ、車両の形状から予め求められている空気抵抗係数及び全面投影面積を基に、現在の車速Vを前提とした空気抵抗Rlが算出される。尚、タイヤの転がり抵抗係数μと重力加速度gは予め定数として設定されている。
【0020】
そして、以上述べた各パラメータがステップS6で式(1)に代入されて車両重量Wが求められるが、この算出処理は、車両加速度αv、重力加速度g、路面勾配sinθ、タイヤの転がり抵抗μから算出される式(1)の分母の絶対値が所定値以上で、ステップS4でYESの判定が下されたときに限って実行される。
以上のECU11による車両重量Wの算出処理の状況を図4のタイムチャートに従って説明する。尚、このタイムチャートでは平坦路においてアクセル全開で発進加速した場合を示しており、正味の車両重量Wは11300kgとなっている。
【0021】
本実施形態の大型トラックは2速発進のため、クラッチ接続により車両は2速で発進し、その後、車速Vの増加に伴って3速、4速、5速と順次変速が行われる。発進当初の2速走行時には、上記のようにエンジントルクTeの推定精度の関係でステップS2でNOの判定が下されることから、車両重量Wの算出処理は実行されず、続く3速への変速中の区間Tsにおいても、駆動力Fが0となる関係でステップS2でNOの判定が下されるため算出処理は行われない。又、周知のように車両の加速度αvは変速中は小さくなり、変速完了後も急激には立ち上がらない。よって、変速直後の区間Taでは、過渡的に加速度αvが小となることから式(1)の分母の絶対値が所定値未満となり、ステップS4でNOの判定が下されることから算出処理は行われない。尚、図では参考として区間TaでWを算出した場合も示しているが、このように実際の車両重量である11300kgから大きくかけ離れた値に算出されてしまう。
【0022】
3速での走行が開始されて加速度αvが立ち上がると、分母の絶対値が所定値以上となることからステップS4の判定がYESになって算出処理が開始され、この算出処理は続く4速側への変速が開始されるまで継続される。よって、車両重量Wは、式(1)により図中の細線で示すように順次算出されると共に、太線で示すように積算平均される。その後は以上の繰り返しであり、各変速中の区間Ts及び変速直後の区間Taは算出処理が中止され、それ以外の区間において算出処理が実行される。
【0023】
このように本実施形態の車両重量検出装置では、式(1)の分母の絶対値の大きさに応じて算出処理を実行又は中止している。これは以下の知見に基づくものである。図3に基づいて説明したように車両加速度αvは車速Vから求められるが、その際に実行される微分処理により車両加速度αvには比較的大きな誤差が含まれることになる。式(1)から明らかなように、車両重量Wは分子を分母で除算して、例えば11300kg程度の大きな値に算出されることから、必然的に分子に比較して分母は遥かに小の値をとる。車両加速度αvは分母のみならず分子にも適用されるが、小さな値である分母に対して特に影響度が大であり、その車両加速度αvに含まれる誤差の影響度も大となる。よって、分母の絶対値が所定値未満のときには車両加速度αvの誤差が大きく影響して正確な車両重量Wを算出できないことから、分母の絶対値が所定値以上で車両加速度αvの誤差の影響度が小さいときに限って算出処理を実行しているのである。
【0024】
上記した例では、分母の絶対値が所定値以上で車両重量Wの算出処理が実行される走行状態として、加速度αvが大となる平坦路での加速時を挙げたが、登坂路での定速走行時や登坂路での加速時も同様であり、登坂路での定速走行時には道路勾配sinθが大となることから、登坂路での加速時には道路勾配sinθ及び車両加速度αvが共に大となることから、何れの場合も分母の絶対値が所定値以上となって算出処理が実行される。
【0025】
又、以上は何れもエンジン1が正の推進力を車両に作用させた場合であるが、エンジンブレーキやエキゾーストブレーキ使用時のように負の推進力(制動力)を作用させた場合も同様である(上記のようにフットブレーキによる制動は除外)。よって、平坦路での減速時には加速度αvが負側で大となることから、下り坂での定速走行時には道路勾配sinθが負側で大となることから、下り坂での減速時には道路勾配sinθ及び車両加速度αvが共に負側で大となることから、何れの場合も分母の絶対値が所定値以上となって算出処理が実行される。
【0026】
一方、上記した例では、分母の絶対値が所定値未満で算出処理が中止される走行状態として、加速度αvが過渡的に小となる加速中の変速直後を挙げたが、平坦路での定速走行時も同様であり、このときには道路勾配sinθ及び車両加速度αvが共に0となることから、分母の絶対値が所定値未満となって算出処理が中止される。
【0027】
以上のように本実施形態の車両重量検出装置では、車両重量Wを算出する式(1)の分母の大きさに応じて算出精度が変化することに着目し、分母の絶対値が所定値以上で車両加速度αvに含まれた誤差の分母に対する影響度が小であるときに限って、算出処理を実行するようにした。従って、車両加速度αvの誤差の影響度が大のときには車両重量Wの算出処理が中止され、実際と大きくかけ離れた車両重量W(例えば、図4の区間Ta)が算出される事態が防止されることから、車両の走行状態に拘わらず常に正確に車両重量Wを算出し、ひいては、その算出結果に基づいてエンジン1や自動変速機2を的確に制御することができる。
【0028】
そして、式(1)の分母では車両加速度αvのみならず路面勾配sinθも考慮しているため、上記した登坂路での定速走行時のようにエンジン1が推進力を発揮して車両重量Wを算出可能であるにも拘わらず、車両加速度αvのみの判定では算出が中止される走行状態でも、道路勾配sinθが大となることから算出処理が実行され、算出処理の頻度が高められることから算出精度を向上させることができる。
【0029】
一方、過去の算出結果を利用して車両重量Wを積算平均しているため、算出精度を一層高めることができる上に、リセット条件が成立して積荷の積み下ろしにより車両重量Wが変化したと推測されるときには、過去の算出結果をリセットするため、不適切な算出結果に基づく積算平均による車両重量Wの誤算出を未然に防止することができる。
【0030】
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では、大型トラックに搭載された車両重量検出装置に具体化したが車種は限定されず、例えばバス車両に搭載された車両重量検出装置に具体化してもよい。
【0031】
【発明の効果】
以上説明したように請求項1の発明の車両重量検出装置によれば、勾配成分を含む車両加速度(αv+g・sinθ+g・μ)が所定値以上で、実加速度αvに含まれる誤差の影響度が小のときに車両重量の算出処理を実行するようにしたため、高い精度で車両重量を算出でき、ひいては、その算出結果に基づいてエンジンや自動変速機を的確に制御することができる。
【0032】
又、請求項2の発明の車両重量検出装置によれば、積算平均により車両重量の算出精度を一層高めることができると共に、判定手段の判定に基づいて積載量と共に車両重量が変化したと推測されるときには、過去の算出結果をリセットすることにより、不適切な算出結果に基づく積算平均による車両重量の誤算出を未然に防止することができる。
又、請求項3の発明の車両重量検出装置によれば、フットブレーキ操作時、クラッチ遮断による変速中、所定の低変速段での走行時には車両重量の算出を中止するため、不適切な車両重量の算出を未然に防止することができる。
【図面の簡単な説明】
【図1】実施形態の車両重量検出装置を示す全体構成図である。
【図2】ECUが実行する車両重量算出ルーチンを示すフローチャートである。
【図3】車両重量の算出手順を示す説明図である。
【図4】車両重量の算出処理の状況を示すタイムチャートである。
【符号の説明】
g 重力加速度
F 駆動力
Rl 空気抵抗
Wr 慣性重量
αv 実加速度
sinθ 道路勾配
μ 転がり抵抗係数
Te エンジントルク
W 車両重量
11 ECU(車両推進力算出手段、車両加速度算出手段、車両重量算出手段、算出許可手段、判定手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle weight detection device that detects the weight of a running vehicle.
[0002]
[Related background]
In recent years, vehicle weight detection devices that detect vehicle weight based on driving force, acceleration, and the like of a running vehicle have been proposed. This type of detection device is mounted on, for example, a truck whose vehicle weight varies greatly depending on the loaded state, and the detection result is reflected in the control of the engine and the automatic transmission to optimize the control.
[0003]
The vehicle weight is calculated by the following equation (1) in which a well-known vehicle equation of motion is arranged by the vehicle weight.
[0004]
[Expression 1]
Figure 0003693097
[0005]
Here, g is the gravitational acceleration, F is the vehicle driving force generated by the engine torque, Rl is the air resistance acting on the vehicle, Wr is the inertia weight of the rotating part of the power transmission system of the vehicle, and αv is obtained from the vehicle speed. The actual acceleration of the vehicle, sin θ is the road gradient on which the vehicle is traveling, and μ is the tire rolling resistance coefficient. In other words, the numerator in the formula (1) represents the driving force acting on the vehicle in which the air resistance Rl and the inertia weight Wr of the rotating portion are added to the driving force F, and the denominator is the road gradient obtained by the driving force. This represents vehicle acceleration taking into account sin θ and rolling resistance μ. When the vehicle acceleration is small relative to the propulsive force, the vehicle weight W is calculated to be a large value. Conversely, when the vehicle acceleration is large relative to the propulsive force, the vehicle weight W is calculated. Is calculated to a small value.
[0006]
[Problems to be solved by the invention]
In the above formula (1), for example, both the numerator and the denominator are large at full acceleration when the accelerator is fully opened, and both the numerator and denominator are small at the slow acceleration when the accelerator opening is small, but unless the actual vehicle weight W changes, In any case, the same vehicle weight W should be calculated. However, an error is included in the parameter used in the equation (1), and depending on the running state, the error may have a significant effect on the calculation result, and the vehicle weight W far from the actual may be calculated. Therefore, there is a problem that inappropriate control is executed based on such an incorrect vehicle weight W.
[0007]
An object of the present invention is to provide a vehicle weight detection device that can always accurately calculate the vehicle weight regardless of the running state of the vehicle, and that can realize accurate control based on the calculation result.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the gravitational acceleration g, the vehicle driving force F generated by the engine torque, the air resistance Rl acting on the vehicle, and the inertia weight Wr possessed by the rotating portion of the power transmission system of the vehicle. , Vehicle propulsion force calculating means for calculating the vehicle propulsive force {g (F−R1) −Wr · αv} based on the vehicle actual acceleration αv obtained from the vehicle speed, the vehicle actual acceleration αv, the gravitational acceleration g, the vehicle Calculated by a vehicle acceleration calculating means for calculating a vehicle acceleration (αv + g · sinθ + g · μ) including a gradient component based on a road gradient sinθ and a tire rolling resistance coefficient μ, and a vehicle propulsive force calculating means The vehicle weight is calculated based on the vehicle propulsive force {g (F−R1) −Wr · αv} and the vehicle acceleration (αv + g · sinθ + g · μ) including the gradient component calculated by the vehicle acceleration calculating means. Vehicle weight calculation means And a calculation permission means for permitting the vehicle weight calculation means to execute the calculation process when the vehicle acceleration (αv + g · sinθ + g · μ) including the gradient component calculated by the vehicle acceleration calculation means is equal to or greater than a predetermined value. .
[0009]
Accordingly, when the vehicle acceleration (αv + g · sin θ + g · μ) including the gradient component is equal to or greater than a predetermined value and the calculation permission means makes a permission determination, the vehicle weight calculation process by the vehicle weight calculation means is executed. The actual acceleration αv applied to the calculation of the vehicle acceleration (αv + g · sinθ + g · μ) includes a relatively large error because it is obtained by differentiating the vehicle speed, but the vehicle acceleration (αv + g · sinθ + g · μ) is large. The degree of influence of the error of the actual acceleration αv becomes smaller as the time becomes. Therefore, if the calculation process is executed when the vehicle acceleration (αv + g · sin θ + g · μ) is equal to or greater than a predetermined value, the vehicle weight can be calculated with high accuracy without being affected by the error included in the actual acceleration αv.
[0010]
The invention according to claim 2 further comprises determination means for determining that the vehicle is in a state in which the load capacity can be changed, and the vehicle weight calculation means performs an average of the calculated vehicle weights and loads the load by the determination means. When it is determined that the amount can be changed, the past calculation result is reset. Accordingly, the calculation accuracy of the vehicle weight is improved by the integrated average, and when it is estimated that the vehicle weight has changed together with the loading amount based on the determination by the determination means, the past calculation result is reset to an inappropriate calculation result. Based on the accumulated average is prevented.
According to a third aspect of the present invention, the vehicle weight calculation means cancels the calculation of the vehicle weight when the foot brake is operated, during shifting by clutch disengagement, or when traveling at a predetermined low gear. To do. Therefore, the braking force acts as a disturbance to the driving force F of the vehicle when the footbrake is operated, and the driving force becomes 0 by disengaging the clutch during the shift, and the driving force F is calculated when traveling at a predetermined low gear. Since the estimation accuracy of the engine torque to be used is lowered, in any case, the predetermined values of the vehicle propulsive force {g (F−R1) −Wr · α v } and the vehicle acceleration (α v + g · sin θ + g · μ) Although the relationship does not hold, calculation of the vehicle weight is stopped at this time.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a vehicle weight detection device mounted on a large truck will be described.
FIG. 1 is an overall configuration diagram illustrating a vehicle weight detection device according to an embodiment. As shown in the figure, a diesel engine 1 is mounted on a vehicle, and the rotation of the engine 1 is transmitted to drive wheels 3 via a differential gear (not shown) after being shifted by a transmission 2. Yes. The transmission 2 is configured as a mechanical transmission that does not include a torque converter, and the speed change operation and the clutch connection / disconnection operation are automatically performed by an actuator (not shown).
[0012]
In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs, control maps, etc., an ECU (electronic device) equipped with a central processing unit (CPU), a timer counter, etc. Control unit) 11 is installed. On the input side of the ECU 11, an engine rotation speed sensor 12 for detecting the rotation speed Ne of the diesel engine 1, a rack position detection sensor 13 for detecting the control rack position Rw of the fuel injection pump 1a provided in the diesel engine 1, and an automatic transmission A gear position sensor 14 for detecting the second gear position it, a vehicle speed sensor 15 for detecting the vehicle speed V, a G sensor 16 for detecting front-rear G acting on the vehicle, and the like are connected. Further, the output side of the ECU 11 is connected to a fuel injection pump 1a of the engine 1, an actuator for performing a shift operation of the automatic transmission 2 and a clutch connection / disconnection operation.
[0013]
The ECU 11 controls the fuel injection amount and injection timing of the fuel injection pump 1a based on information from each sensor to operate the engine 1 and determines a target gear position according to the traveling state of the vehicle. In order to achieve this, a shift operation and a clutch connection / disconnection operation are executed by an actuator. Further, during traveling of the vehicle, the ECU 11 calculates the vehicle weight W based on information from each sensor, and reflects the detection result in the control of the engine 1 and the automatic transmission 2 described above, thereby achieving appropriate control. .
[0014]
Hereinafter, the calculation process of the vehicle weight W executed by the ECU 11 will be described in detail.
FIG. 2 shows a vehicle weight calculation routine executed by the ECU. The ECU 11 executes the routine of FIG. 2 at a predetermined control interval, and first determines whether or not the vehicle weight W can be calculated in step S2. Also in the vehicle weight detection device of the present embodiment, the actual calculation process is performed based on the above equation (1) as in the conventional example. It is necessary to be able to compare the propulsive force of the vehicle and the vehicle acceleration on the denominator side, and even during traveling, for example, when operating a foot brake where the braking force acts as a disturbance against the driving force ( (Situation is not assumed), or when the engine torque Te used to calculate the driving force F of the vehicle cannot be accurately estimated during a shift at which the driving force becomes 0 due to clutch disconnection, the vehicle weight W Cannot be calculated. Therefore, when there is a vehicle in these states, a NO (No) determination is made in step S2 and the routine is terminated.
[0015]
On the other hand, when the vehicle is not in the situation as described above, a YES (affirmative) determination is made in step S2, and the process proceeds to step S4. In step S4, it is determined whether or not the absolute value of the denominator of equation (1) is greater than or equal to a predetermined value (calculation permitting means). If NO, the routine is terminated. When the determination in step S4 is YES, the process proceeds to step S6, and the vehicle weight W calculation process is executed based on the equation (1) (vehicle propulsive force calculating means, vehicle acceleration calculating means, vehicle weight calculating means). In the present embodiment, 0.6 is set as the predetermined value when determining the absolute value of the denominator, but the value is arbitrarily changed according to the specifications of the engine 1 and the automatic transmission 2 of the vehicle. Is possible.
[0016]
Thereafter, in step S8, it is determined whether or not a reset condition is satisfied (determination means). This reset condition is established when it becomes possible to unload the load. Specifically, when the ignition key is turned off, the parking brake is operated, or when the vehicle stops for a predetermined time or more, the vehicle is considered to have reached the above situation and reset. Makes a judgment that the condition is met. When the determination in step S8 is NO, the vehicle weight W calculated in step S10 is integrated and averaged with respect to past calculation results, and then the routine is terminated.
[0017]
When the determination in step S8 is YES, the previous calculation result used in step S10 is reset in step S12. That is, in this case, the vehicle weight W changes due to the loading / unloading of the load, and the past calculation result does not correspond to the current vehicle weight W. The vehicle weight W (integrated average value) calculated in this way is applied to the control of the engine 1 and the automatic transmission 2.
[0018]
The calculation procedure of the vehicle weight W executed in step S6 will be described. As shown in the explanatory diagram of FIG. 3, the engine rotation speed Ne detected by the engine rotation speed sensor 12 and the rack position detection sensor 13 are detected. The current engine torque Te is estimated from a preset engine torque map based on the rack position Rw of the fuel injection pump 1a, and the gear position detected by the gear position detection sensor 14 with respect to this engine torque Te. The transmission gear ratio obtained from it and the previously determined differential gear ratio and the tire moving radius are corrected to calculate the driving force F of the vehicle in equation (1). In addition, the inertia weight Wr of the rotating part of the power transmission system is preset as a constant for each transmission gear ratio at each gear position it, and the inertia weight Wr applied to the equation (1) is selected according to the gear position it. Is done.
[0019]
On the other hand, the vehicle acceleration αv is calculated by differentiating the vehicle speed V detected by the vehicle speed sensor 15, and the road gradient sinθ is calculated based on the vehicle acceleration αv and the longitudinal G detected by the G sensor 16. Calculated. The vehicle speed V is also used to calculate the air resistance Rl acting on the vehicle, and the air resistance Rl based on the current vehicle speed V is calculated based on the air resistance coefficient and the entire projected area determined in advance from the shape of the vehicle. Is done. The tire rolling resistance coefficient μ and the gravitational acceleration g are set in advance as constants.
[0020]
Each parameter described above is substituted into the equation (1) in step S6 to obtain the vehicle weight W. This calculation process is performed from the vehicle acceleration αv, the gravitational acceleration g, the road surface gradient sinθ, and the tire rolling resistance μ. This is executed only when the absolute value of the denominator of the calculated formula (1) is equal to or greater than a predetermined value and YES is determined in step S4.
The situation of the calculation process of the vehicle weight W by the ECU 11 will be described according to the time chart of FIG. This time chart shows the case where the accelerator is fully opened on a flat road, and the net vehicle weight W is 11300 kg.
[0021]
Since the large truck according to the present embodiment starts at the second speed, the vehicle starts at the second speed by connecting the clutch, and thereafter, as the vehicle speed V increases, the third speed, the fourth speed, and the fifth speed are sequentially changed. When the vehicle starts traveling in the second speed, NO is determined in step S2 in relation to the estimation accuracy of the engine torque Te as described above, so that the vehicle weight W calculation process is not executed and the subsequent third speed is achieved. Even in the section Ts during the shift, the calculation process is not performed because NO is determined in step S2 because the driving force F is zero. As is well known, the acceleration αv of the vehicle decreases during the shift and does not rise suddenly after the shift is completed. Therefore, in the section Ta immediately after the shift, the acceleration αv is transiently small, so that the absolute value of the denominator of the equation (1) is less than a predetermined value, and the determination process is NO in step S4. Not done. In addition, although the case where W is calculated in the section Ta for reference is shown in the figure, it is calculated to a value far from the actual vehicle weight of 11300 kg.
[0022]
When driving at the 3rd speed is started and the acceleration αv rises, the absolute value of the denominator becomes equal to or greater than a predetermined value, so the determination at step S4 is YES and the calculation process is started. This is continued until shifting to is started. Therefore, the vehicle weight W is sequentially calculated as shown by the thin line in the figure by the equation (1), and is integrated and averaged as shown by the thick line. Thereafter, the above is repeated, and the calculation process is stopped in the section Ts during each shift and the section Ta immediately after the shift, and the calculation process is executed in the other sections.
[0023]
As described above, in the vehicle weight detection device according to the present embodiment, the calculation process is executed or stopped according to the absolute value of the denominator of Expression (1). This is based on the following findings. As described with reference to FIG. 3, the vehicle acceleration αv is obtained from the vehicle speed V, but a relatively large error is included in the vehicle acceleration αv due to the differentiation process executed at that time. As is clear from the equation (1), the vehicle weight W is calculated by dividing the numerator by the denominator and, for example, a large value of about 11300 kg. Therefore, the denominator is inevitably much smaller than the numerator. Take. Although the vehicle acceleration αv is applied not only to the denominator but also to the numerator, the degree of influence is particularly large on the denominator having a small value, and the degree of influence of the error included in the vehicle acceleration αv is also large. Therefore, when the absolute value of the denominator is less than the predetermined value, the error of the vehicle acceleration αv greatly influences and the accurate vehicle weight W cannot be calculated. Therefore, the influence degree of the error of the vehicle acceleration αv when the absolute value of the denominator is greater than the predetermined value. The calculation process is executed only when is small.
[0024]
In the above example, the running state in which the calculation process of the vehicle weight W is executed when the absolute value of the denominator is equal to or greater than the predetermined value is given as the time of acceleration on a flat road where the acceleration αv is large. The same applies to high-speed driving and acceleration on an uphill road, and the road gradient sinθ increases during constant-speed driving on an uphill road. Therefore, in any case, the absolute value of the denominator becomes equal to or greater than a predetermined value, and the calculation process is executed.
[0025]
The above is the case where the engine 1 applies a positive driving force to the vehicle, but the same applies when a negative driving force (braking force) is applied as in the case of using an engine brake or an exhaust brake. Yes (excludes braking by foot brake as described above). Therefore, the acceleration αv increases on the negative side when decelerating on a flat road, and the road gradient sinθ increases on the negative side when traveling at a constant speed on a downhill. Since the vehicle acceleration αv is large on the negative side, the absolute value of the denominator becomes equal to or greater than a predetermined value in any case, and the calculation process is executed.
[0026]
On the other hand, in the example described above, as a running state in which the calculation process is stopped when the absolute value of the denominator is less than a predetermined value, the case where the acceleration αv is transiently small is given immediately after the gear change during acceleration. The same applies to high-speed traveling. At this time, both the road gradient sinθ and the vehicle acceleration αv are 0, so that the absolute value of the denominator is less than a predetermined value and the calculation process is stopped.
[0027]
As described above, in the vehicle weight detection device of the present embodiment, focusing on the fact that the calculation accuracy changes according to the size of the denominator of the equation (1) for calculating the vehicle weight W, the absolute value of the denominator is equal to or greater than a predetermined value. The calculation process is executed only when the degree of influence of the error included in the vehicle acceleration αv on the denominator is small. Therefore, when the influence degree of the error of the vehicle acceleration αv is large, the calculation process of the vehicle weight W is stopped, and the situation where the vehicle weight W (for example, the section Ta in FIG. 4) that is far from the actual is calculated is prevented. Therefore, the vehicle weight W can always be accurately calculated regardless of the traveling state of the vehicle, and the engine 1 and the automatic transmission 2 can be accurately controlled based on the calculation result.
[0028]
Since the denominator of equation (1) takes into account not only the vehicle acceleration αv but also the road gradient sinθ, the engine 1 exerts a propulsive force as in the above-described constant speed traveling on the uphill road, and the vehicle weight W Even if it is possible to calculate the vehicle acceleration αv, the calculation process is executed and the frequency of the calculation process is increased because the road gradient sinθ becomes large even in a driving state in which the calculation is stopped when only the vehicle acceleration αv is determined. Calculation accuracy can be improved.
[0029]
On the other hand, since the vehicle weight W is integrated and averaged using the past calculation results, the calculation accuracy can be further improved, and it is estimated that the reset condition is satisfied and the vehicle weight W has changed due to the loading / unloading of the load. When this is done, the past calculation results are reset, so that erroneous calculation of the vehicle weight W due to the cumulative average based on the inappropriate calculation results can be prevented.
[0030]
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the present invention is embodied in a vehicle weight detection device mounted on a large truck, but the vehicle type is not limited, and may be embodied in, for example, a vehicle weight detection device mounted on a bus vehicle.
[0031]
【The invention's effect】
As described above, according to the vehicle weight detection device of the first aspect of the present invention, the vehicle acceleration (αv + g · sinθ + g · μ) including the gradient component is not less than a predetermined value, and the influence of the error included in the actual acceleration αv is small. Since the vehicle weight calculation process is executed at this time, the vehicle weight can be calculated with high accuracy, and the engine and the automatic transmission can be accurately controlled based on the calculation result.
[0032]
According to the vehicle weight detection device of the second aspect of the invention, it is possible to further increase the calculation accuracy of the vehicle weight by the cumulative average, and it is presumed that the vehicle weight has changed with the loading amount based on the determination by the determination means. In this case, by resetting past calculation results, it is possible to prevent an erroneous calculation of the vehicle weight due to the cumulative average based on the inappropriate calculation results.
According to the vehicle weight detection device of the third aspect of the invention, the calculation of the vehicle weight is stopped when the foot brake is operated, the gear is disengaged by the clutch disengagement, and the vehicle is traveling at a predetermined low gear position. Can be prevented in advance.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram illustrating a vehicle weight detection device according to an embodiment.
FIG. 2 is a flowchart showing a vehicle weight calculation routine executed by an ECU.
FIG. 3 is an explanatory diagram showing a procedure for calculating a vehicle weight.
FIG. 4 is a time chart showing the status of vehicle weight calculation processing.
[Explanation of symbols]
g Gravity acceleration F Driving force Rl Air resistance Wr Inertial weight αv Actual acceleration
sinθ road gradient μ rolling resistance coefficient Te engine torque W vehicle weight 11 ECU (vehicle propulsion force calculation means, vehicle acceleration calculation means, vehicle weight calculation means, calculation permission means, determination means)

Claims (3)

重力加速度g、エンジントルクにより発生する車両の駆動力F、車両に作用する空気抵抗Rl、車両の動力伝達系の回転部分が有する慣性重量Wr、車速から求めた車両の実加速度αvに基づき、車両の推進力{g(F−R1)−Wr・αv}を算出する車両推進力算出手段と、
上記車両の実加速度αv、上記重力加速度g、車両が走行している道路勾配sinθ、タイヤの転がり抵抗係数μに基づき、勾配成分を含む車両加速度(αv+g・sinθ+g・μ)を算出する車両加速度算出手段と、
上記車両推進力算出手段にて算出された車両の推進力{g(F−R1)−Wr・αv}と、上記車両加速度算出手段にて算出された勾配成分を含む車両加速度(αv+g・sinθ+g・μ)とに基づいて、車両重量を算出する車両重量算出手段と、
上記車両加速度算出手段にて算出された勾配成分を含む車両加速度(αv+g・sinθ+g・μ)が所定値以上のときに、上記車両重量算出手段に算出処理の実行を許可する算出許可手段と
を備えたことを特徴とする車両重量検出装置。
Based on the gravitational acceleration g, the vehicle driving force F generated by the engine torque, the air resistance Rl acting on the vehicle, the inertia weight Wr of the rotating part of the vehicle power transmission system, and the vehicle actual acceleration αv obtained from the vehicle speed Vehicle propulsive force calculating means for calculating the propulsive force {g (F−R1) −Wr · αv}
Vehicle acceleration calculation for calculating vehicle acceleration (αv + g · sinθ + g · μ) including a gradient component based on the actual acceleration αv of the vehicle, the gravitational acceleration g, the road gradient sinθ on which the vehicle is traveling, and the rolling resistance coefficient μ of the tire. Means,
The vehicle propulsive force {g (F−R1) −Wr · αv} calculated by the vehicle propulsive force calculating means and the vehicle acceleration (αv + g · sinθ + g ·) including the gradient component calculated by the vehicle acceleration calculating means. μ) and vehicle weight calculating means for calculating the vehicle weight,
Calculation permission means for permitting the vehicle weight calculation means to execute calculation processing when vehicle acceleration (αv + g · sin θ + g · μ) including the gradient component calculated by the vehicle acceleration calculation means is equal to or greater than a predetermined value. A vehicle weight detection device characterized by that.
車両が積載量を変化可能な状況にあることを判定する判定手段を備え、
上記車両重量算出手段は、上記算出した車両重量を積算平均すると共に、上記判定手段にて積載量を変化可能な状況と判定されたときに、過去の算出結果をリセットすることを特徴とする請求項1に記載の車両重量検出装置。
A determination means for determining that the vehicle is in a state where the load capacity can be changed;
The vehicle weight calculating means averages the calculated vehicle weights and resets past calculation results when the determining means determines that the load capacity can be changed. Item 2. The vehicle weight detection device according to Item 1.
上記車両重量算出手段は、フットブレーキ操作時、クラッチ遮断による変速中、所定の低変速段での走行時の何れかに該当するときには、上記車両重量の算出を中止することを特徴とする請求項1又は2記載の車両重量検出装置。The vehicle weight calculation means stops the calculation of the vehicle weight when the foot brake is operated, during shifting by clutch disengagement, or when traveling at a predetermined low gear stage. The vehicle weight detection apparatus according to 1 or 2.
JP2000118130A 2000-04-19 2000-04-19 Vehicle weight detection device Expired - Lifetime JP3693097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118130A JP3693097B2 (en) 2000-04-19 2000-04-19 Vehicle weight detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118130A JP3693097B2 (en) 2000-04-19 2000-04-19 Vehicle weight detection device

Publications (2)

Publication Number Publication Date
JP2001304948A JP2001304948A (en) 2001-10-31
JP3693097B2 true JP3693097B2 (en) 2005-09-07

Family

ID=18629328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118130A Expired - Lifetime JP3693097B2 (en) 2000-04-19 2000-04-19 Vehicle weight detection device

Country Status (1)

Country Link
JP (1) JP3693097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202835A (en) * 2011-03-25 2012-10-22 Advics Co Ltd Estimation device for vehicle weight, estimation method for vehicle weight, and rolling suppression device for vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286535A (en) * 2001-03-26 2002-10-03 Aisin Seiki Co Ltd Vehicle weight estimation device
FR2857090B1 (en) * 2003-07-04 2005-08-26 Renault Sa METHOD AND DEVICE FOR ESTIMATING THE TOTAL MASS OF A MOTOR VEHICLE
JP4794960B2 (en) * 2005-09-16 2011-10-19 日野自動車株式会社 Vehicle mass estimation device
KR101180929B1 (en) 2006-08-14 2012-09-07 현대자동차주식회사 Electronic throttle control system of vehicle and method thereof
JP5621660B2 (en) * 2011-02-28 2014-11-12 株式会社アドヴィックス Vehicle weight estimation device and vehicle rollover suppression device
CN102353433B (en) * 2011-06-03 2013-03-06 石家庄开发区天远科技有限公司 Method for dynamically measuring load of vehicle
CN104034400B (en) * 2013-08-20 2016-05-25 易通星云(北京)科技发展有限公司 Vehicle mass monitoring method and device
JP2017063575A (en) 2015-09-25 2017-03-30 アイシン精機株式会社 Control device of electric vehicle
JP6306551B2 (en) 2015-10-01 2018-04-04 ファナック株式会社 Processing machine with door that can change opening and closing speed
CN106441475B (en) * 2016-09-12 2019-05-31 中国矿业大学 A kind of vibrating screen treating capacity on-line measuring device and method
JP6943419B2 (en) * 2017-05-18 2021-09-29 株式会社ニッキ Method of estimating the loaded mass in a vehicle
AT519972B1 (en) * 2017-08-31 2018-12-15 Philipp Tarter Arrangement for car condition measurement
JP2020038151A (en) * 2018-09-05 2020-03-12 いすゞ自動車株式会社 Vehicular mass estimation apparatus and vehicular mass estimation method
KR20200063312A (en) * 2018-11-20 2020-06-05 현대자동차주식회사 Vehicle, and control method for the same
CN112356837A (en) * 2020-11-18 2021-02-12 潍柴动力股份有限公司 Vehicle load monitoring method, server and control system
CN113188997B (en) * 2021-04-29 2022-06-14 华侨大学 Method, device, equipment and storage medium for measuring road surface friction coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202835A (en) * 2011-03-25 2012-10-22 Advics Co Ltd Estimation device for vehicle weight, estimation method for vehicle weight, and rolling suppression device for vehicle

Also Published As

Publication number Publication date
JP2001304948A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3693097B2 (en) Vehicle weight detection device
US6249735B1 (en) Vehicle state estimation method and vehicular auxiliary brake control apparatus using the method
US7206682B2 (en) Uphill start-up assistance device for motor vehicle
JP2748470B2 (en) Automatic transmission for vehicles
US7311638B2 (en) Mechanical automatic transmission apparatus
CN106143494B (en) Apparatus and method for estimating road gradient using gravitational acceleration sensor
US8447475B2 (en) Method providing assistance with hill starts
US20070173995A1 (en) Front and rear wheel drive vehicle
JPH08258588A (en) Road surface condition detecting device in vehicle
JP2010537870A (en) In-vehicle system and method for controlling release of automatic parking brake device
US20110137503A1 (en) Travel controller for industrial vehicle
US9505414B2 (en) Device and method for estimating the charge of a motor vehicle
US10981555B2 (en) Vehicle equipped with electric motor and parking control method therefor
JPH06201523A (en) Torque etimating device for output shaft of automobile and weight calculating device for vehicle
JP3126525B2 (en) Automatic transmission control device for automobile
JP3784761B2 (en) Abnormality determination device for longitudinal acceleration sensor for vehicle
JP6943419B2 (en) Method of estimating the loaded mass in a vehicle
JP4180752B2 (en) Engine output control device based on road surface gradient
JPH11351864A (en) Road slope estimating equipment
JP2016217851A (en) Vehicle mass estimation device and vehicle mass estimation method
JP2002013620A (en) Device for estimating vehicle mass
JPH11211548A (en) Method for estimating condition of vehicle and vehicle control device using the same
JP2000283831A (en) Apparatus for determining vehicle weight and lane gradient
JP3482930B2 (en) Correction device for gradient vehicle acceleration sensor
JPH06264783A (en) Road grade corresponding automobile control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3693097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

EXPY Cancellation because of completion of term