JP3692163B2 - Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material - Google Patents

Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material Download PDF

Info

Publication number
JP3692163B2
JP3692163B2 JP16156795A JP16156795A JP3692163B2 JP 3692163 B2 JP3692163 B2 JP 3692163B2 JP 16156795 A JP16156795 A JP 16156795A JP 16156795 A JP16156795 A JP 16156795A JP 3692163 B2 JP3692163 B2 JP 3692163B2
Authority
JP
Japan
Prior art keywords
concentration
dust
molten iron
hot metal
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16156795A
Other languages
Japanese (ja)
Other versions
JPH08333615A (en
Inventor
国彦 渡邉
雅夫 山内
和海 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16156795A priority Critical patent/JP3692163B2/en
Publication of JPH08333615A publication Critical patent/JPH08333615A/en
Application granted granted Critical
Publication of JP3692163B2 publication Critical patent/JP3692163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、Si濃度が0.2重量%以下の脱珪溶銑中に、CaOを主成分としたフラックスZn含有精錬ダスト、さらには酸化鉄を吹込んで溶銑脱りん脱硫処理を行い、続いてこのような溶銑を用いてZn含有物質としての冷鉄源と共に転炉吹錬を行う製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法に関するものである。
【0002】
【従来の技術】
従来、Zn含有廃棄物からZnを回収する方法としては、例えば、特開昭58−144437号に開示されている、「ダスト中の亜鉛の回収方法」のように、高温の溶融体が貯えられた浴中にZn含有ダストを酸素および/または空気と共に、さらに必要に応じて炭素材と共に吹込み、ダスト中の鉄酸化物を溶融体中で還元させるとともに、ダスト中の酸化Znを還元・蒸気化し、蒸気化したZnを排ガスと共に吸引し水中で冷却・凝縮させて、酸化亜鉛として回収する方法や、特公平2−8002号に開示されている「Zn含有ダストの亜鉛分の回収方法」のように、密閉容器に収容した溶鉄中にランスを用いてZn含有ダストを吹込んで、ダストが含有している酸化亜鉛を溶鉄中のC、Siにより還元しZn蒸気として分離させ、これを集塵機により捕集して濃縮化し回収する方法がある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来のZn回収方法は、ZnをZn蒸気あるいはZn酸化物として捕捉回収するのみで、精錬ダストおよび溶鉄中のZn濃度を調節することができないために、回収する精錬ダストおよび溶鉄中のZn濃度を目標濃度まで達成させるのに必要なZn含有ダスト量を決定づけるという制御ができないという問題があった。
【0004】
そこで、本発明の目的は、大幅な設備投資を必要としないでZn含有精錬ダストの有効利用とZn資源のリサイクルを図り、精錬ダストおよび溶鉄中のZn濃度の調節と、回収する精錬ダストおよび溶鉄中のZn濃度を目標濃度まで達成させるのに要するZn含有ダスト量を決定することができる、Zn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に示した本発明は、溶銑予備処理工程でSi濃度が0.2重量%以下の脱珪溶銑中にCaOを主成分としたフラックス、酸化鉄およびZnを0.1〜70重量%含有するZn含有精錬ダスト、または前記フラックスおよび前記Zn含有精錬ダストを吹込みZn含有精錬ダストの供給速度を10〜600Kg/分まで調節し、吹込用不活性ガス流量を5〜30Nm3/分まで変化させることにより溶銑の攪拌力を調整し、さらに処理時間調節することによって、発生する精錬ダスト中のZn濃度および溶鉄中のZn濃度を制御して溶銑予備脱りん脱硫処理を行った後、転炉でZn含有物質より供給されるZn濃度、上底吹き攪拌力および吹錬時間による転炉吹錬方法を調節することにより溶鉄中のZn濃度を制御して転炉吹錬を行い、製鋼工程中に発生する精錬ダストおよび溶鉄中のZn濃度を制御することを特徴としている。
【0006】
更に、請求項2に示した本発明は、請求項1記載のZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法において、回収したZn含有精錬ダストを再び製鋼工程に利用することを特徴としている。
【0007】
更に、請求項3に示した本発明は、請求項1記載のZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法において、溶鉄中に残留するZn濃度および回収する精錬ダスト中のZn濃度が所定量となるようにZn含有物質の供給速度あるいは装入量を調節することを特徴としている。
【0009】
【作用】
請求項1に示した本発明によれば、製鋼工程中の溶銑予備処理工程で10〜600Kg/分までの間調節するZn含有精錬ダストの供給速度と、吹込用不活性ガス流量を5〜30Nm3/分まで変化させることにより調節する溶銑の攪拌力、および処理時間の溶銑予備処理吹錬方法を調節して精錬ダストおよび溶鉄中のZn濃度を制御する予備処理工程後に、転炉で供給Zn濃度、上底吹き攪拌力および吹錬時間を調節する転炉吹錬方法の調節により溶鉄中のZn濃度を制御するので、予め溶銑予備処理工程で溶銑予備処理吹錬方法を調節し精錬ダストおよび溶鉄中のZn濃度を制御しておき、転炉で更に転炉吹錬方法を調節し溶鉄中のZn濃度を制御することにより、製鋼工程トータルでより精度良く効率的に精錬ダストおよび溶鉄中のZn濃度を制御することができる。
【0010】
請求項2に示した本発明によれば、回収したZn含有精錬ダストを再度製鋼工程に利用するので、Zn資源のリサイクルが可能になる。
【0011】
請求項3に示した本発明によれば、精錬ダストおよび溶鉄中のZn濃度が所定量になるようZn含有物質の供給速度あるいは装入量を調節することにより、鋼材の品質を確保するための溶鋼中のZn濃度を制御することが可能になる。
【0012】
請求項4に示した本発明によれば、高効率プロセスとしてのZn分の分離回収を行うので、Zn分を効率良く濃縮回収してZn資源の高効率なリサイクルが可能になる。
【0013】
【実施例】
以下、本発明の実施例を図に基づいて説明する。
図1は本発明の一実施例に係る製鋼工程の構成図である。
【0014】
図1に示す製鋼工程(予備処理工程相当)では、高炉よりトーピードカー2に収容された脱珪溶銑1に、粉体吹込みランス3を用いて脱りん剤(CaO、FetO、および/またはZn含有物質、および必要に応じてCaF2、CaCl2の混合物)を吹込み溶銑脱りん脱硫を実施する。同時に、酸素ガス吹付けランス4を用いて酸素をトーピード内に供給することも行われる。トーピードカー2内から発生するZnを含むダストは、集塵フード5と集塵ダクト6を介して集塵機7で吸引されて、Zn含有精錬ダストとして効率良く回収される。
【0015】
こうして回収したZn含有精錬ダストを再度脱りん剤に利用することにより、更に濃縮して高効率なZn資源回収を行うことが可能になる。
【0016】
溶銑中のZn濃度変化は次の(1)式の関係が成り立つ。
【0017】
(溶銑中のZn濃度変化)=(供給Zn速度)−(蒸発Zn速度)…(1)
従って、溶銑予備処理中の脱珪溶銑1中の残留Zn濃度は以下の条件で決定される。
【0018】
(1)粉体吹込みランス3から吹込むZn含有物質の供給速度(10〜600Kg/分)が大なら、供給するZn量が大であるから、残留Zn濃度は当然大きくなる。
【0019】
(2)溶銑1の攪拌力を調節するためにランス4等を利用して吹込む、吹込み不活性ガス流量(5〜30Nm3/分)が小なら、溶銑1の攪拌力が小さい場合なので蒸発速度が小さくなり、Zn残留濃度は大きい。
【0020】
(3)トーピードカー2内の処理工程の処理時間が長い場合は、(1)によるZn含有物質の供給が大となるので、残留Zn濃度は大きくなる。
(1)式中、溶銑1への(供給Zn速度)はZn含有物質の吹込み速度に依存し、精錬ダストとして蒸発する(蒸発Zn速度)は攪拌力に依存する度合いが強いので、溶銑中のZn濃度と精錬ダスト中のZn濃度は、(1)のZn含有物質の供給速度、(2)の溶銑1の攪拌力、(3)の処理時間、の吹錬方法を調節することによって定量的に制御することができる。
【0021】
また、溶銑予備処理後の溶銑1は、トーピードカー2によって運搬される。この溶銑1は溶銑鍋8を経て、Zn含有物質9と共に転炉10に装入される。この転炉10において、吹錬中発生するZn含有精錬ダストは、転炉集塵フード11と転炉OG装置12を介して回収される。そして、吹錬終了後、溶鋼13は溶鋼鍋14に収容される。この回収したZn含有精錬ダストを再度転炉内に装入することによりさらに高効率にZn資源回収を行うことができる。
【0022】
この転炉吹錬中の溶鉄中の残留Zn濃度は以下の条件で決定される。
【0023】
(1)転炉19内に装入される溶銑およびZn含有物質から供給されるZn量が多いほど、同一吹錬条件下での同一時間における溶鉄中Zn濃度は大きくなる。
【0024】
(2)転炉10内溶鉄へ上吹き酸素料および底吹不活性あるいは酸素ガスにより与えられる撹拌力が大なら、溶鉄からZnが蒸発する速度が大きくなり、溶鉄中に残留するZn濃度は小さくなる。
【0025】
つぎに実際に行った実施条件による各実施例について説明する。
【0026】
実施例1では、図1のような予備処理工程において、実施条件として下の表1に示すように、
【0027】
【表1】

Figure 0003692163
【0028】
図2は図1に示す予備処理工程において、表1に示す条件で溶銑予備処理を行った結果を示したものであり、Zn含有物質の供給速度と処理時間に対する溶銑中のZn濃度の変化を示す図である。
【0029】
処理中に数回溶銑のサンプリングを行い、溶銑中の成分を分析し、図中にプロットした。試験No.1を表す実線グラフは、Zn含有物質の吹込み速度が大なので溶銑中のZn濃度も大となる様子を示している。
【0030】
試験No.2を表す点線グラフは、試験No.1の場合よりZn含有物質の吹込み速度が小さいので、その分、溶銑中のZn濃度も小となる様子を示している。一方、試験No.3のケースではZn含有物質を使用していないので、一点鎖線グラフで示すようにZn濃度は徐々に減少する。これらのことから、特にZn含有物質の吹込み量調節により効果的に残留Zn濃度を制御できるが、総合的にはZn含有物質の吹込み速度と処理時間の調節によって、溶銑中のZn濃度および精練ダスト中のZn濃度の制御が可能である。
【0031】
図3は処理時間に対する溶銑中のリン濃度の変化を示す図である。
【0032】
図3は図1に示した予備処理工程で表1に示した条件により処理を実施した場合の脱りん効果を示したものであり、Zn含有物質を使用する試験No.1の場合は実線グラフで示すように、従来の酸化鉄による脱りん処理に近い、りん[P]濃度となり十分な脱りん効果が認められる。
【0033】
次に、実施例2では、図1に示すような予備処理工程において、実施条件として表2に示すように、
【0034】
【表2】
Figure 0003692163
【0035】
図4は予備処理工程における攪拌力に対する溶銑中のZn濃度の変化を示す図であり、表2に示す条件で処理を実施した場合の、攪拌力の変化に対する溶銑中のZn濃度の変化をグラフで示したものである。試験No.4を表す実線グラフは攪拌力が小さい、つまり吹込用不活性ガス流量が小さく溶銑中の残留Zn濃度が大きいことを示している。
【0036】
試験No.5を表す点線グラフは、試験No.4より攪拌力が1.5倍と大きくなるので、その分蒸発Zn分が増加して溶銑中の残留Zn濃度が小さくなることを示している。
【0037】
試験No.6を表す一点鎖線グラフは、試験No.4より攪拌力が2倍と大きくなり、更に蒸発Zn分が増加して溶銑中の残留Zn濃度が小さくなる様子を示している。
【0038】
これらより、攪拌力の増大によって蒸発Zn分が増加する様子が見てとれ、蒸発Zn分によって決まる精練ダスト中のZn濃度は攪拌力により効果的に制御できる。つまり、総合的には攪拌力を制御できる吹込み用不活性ガス流量を調節することによって、溶銑中の残留Zn濃度および精錬ダスト中のZn濃度を制御することが可能であることがわかる。
【0039】
次に、こうしてZn濃度制御によりZn含有度が既知となった予備処理工程の溶銑を、次段の転炉吹錬に用いて溶鉄中のZn濃度を所定値に、製鋼工程トータルとして制御する。
【0040】
一般的に、Zn含有物質を転炉に装入すると、Zn含有物質のZn分が一旦溶銑中に溶解し転炉吹錬により1600℃以上にまで昇温される。金属Znの沸点は900℃であるから溶銑中のZn分は連続的にZn蒸気として蒸発し、転炉吹錬時間が経過するにつれて溶銑中のZn濃度も連続的に減少して行き、転炉吹錬の停止時点の溶銑中のZn濃度は変化する。
【0041】
転炉での溶銑中のZn分の蒸発速度は、転炉内の溶銑中に溶解させたZn濃度と転炉内攪拌速度に依存し、転炉口から捕捉回収される蒸発Zn分はほぼ全量が精錬ダスト中に回収される。但し、転炉吹錬では、トーピードカー2のようにZn含有物質の吹込み速度を調節できる処理とは異なり、容器内にスクラップ、Zn含有物質等を投入しておきそこへ溶銑を流し込み、上方から高速で純酸素を吹き付ける処理なので、ダストの発生量はトーピードカー型溶銑予備処理時の10倍位と多くなり、精錬ダスト中のZn回収効率は良くないので、単に精錬ダストとしてZn資源の濃縮回収率だけなら、転炉よりトーピードカー2による処理の方が高効率である。
【0042】
また、転炉吹錬にあたっては、製鋼工程トータルで目標とする溶銑中のZn濃度と精錬ダスト中のZn濃度の所定値の如何によって、Zn含有物質の装入量を所定量装入する場合と、転炉にはZn含有物質を新たに装入しないで吹錬を行う場合とがある。
【0043】
次に、実際に行った実施条件による転炉吹錬について説明する。
【0044】
実施例3として、CO2ガスの底吹き設備を有する250トン上底吹き転炉において、下記の表3に示すように、溶銑としては表1の試験No.1の溶銑を用いて、さらにZn含有物質としてZn濃度が既知で且つそれぞれ異なるZn含有スクラップ(各、試験No.7,8,9,10毎)をその他のスクラップ等と装入し転炉吹錬を実施した。溶銑への攪拌については、上吹き送酸速度、メインランス高さ、底吹き攪拌力が一定の条件である。
【0045】
【表3】
Figure 0003692163
図5は転炉での吹錬時間に対する溶銑中のZn濃度の変化を示す図であり、表3の条件で吹錬を行った場合の吹錬時間と、溶銑中のZn濃度の変化を示したグラフである。溶銑中のZn濃度は吹錬の進行に従い減少するが、同一の吹錬時間における溶銑中の残留Zn濃度は転炉に装入するZn含有物質中のZn量に依存するので、Zn含有物質より転炉へ供給するZn量および吹錬時間を調節すれば、溶銑中のZn濃度を精度良く調整できる。
【0046】
また、この場合の蒸発Zn分はほぼ全量が精錬ダスト中に濃化するので、精錬ダスト中のZn濃度も調整可能である。
【0047】
次に実施例4として、同じCO2ガスの底吹き設備を有する250トン上底吹き転炉において、下記の表4に示すように、溶銑としては表1の試験No.1の溶銑を用いて、さらにZn含有物質としてZn量が既知で同一濃度(46%)のZn含有スクラップを各々同量(30トン)転炉に装入し、それぞれ試験No.11〜No.13で溶銑の攪拌力を変えて吹錬を実施した。
【0048】
【表4】
Figure 0003692163
図6は転炉での攪拌力に対する溶銑中のZn濃度の変化を示す図であり、表4の条件で吹錬を行った場合の溶鉄への攪拌力を変えた時の吹錬時間に対する溶銑中のZn濃度の変化をグラフで示したものである。同一処理時間における溶銑中の残留Zn濃度は試験No.13,No.12,No.11の順に攪拌力が大きくなるにつれ大きくなる。
【0049】
従って、溶銑に与える攪拌力を調節して溶銑中のZn濃度を精度良く調整できる。また、この時の蒸発Zn分による精錬ダスト中のZn濃度も調整することができる。
【0050】
このように、本発明では、トーピードカー等による予備処理工程および転炉吹錬における、Zn含有物質の供給速度あるいは装入量、攪拌力および処理時間を効率的に調節することによって、製鋼工程トータルとしての溶銑中のZn濃度および精錬ダスト中のZn濃度を、予備処理工程又は転炉吹錬で単独制御する場合に比較して、より精度良く制御することが可能になった。
【0051】
また、予備処理工程と転炉吹錬のそれぞれの特性を効率良く生かして、Zn資源リサクルの観点より回収した精錬ダストを再利用するために、目的とするZn濃度まで精錬ダストのZn濃度を濃縮するに要する、Zn含有物質の供給速度、装入量等も精度良く決定して製鋼工程トータルとしてより効果的に制御することが可能になった。
【0052】
【発明の効果】
以上、説明したように、請求項1に示した本発明によれば、製鋼工程中の溶銑予備処理工程で10〜600Kg/分までの間調節するZn含有精錬ダストの供給速度と、吹込み用不活性ガス流量を5〜30Nm3/分まで変化させることにより調節する溶銑の攪拌力、および処理時間によって実行する溶銑予備処理吹錬方法を調節し精錬ダストおよび溶銑中のZn濃度を制御して脱りん脱硫処理後、転炉で供給Zn濃度、上底吹き攪拌力および吹錬時間の転炉吹錬方法を調節して溶鉄中のZn濃度を制御するので、従来は投棄していたZn含有精錬ダストを脱りん剤として有効利用してコストを低減できる共に、製鋼工程トータルで精錬ダストおよび溶鉄中のZn濃度を精度良く制御できるという効果がある。
【0053】
更に、請求項2に示した本発明によれば、回収したZn含有精錬ダストを再度製鋼工程に利用するので、Zn資源のリサイクルを可能にする効果がある。
【0054】
更に、請求項3に示した本発明によれば、溶銑中に残留するZn濃度および発生する精錬ダスト中のZn濃度が所定値となるようZn含有物質の供給速度あるいは装入量を調節するので、大幅な設備投資によらずに既存の吹込み設備を利用して効率的にZn濃度を制御し、精錬ダストおよび溶鉄中のZn濃度を目標濃度まで達成させるに必要なZn含有ダスト量を精度良く決定づけられるという効果がある。
【0055】
更に、請求項4に示した本発明によれば、Zn分回収用の高効率プロセスとしてZn分を高効率に分離回収するので、製鋼工程としてより高効率にZn精錬ダストが回収でき、より効率的にZn資源のリサイクルを図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る製鋼工程の構成図である。
【図2】図1に示す予備処理工程におけるZn含有物質供給速度に対する溶銑中のZn濃度の変化を示す図である。
【図3】図1に示す予備処理工程における溶銑中りん濃度の変化を示す図である。
【図4】図1に示す予備処理工程における攪拌力に対する溶銑中のZn濃度の変化を示す図である。
【図5】転炉での吹錬時間に対する溶鉄中のZn濃度の変化を示す図である。
【図6】転炉での攪拌力に対する溶鉄中のZn濃度の変化を示す図である。
【符号の説明】
1 脱珪溶銑
2 トーピードカー
3 粉体吹込みランス
4 酸素ガス吹付けランス
5 集塵フード
6 集塵ダクト
7 集塵機
8 溶銑鍋
9 Zn含有物質
10 転炉
11 転炉集塵フード
12 転炉OG装置
13 溶鋼
14 溶鋼鍋[0001]
[Industrial application fields]
The present invention performs hot metal dephosphorization desulfurization treatment by blowing flux containing CaO as a main component , Zn-containing refining dust , and further iron oxide into desiliconized hot metal having a Si concentration of 0.2% by weight or less. The present invention relates to a method for controlling the concentration of Zn in refined dust and molten iron in a steelmaking process in which a furnace is blown together with a cold iron source as a Zn-containing material using such hot metal.
[0002]
[Prior art]
Conventionally, as a method for recovering Zn from Zn-containing waste, for example, a high-temperature melt is stored as in “Method for recovering zinc in dust” disclosed in JP-A-58-144437. Zn-containing dust is blown into the bath together with oxygen and / or air and, if necessary, with a carbon material to reduce iron oxide in the dust in the melt, and Zn oxide in the dust is reduced and vaporized. Of vaporized and vaporized Zn together with exhaust gas, cooled / condensed in water, and recovered as zinc oxide, or “method for recovering zinc content of Zn-containing dust” disclosed in Japanese Patent Publication No. 2-8002 As described above, zinc-containing dust is blown into the molten iron contained in the sealed container using a lance, and the zinc oxide contained in the dust is reduced by C and Si in the molten iron to separate it as Zn vapor, A method of and enrichment collected was collected by a dust.
[0003]
[Problems to be solved by the invention]
However, since the conventional Zn recovery method only captures and recovers Zn as Zn vapor or Zn oxide and cannot adjust the Zn concentration in the refined dust and molten iron, There has been a problem that it is impossible to control to determine the amount of Zn-containing dust necessary to achieve the Zn concentration up to the target concentration.
[0004]
Accordingly, an object of the present invention is to effectively use Zn-containing refining dust and recycle Zn resources without requiring significant capital investment, to adjust the Zn concentration in the refining dust and molten iron, and to recover the refining dust and molten iron. It is to provide a method for controlling the Zn concentration in refining dust and molten iron in a steelmaking process using a Zn-containing substance, which can determine the amount of Zn-containing dust required to achieve the target Zn concentration to the target concentration .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a flux, iron oxide and Zn containing CaO as a main component in desiliconized hot metal having a Si concentration of 0.2% by weight or less in the hot metal pretreatment step is provided. the Zn-containing refining dust containing 0.1 to 70% by weight or the flux and blowing the Zn-containing refining dust, and adjust the feed rate of the Zn-containing refining dust until 10~600Kg / min, purging inert gas, Adjusting the stirring power of the hot metal by changing the flow rate to 5-30 Nm 3 / min , and further adjusting the treatment time to control the Zn concentration in the refining dust and the Zn concentration in the molten iron After dephosphorization and desulfurization treatment, the Zn concentration in the molten iron is adjusted by adjusting the Zn concentration supplied from the Zn-containing material in the converter, the top bottom blowing stirring force, and the blowing time. It is characterized in that the converter is blown by controlling the concentration, and the Zn concentration in the refined dust and molten iron generated during the steelmaking process is controlled.
[0006]
Furthermore, the present invention shown in claim 2 is a method for controlling the concentration of Zn in refined dust and molten iron in a steelmaking process using the Zn-containing substance according to claim 1, and the recovered Zn-containing refined dust is again used in the steelmaking process. It is characterized by use.
[0007]
Furthermore, the present invention shown in claim 3 is a method for controlling the concentration of Zn in refining dust and molten iron in a steelmaking process using the Zn-containing material according to claim 1, and the concentration of Zn remaining in the molten iron and the refining to be recovered. It is characterized in that the supply rate or the charging amount of the Zn-containing substance is adjusted so that the Zn concentration in the dust becomes a predetermined amount.
[0009]
[Action]
According to the first aspect of the present invention, the supply rate of Zn-containing refining dust and the flow rate of the inert gas for blowing are adjusted to 5 to 30 Nm in the hot metal pretreatment process in the steelmaking process for 10 to 600 kg / min. After the pretreatment step of controlling the Zn concentration in the refined dust and molten iron by adjusting the hot metal stirring force adjusted by changing to 3 / min and the hot metal pretreatment blowing method of the treatment time, the Zn supplied in the converter Since the Zn concentration in the molten iron is controlled by adjusting the converter blowing method that adjusts the concentration, top bottom blowing stirring force and blowing time, the hot metal pretreatment blowing method is adjusted in advance in the hot metal pretreatment step, and the refined dust and By controlling the Zn concentration in the molten iron, and further adjusting the converter blowing method in the converter to control the Zn concentration in the molten iron, the total amount of steel in the refining dust and molten iron can be more accurately and efficiently. Z It is possible to control the concentration.
[0010]
According to the second aspect of the present invention, since the recovered Zn-containing refined dust is used again for the steel making process, Zn resources can be recycled.
[0011]
According to the third aspect of the present invention, the quality of the steel material is ensured by adjusting the supply rate or the charging amount of the Zn-containing substance so that the Zn concentration in the refined dust and the molten iron becomes a predetermined amount. It becomes possible to control the Zn concentration in the molten steel.
[0012]
According to the present invention described in claim 4, since the Zn content is separated and recovered as a highly efficient process, the Zn content can be concentrated and recovered efficiently and Zn resources can be recycled with high efficiency.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of a steel making process according to an embodiment of the present invention.
[0014]
In steel making process (pretreatment step equivalent) shown in FIG. 1, the de-珪溶pig iron 1 housed in the torpedo car 2 from the blast furnace, by using a powder blowing lance 3 dephosphorization agent (CaO, Fe t O, and / or A hot metal dephosphorization desulfurization is performed by blowing a Zn-containing substance and, if necessary, a mixture of CaF 2 and CaCl 2 . At the same time, oxygen is supplied into the torpedo using the oxygen gas blowing lance 4. The dust containing Zn generated from the torpedo car 2 is sucked by the dust collector 7 through the dust collection hood 5 and the dust collection duct 6 and efficiently recovered as Zn-containing refined dust.
[0015]
By using the Zn- containing refined dust recovered in this manner again as a dephosphorization agent, it becomes possible to further concentrate and perform highly efficient Zn resource recovery.
[0016]
The following equation (1) holds for the Zn concentration change in the hot metal.
[0017]
(Zn concentration change in hot metal) = (Zn supply rate) − (Evaporation Zn rate) (1)
Therefore, the residual Zn concentration in the desiliconized hot metal 1 during the hot metal pretreatment is determined under the following conditions.
[0018]
(1) If the supply rate (10 to 600 Kg / min) of the Zn-containing material blown from the powder blowing lance 3 is large, the amount of Zn to be fed is large, so that the residual Zn concentration naturally increases.
[0019]
(2) If the blowing inert gas flow rate (5 to 30 Nm 3 / min) blown using the lance 4 or the like to adjust the stirring power of the hot metal 1 is small, the stirring power of the hot metal 1 is small. The evaporation rate decreases and the Zn residual concentration is large.
[0020]
(3) When the processing time of the processing step in the torpedo car 2 is long, the supply of Zn-containing material according to (1) becomes large, so the residual Zn concentration becomes large.
In the formula (1), the (feed Zn rate) to the hot metal 1 depends on the blowing speed of the Zn-containing material, and the evaporated (evaporated Zn rate) as refining dust is highly dependent on the stirring force. The Zn concentration in the refined dust and the Zn concentration in the refining dust were determined by adjusting the blowing method of (1) the feed rate of the Zn-containing substance, (2) the stirring power of the hot metal 1 and (3) the treatment time. Can be controlled.
[0021]
Moreover, the hot metal 1 after the hot metal pretreatment is transported by a torpedo car 2. The hot metal 1 is charged into the converter 10 together with the Zn-containing material 9 through the hot metal pan 8. In the converter 10, Zn-containing refined dust generated during blowing is recovered through the converter dust collection hood 11 and the converter OG device 12. And the molten steel 13 is accommodated in the molten steel pan 14 after completion | finish of blowing. By recharging the recovered Zn-containing refined dust into the converter again, it is possible to recover Zn resources with higher efficiency.
[0022]
The residual Zn concentration in the molten iron during the converter blowing is determined under the following conditions.
[0023]
(1) As the amount of Zn supplied from the hot metal and the Zn-containing material charged into the converter 19 increases, the Zn concentration in molten iron at the same time under the same blowing condition increases.
[0024]
(2) If the stirring power given to the molten iron in the converter 10 by the top blowing oxygen and bottom blowing inertness or oxygen gas is large, the rate at which Zn evaporates from the molten iron increases, and the concentration of Zn remaining in the molten iron decreases. Become.
[0025]
Next, each example according to the actual execution conditions will be described.
[0026]
In Example 1, as shown in Table 1 below as an execution condition in the pretreatment process as shown in FIG.
[0027]
[Table 1]
Figure 0003692163
[0028]
FIG. 2 shows the result of the hot metal pretreatment performed in the pretreatment step shown in FIG. 1 under the conditions shown in Table 1, and shows the change in the Zn concentration in the hot metal with respect to the supply rate of Zn containing material and the treatment time. FIG.
[0029]
During the treatment, hot metal was sampled several times, the components in the hot metal were analyzed, and plotted in the figure. Test No. A solid line graph representing 1 indicates that the Zn concentration in the hot metal also increases because the blowing speed of the Zn-containing substance is high.
[0030]
Test No. The dotted line graph representing the test No. Since the blowing speed of the Zn-containing substance is lower than that in the case 1, the Zn concentration in the hot metal is also reduced accordingly. On the other hand, test no. In case 3, since no Zn-containing material is used, the Zn concentration gradually decreases as shown by the one-dot chain line graph. From these facts, the residual Zn concentration can be controlled effectively by adjusting the blowing amount of the Zn-containing material, but overall, the Zn concentration in the molten iron and The Zn concentration in the scouring dust can be controlled.
[0031]
FIG. 3 is a graph showing changes in phosphorus concentration in the hot metal with respect to the treatment time.
[0032]
FIG. 3 shows the dephosphorization effect when the pretreatment process shown in FIG. 1 is carried out under the conditions shown in Table 1, and the test no. In the case of 1, as shown by the solid line graph, the phosphorus [P] concentration is close to that of conventional dephosphorization with iron oxide, and a sufficient dephosphorization effect is recognized.
[0033]
Next, in Example 2, in the preliminary processing step as shown in FIG.
[0034]
[Table 2]
Figure 0003692163
[0035]
FIG. 4 is a graph showing the change in Zn concentration in the hot metal with respect to the stirring force in the pretreatment step. The graph shows the change in Zn concentration in the hot metal with respect to the change in stirring force when the treatment is performed under the conditions shown in Table 2. It is shown by. Test No. 4 indicates that the stirring force is small, that is, the flow rate of the inert gas for blowing is small and the residual Zn concentration in the hot metal is large.
[0036]
Test No. The dotted line graph representing the test No. 4 shows that the stirring power is 1.5 times as large, so that the evaporated Zn content is increased correspondingly and the residual Zn concentration in the hot metal is reduced.
[0037]
Test No. The one-dot chain line graph representing the test No. 4 shows that the stirring force is increased by a factor of 2, and the evaporated Zn content is further increased to decrease the residual Zn concentration in the hot metal.
[0038]
From these, it can be seen that the evaporated Zn content increases as the stirring force increases, and the Zn concentration in the scouring dust determined by the evaporated Zn content can be effectively controlled by the stirring force. That is, it can be understood that the residual Zn concentration in the hot metal and the Zn concentration in the refining dust can be controlled by adjusting the flow rate of the inert gas for blowing which can control the stirring force comprehensively.
[0039]
Next, the hot metal in the pretreatment process in which the Zn content is known by the Zn concentration control is used for the subsequent converter blowing to control the Zn concentration in the molten iron to a predetermined value as a total steelmaking process.
[0040]
In general, when a Zn-containing material is charged into a converter, the Zn content of the Zn-containing material is once dissolved in the hot metal and the temperature is raised to 1600 ° C. or higher by converter blowing. Since the boiling point of metallic Zn is 900 ° C., the Zn content in the hot metal continuously evaporates as Zn vapor, and the Zn concentration in the hot metal continuously decreases as the converter blowing time elapses. The Zn concentration in the hot metal at the time of stopping blowing is changed.
[0041]
The evaporation rate of Zn in the hot metal in the converter depends on the concentration of Zn dissolved in the hot metal in the converter and the stirring speed in the converter, and almost all of the evaporated Zn is captured and recovered from the converter port. Is recovered in refining dust. However, in the converter blowing, unlike the torpedo car 2 which can adjust the blowing speed of the Zn-containing material, scrap, Zn-containing material, etc. are poured into the container and molten metal is poured into the container from above. Because it is a process of spraying pure oxygen at a high speed, the amount of dust generated is about 10 times that of the torpedo car type hot metal pretreatment, and the Zn recovery efficiency in the refining dust is not good. If it is only, the process by the torpedo car 2 is more efficient than a converter.
[0042]
Also, in the converter blowing, depending upon which the predetermined value of the Zn concentration in the refining and Zn concentration in the molten iron to target dust in steel making process total, and when a predetermined amount charged charged amount of Zn-containing material In some cases, the converter is blown without newly charging a Zn-containing substance.
[0043]
Next, converter blowing will be described based on the actual implementation conditions.
[0044]
As Example 3, in a 250 ton top bottom blowing converter having a bottom blowing facility for CO 2 gas, as shown in Table 3 below, as the hot metal, the test No. 1 in Table 1 was performed. Using the hot metal of No. 1, the Zn content scraps (each of test Nos. 7, 8, 9, and 10) having different Zn concentrations as the Zn content material were charged with other scraps, etc. Smelted. Regarding the stirring to the hot metal, the top blowing acid speed, the main lance height, and the bottom blowing stirring force are constant conditions.
[0045]
[Table 3]
Figure 0003692163
FIG. 5 is a diagram showing the change in Zn concentration in the hot metal with respect to the blowing time in the converter, and shows the change in the Zn concentration in the hot metal when the blowing is performed under the conditions of Table 3. It is a graph. Although the Zn concentration in the hot metal decreases with the progress of blowing, the residual Zn concentration in the hot metal at the same blowing time depends on the amount of Zn in the Zn-containing material charged into the converter, so By adjusting the amount of Zn supplied to the converter and the blowing time, the Zn concentration in the hot metal can be adjusted with high accuracy.
[0046]
In this case, almost all of the evaporated Zn content is concentrated in the refining dust, so that the Zn concentration in the refining dust can also be adjusted.
[0047]
Next, as Example 4, in a 250-ton top-bottom blowing converter having the same CO 2 gas bottom blowing facility, as shown in Table 4 below, the hot metal as a test No. No. 1 hot metal was used, and Zn-containing scraps having a known Zn content and the same concentration (46%) as the Zn-containing material were charged into the same amount (30 tons) converters, respectively. 11-No. At 13, blowing was performed by changing the stirring power of the hot metal.
[0048]
[Table 4]
Figure 0003692163
FIG. 6 is a diagram showing a change in Zn concentration in the hot metal with respect to the stirring force in the converter, and the hot metal with respect to the blowing time when the stirring force to the molten iron was changed under the conditions shown in Table 4 The change of Zn concentration in the inside is shown by a graph. The residual Zn concentration in the hot metal at the same treatment time was determined as Test No. 13, no. 12, no. As the stirring force increases in the order of 11, it increases.
[0049]
Therefore, the Zn concentration in the hot metal can be accurately adjusted by adjusting the stirring force applied to the hot metal. Further, the Zn concentration in the refined dust due to the evaporated Zn content at this time can also be adjusted.
[0050]
As described above, in the present invention, the total steelmaking process is achieved by efficiently adjusting the supply rate or the charging amount of Zn-containing substances, the stirring force, and the processing time in the pretreatment process using a torpedo car or the like and in the converter blowing. The Zn concentration in the hot metal and the Zn concentration in the refining dust can be controlled with higher accuracy than in the case where the pretreatment step or the converter blowing is independently controlled.
[0051]
In addition, the Zn concentration of the refining dust is concentrated to the target Zn concentration in order to recycle the refining dust collected from the viewpoint of Zn resource recycling by making effective use of the characteristics of the pretreatment process and converter blowing. It is now possible to determine the supply rate of the Zn-containing substance, the charging amount, etc. with high accuracy and to control it more effectively as a total steelmaking process.
[0052]
【The invention's effect】
As described above, according to the present invention shown in claim 1, the supply rate of the Zn-containing refining dust adjusted to 10 to 600 kg / min in the hot metal pretreatment step in the steelmaking step, and the blowing The hot metal stirring power adjusted by changing the inert gas flow rate from 5 to 30 Nm 3 / min, and the hot metal pretreatment blowing method executed according to the processing time are adjusted to control the Zn concentration in the refined dust and hot metal. After dephosphorization and desulfurization treatment, the Zn concentration in the molten iron is controlled by adjusting the Zn concentration in the molten iron by adjusting the Zn concentration supplied in the converter, the top bottom blowing stirring force, and the blowing time of the blowing furnace. The refining dust can be effectively used as a dephosphorization agent to reduce costs, and the refining dust and the Zn concentration in the molten iron can be controlled with high precision in the total steelmaking process.
[0053]
Furthermore, according to the present invention as set forth in claim 2, since the recovered Zn-containing refined dust is reused in the steelmaking process, there is an effect of enabling recycling of Zn resources.
[0054]
Furthermore, according to the present invention as set forth in claim 3, the supply rate or the charging amount of the Zn-containing substance is adjusted so that the Zn concentration remaining in the hot metal and the Zn concentration in the refined dust to be generated become a predetermined value. The Zn concentration is efficiently controlled by using the existing blowing equipment without significant capital investment, and the amount of Zn-containing dust required to achieve the target concentration in the refined dust and molten iron is accurate. It has the effect of being well determined.
[0055]
Furthermore, according to the present invention as set forth in claim 4, since the Zn content is separated and recovered with high efficiency as a high efficiency process for recovering Zn content, Zn refining dust can be recovered with higher efficiency as a steelmaking process, and more efficient. In particular, Zn resources can be recycled.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a steel making process according to an embodiment of the present invention.
FIG. 2 is a diagram showing a change in Zn concentration in the hot metal with respect to a Zn-containing substance supply rate in the pretreatment step shown in FIG.
FIG. 3 is a diagram showing a change in phosphorus concentration in hot metal in the pretreatment process shown in FIG. 1;
4 is a diagram showing a change in Zn concentration in hot metal with respect to stirring force in the pretreatment step shown in FIG. 1. FIG.
FIG. 5 is a diagram showing changes in Zn concentration in molten iron with respect to blowing time in a converter.
FIG. 6 is a diagram showing a change in Zn concentration in molten iron with respect to stirring force in a converter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Desiliconized hot metal 2 Torpedo car 3 Powder blowing lance 4 Oxygen gas blowing lance 5 Dust collection hood 6 Dust collection duct 7 Dust collector 8 Hot metal ladle 9 Zn-containing substance 10 Converter 11 Converter dust collection hood 12 Converter OG device 13 Molten steel 14 Molten steel pan

Claims (3)

溶銑予備処理工程でSi濃度が0.2重量%以下の脱珪溶銑中にCaOを主成分としたフラックス、酸化鉄およびZnを0.1〜70重量%含有するZn含有精錬ダスト、または前記フラックスおよび前記Zn含有精錬ダストを吹込みZn含有精錬ダストの供給速度を10〜600Kg/分まで調節し、吹込用不活性ガス流量を5〜30Nm3/分まで変化させることにより溶銑の攪拌力を調整し、さらに処理時間調節することによって、発生する精錬ダスト中のZn濃度および溶鉄中のZn濃度を制御して溶銑予備脱りん脱硫処理を行った後、転炉でZn含有物質より供給されるZn濃度、上底吹き攪拌力および吹錬時間による転炉吹錬方法を調節することにより溶鉄中のZn濃度を制御して転炉吹錬を行い、製鋼工程中に発生する精錬ダストおよび溶鉄中のZn濃度を制御することを特徴とするZn含有物質を用いる製鋼工程でのダストおよび溶鉄中のZn濃度の制御方法。A flux containing CaO as a main component in desiliconized hot metal having a Si concentration of 0.2% by weight or less in the hot metal pretreatment step, Zn-containing refined dust containing 0.1 to 70% by weight of iron oxide and Zn , or the flux and blowing the Zn-containing refining dust, and adjust the feed rate of the Zn-containing refining dust until 10~600Kg / min, the stirring force of the hot metal by varying the flow rate of inert gas for blowing up 5 to 30 nm 3 / min After adjusting the treatment time and adjusting the Zn concentration in the refining dust generated and the Zn concentration in the molten iron to perform the hot metal preliminary dephosphorization desulfurization treatment, it is supplied from the Zn-containing material in the converter. By adjusting the Zn concentration in the molten iron by controlling the Zn concentration in the molten iron, the top bottom blowing agitation force and the blowing time, and controlling the Zn concentration in the molten iron. A method for controlling the concentration of Zn in dust and molten iron in a steelmaking process using a Zn-containing substance, wherein the Zn concentration in wrought dust and molten iron is controlled. 請求項1記載のZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法において、回収したZn含有精錬ダストを再び製鋼工程に利用することを特徴とするZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法。  The method for controlling the concentration of Zn in refined dust and molten iron in a steelmaking process using the Zn-containing material according to claim 1, wherein the recovered Zn-containing refined dust is used again in the steelmaking process. A method for controlling the concentration of Zn in refined dust and molten iron in a steelmaking process. 請求項1記載のZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法において、溶鉄中に残留するZn濃度および回収する精錬ダスト中のZn濃度が所定量となるようにZn含有物質の供給速度あるいは装入量を調節することを特徴とするZn含有物質を用いる製鋼工程での精錬ダストおよび溶鉄中のZn濃度の制御方法。  The method for controlling the concentration of Zn in refined dust and molten iron in a steelmaking process using the Zn-containing material according to claim 1 so that the Zn concentration remaining in the molten iron and the Zn concentration in the refined dust to be recovered become a predetermined amount. A method for controlling the concentration of Zn in refining dust and molten iron in a steelmaking process using a Zn-containing material, wherein the supply rate or the charging amount of the Zn-containing material is adjusted.
JP16156795A 1995-06-06 1995-06-06 Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material Expired - Lifetime JP3692163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16156795A JP3692163B2 (en) 1995-06-06 1995-06-06 Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16156795A JP3692163B2 (en) 1995-06-06 1995-06-06 Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material

Publications (2)

Publication Number Publication Date
JPH08333615A JPH08333615A (en) 1996-12-17
JP3692163B2 true JP3692163B2 (en) 2005-09-07

Family

ID=15737573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16156795A Expired - Lifetime JP3692163B2 (en) 1995-06-06 1995-06-06 Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material

Country Status (1)

Country Link
JP (1) JP3692163B2 (en)

Also Published As

Publication number Publication date
JPH08333615A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
TWI410501B (en) Method for recovering iron and phosphorus from steel slag
EP0453151A1 (en) Process for recovering valuable metals from a dust containing zinc
KR101189182B1 (en) Method for separating vanadium from vanadium-containing melt
JP3692163B2 (en) Method for controlling Zn concentration in refining dust and molten iron in steel making process using Zn-containing material
JP3966156B2 (en) Method for melting ultra-low phosphorus stainless steel
GB2054657A (en) Process and installation for the treatment of dust and sludge from blast furnaces, and electric furnaces and converters of steel works
CN112029949B (en) Method for treating zinc-containing waste steel by adopting converter full-three-step smelting process
JP3915341B2 (en) Hot phosphorus dephosphorization method
JP2006265623A (en) Method for pre-treating molten iron
JP3825603B2 (en) Zinc enrichment method for steelmaking dust
JP5045014B2 (en) Pretreatment method of hot metal using zinc-containing iron scrap
JPH08193210A (en) Method for using metal in molten slag
US3091524A (en) Metallurgical process
JPH05156338A (en) Method for reusing low phosphorus converter slag
JPH08333612A (en) Refining dust in molten iron pretreating process using zinc-containing material and control method of zinc concentration in molten iron
JP3505198B2 (en) Treatment of zinc-containing steelmaking dust
JPH08325617A (en) Method for separating and recovering zinc from zinc-containing material
JPH08333614A (en) Refining dust in converter using zinc-containing material and control method of zinc concentration in molten iron
JPH10219331A (en) Method for removing zinc in iron-making dust
JP2004124145A (en) Blowing method in converter
JPH08333613A (en) Method for separating and recovering low boiling point metal from low boiling point metal-containing material
JPH04198430A (en) Manufacture of high purity molten steel using scrap as raw material
JP2004124177A (en) Method for recycling dust of electric furnace
JP3558659B2 (en) Converter slag recycling method
SU947211A1 (en) Method for converting lead-containing copper mattes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term