JP3691828B2 - Semiconductor laser element - Google Patents

Semiconductor laser element Download PDF

Info

Publication number
JP3691828B2
JP3691828B2 JP2003416832A JP2003416832A JP3691828B2 JP 3691828 B2 JP3691828 B2 JP 3691828B2 JP 2003416832 A JP2003416832 A JP 2003416832A JP 2003416832 A JP2003416832 A JP 2003416832A JP 3691828 B2 JP3691828 B2 JP 3691828B2
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
light
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003416832A
Other languages
Japanese (ja)
Other versions
JP2004088133A (en
Inventor
隆一 勝見
正幸 岩瀬
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003416832A priority Critical patent/JP3691828B2/en
Publication of JP2004088133A publication Critical patent/JP2004088133A/en
Application granted granted Critical
Publication of JP3691828B2 publication Critical patent/JP3691828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、量子井戸構造をした半導体レーザ素子に関するものである。   The present invention relates to a semiconductor laser device having a quantum well structure.

光通信の光源として、量子井戸半導体レーザ素子が従来から広く使用されており、この種の典型的な埋め込み型導波路を有する量子井戸半導体レーザ素子の構造が図4に示されている。   Conventionally, quantum well semiconductor laser elements have been widely used as light sources for optical communications, and the structure of a quantum well semiconductor laser element having a typical buried waveguide of this type is shown in FIG.

同図において、N型のInP基板1の中央部分に量子井戸層7が形成され、この量子井戸層7の左右両側に狭窄層8が形成されている。前記量子井戸層7はN型クラッド層2の上側に光閉じ込め層(GRIN−SCH領域)3と活性層4と光閉じ込め層5とInPからなるP型クラッド層6を順に積層形成したものからなり、光閉じ込め層3,5は4種類の異なる組成のGaInAsPの層、すなわち、バンドギャップ波長λgが1.05,1.10,1.20および1.30μmであって厚みがそれぞれ300Åの4種類のGaInAsPを積層して屈折率を階段状に変化させ、活性層4内の光を上下両側から閉じ込める機能を有している。   In the figure, a quantum well layer 7 is formed in the central portion of an N-type InP substrate 1, and constriction layers 8 are formed on the left and right sides of the quantum well layer 7. The quantum well layer 7 is formed by laminating a light confinement layer (GRIN-SCH region) 3, an active layer 4, a light confinement layer 5, and a P-type clad layer 6 made of InP in this order on the N-type clad layer 2. The optical confinement layers 3 and 5 are four types of GaInAsP layers having different compositions, that is, four types of band gap wavelengths λg of 1.05, 1.10, 1.20 and 1.30 μm and a thickness of 300 mm each. A layer of GaInAsP is stacked to change the refractive index in a stepped manner, thereby confining the light in the active layer 4 from above and below.

活性層4はバンドギャップ波長λgが1.55μmであって厚みが65ÅのGaInAsPからなるウェル層と、バンドギャップ波長λgが1.30μmであって厚みが80ÅのGaInAsPからなるバリヤ層とによるウェル数5のMQW活性層で構成されている。   The active layer 4 has a well layer made of GaInAsP having a band gap wavelength λg of 1.55 μm and a thickness of 65 mm and a barrier layer made of GaInAsP having a band gap wavelength λg of 1.30 μm and a thickness of 80 mm. 5 MQW active layers.

この量子井戸構造の半導体レーザ素子を作製するときには、InP基板1の上側の全面に亙ってN型クラッド層2と光閉じ込め層3と活性層4と光閉じ込め層5とP型クラッド層6を積層形成し、然る後に、量子井戸の幅Lを約2μm残してメサ・ストライプ形状になるようにその左右両側をエッチングで除去し、この除去した部分に、P型InP層9とN型InP層10を再成長することによって埋め込んで狭窄層8となし、これら活性層4と狭窄層8を形成した上側にInPからなるP型クラッド層11を成長形成し、然る後に、下面側にN側電極12を、上面側にP側電極13を形成することによって作製される。   When manufacturing a semiconductor laser device having this quantum well structure, the N-type cladding layer 2, the optical confinement layer 3, the active layer 4, the optical confinement layer 5, and the P-type cladding layer 6 are formed over the entire upper surface of the InP substrate 1. After that, the left and right sides of the quantum well are removed by etching so as to form a mesa stripe shape, leaving a width L of the quantum well of about 2 μm, and the P-type InP layer 9 and the N-type InP are formed in the removed portion. The layer 10 is buried by re-growing to form the constriction layer 8, and a P-type clad layer 11 made of InP is formed on the upper side where the active layer 4 and the constriction layer 8 are formed. The side electrode 12 is produced by forming the P-side electrode 13 on the upper surface side.

この種の半導体レーザ素子を駆動するときには、P側電極13にプラス側の電源電圧を印加し、N側電極12に電源電圧のマイナス側を接続する。P側電極13からN側電極12に流れる電流は狭窄層8には流れないので、量子井戸層7に集中して流れることとなり、これにより、活性層4が励起され、この活性層4の励起によって活性層4の一方側の端面から光源光が発せられる(通常、活性層4の両端側に反射率の異なる反射膜が形成され、活性層4内で励起された光のパワーが反射率の小さい方のしきい値を越えたときにその端面側から光源光が発せられる)。   When driving this type of semiconductor laser element, a positive power supply voltage is applied to the P-side electrode 13 and a negative power supply voltage is connected to the N-side electrode 12. Since the current flowing from the P-side electrode 13 to the N-side electrode 12 does not flow to the constriction layer 8, it flows in a concentrated manner in the quantum well layer 7, thereby exciting the active layer 4 and exciting the active layer 4. The light source light is emitted from one end face of the active layer 4 (usually, reflection films having different reflectivities are formed on both end sides of the active layer 4, and the power of the light excited in the active layer 4 has a reflectivity. When the smaller threshold value is exceeded, the light source light is emitted from the end face side).

特開平3−153091号公報Japanese Patent Laid-Open No. 3-153091 特開平4−151887号公報JP-A-4-151877 特開昭63−152194号公報JP-A-63-152194 特開昭55−157281号公報JP-A-55-157281 特開昭60−239080号公報JP-A-60-239080

しかしながら、この種の半導体レーザ素子を作製する場合、活性層4の断面形状が長方形状になるのを避けることができず、このため、活性層4から発せられる垂直な方向のビームの広がり角は活性層4の水平方向(平行な方向)のビームの広がり角よりも大きくなる。例えば、前記従来例の半導体レーザでは活性層4の垂直方向のビームの広がり角は36°となり、活性層4の水平方向のビームの広がり角は25°程度となり、垂直方向のビームの広がり角が大きくなるので、活性層4から発せられるビームの断面形状が楕円形となり、半導体レーザ素子から円形コアの光ファイバへ光を導入するとき、その光の結合効率が悪くなるという問題があった。   However, when manufacturing this type of semiconductor laser device, it is unavoidable that the cross-sectional shape of the active layer 4 is rectangular, and therefore, the divergence angle of the beam emitted from the active layer 4 in the vertical direction is It becomes larger than the beam divergence angle in the horizontal direction (parallel direction) of the active layer 4. For example, in the conventional semiconductor laser, the vertical beam divergence angle of the active layer 4 is 36 °, the horizontal beam divergence angle of the active layer 4 is about 25 °, and the vertical beam divergence angle is about 25 °. Since it becomes large, the cross-sectional shape of the beam emitted from the active layer 4 becomes elliptical, and there is a problem that when light is introduced from the semiconductor laser element into the optical fiber of the circular core, the light coupling efficiency is deteriorated.

本発明は上記従来の課題を解決するためになされたものであり、その目的は、活性層から発するビームの広がりパターンをほぼ円形状にして光ファイバへの結合効率を高めることができる半導体レーザ素子を提供することにある。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a semiconductor laser device capable of increasing the coupling efficiency to an optical fiber by making the spread pattern of a beam emitted from an active layer substantially circular. Is to provide.

本発明は上記目的を達成するために、次のように構成されている。すなわち、第1の発明は、InP基板上に複数のGa1−XInAs1−Y井戸層とバリヤ層からなる多重量子井戸を含む活性層と、該活性層を上下両側からサンドイッチ状に挟む光閉じ込め層とを有する埋込み型半導体レーザ素子において、前記活性層を上下に挟むそれぞれの光閉じ込め層は活性層中心から順にバンドギャップ波長が短くなるように配置された複数種類の層によって形成され、前記活性層を挟む光閉じ込め層の厚みは活性層よりは薄く、かつ、前記活性層と前記光閉じ込め層の厚さの総和を1000Å以上2000Å以下にしたことを特徴として構成されている。 In order to achieve the above object, the present invention is configured as follows. That is, the first invention is a sandwich an active layer comprising a plurality of Ga 1-X In X As 1 -Y P Y well layer and a multiple quantum well composed of a barrier layer on an InP substrate, the active layer from upper and lower sides In an embedded semiconductor laser device having an optical confinement layer sandwiched in a shape, each of the optical confinement layers sandwiching the active layer vertically is made up of a plurality of types of layers arranged so that the band gap wavelength becomes shorter in order from the center of the active layer The optical confinement layer formed and sandwiching the active layer is thinner than the active layer, and the total thickness of the active layer and the optical confinement layer is 1000 mm or more and 2000 mm or less. .

また、第2の発明は前記第1の発明の構成を備えた上で、半導体レーザ素子は励起光源用であって、光ファイバと光結合させて用いるものとしたことを特徴とする。   According to a second aspect of the present invention, the semiconductor laser element is used for an excitation light source and is optically coupled to an optical fiber after having the configuration of the first aspect of the present invention.

さらに、第3の発明は前記第2の発明の構成を備えた上で、励起波長を1.48μm帯としたことを特徴として構成されている。   Further, the third invention is characterized by having the configuration of the second invention and the excitation wavelength in the 1.48 μm band.

上記構成の本発明において、活性層とその上下の光閉じ込め層との厚さの総和を2000Å以下に薄くし、かつ、活性層を挟む光閉じ込め層の厚みは活性層よりは薄くしたことで、光閉じ込め係数が小さくなり、活性層内で励起される光のエネルギは活性層から光閉じ込め層の外側のクラッド層側に滲み出す。この滲み出し量は量子井戸の幅の中間部分で最大になる結果、このクラッド層側に滲み出した領域を加味した光放射面は円形に近くなり、これにより、放射される光の垂直方向と水平方向のビームの広がり角はほぼ等しくなり、円形に近いモードパターンのビームが光源光として出力される。 In the present invention configured as described above, the total thickness of the active layer and the light confinement layers above and below it is reduced to 2000 mm or less , and the light confinement layer sandwiching the active layer is thinner than the active layer. The light confinement coefficient decreases, and the energy of light excited in the active layer oozes out from the active layer to the cladding layer outside the light confinement layer. As a result of this oozing amount maximizing at the middle part of the width of the quantum well, the light emitting surface taking into account the oozing area on the cladding layer side becomes almost circular, and this makes the vertical direction of the emitted light The beam divergence angles in the horizontal direction are substantially equal, and a beam having a mode pattern close to a circle is output as light source light.

上記したように本発明は、量子井戸の活性層とこの活性層の上下両側の光閉じ込め層との厚みの総和を2000Å以下にし、かつ、活性層を挟む光閉じ込め層の厚みは活性層よりは薄くしたものであるから、この総和が薄型となって、光閉じ込め係数が小さくなり、活性層内に閉じ込められて活性化された光のクラッド層へのしみ出し量が多くなり、従来例に比べ、光閉じ込め層の格段の光のしみ出し効果が得られる。活性層とこの活性層の上下両側の光閉じ込め層との厚みの総和を2000Å以下にし、かつ、活性層を挟む光閉じ込め層の厚みは活性層よりは薄くした薄型構造により、半導体レーザ素子から出射するビームの垂直方向の広がり角を小さくして、垂直方向と水平方向の広がり角をほぼ同じくして円形モードパターンのビームとして出力することができるので、光ファイバに対する結合効率を格段に高めることができる。 As described above, according to the present invention, the total thickness of the active layer of the quantum well and the optical confinement layers on both upper and lower sides of the active layer is 2000 mm or less , and the thickness of the optical confinement layer sandwiching the active layer is smaller than that of the active layer. Since the total is thin, the light confinement factor is small, and the amount of light that is confined and activated in the active layer increases to the cladding layer. In comparison, a significant light oozing effect of the light confinement layer can be obtained. The total thickness of the active layer and the optical confinement layers on both upper and lower sides of the active layer is 2000 mm or less , and the thickness of the optical confinement layer sandwiching the active layer is smaller than that of the active layer. The output beam can be output as a circular mode pattern beam by reducing the vertical divergence angle in the vertical direction so that the vertical and horizontal divergence angles are almost the same, greatly increasing the coupling efficiency to the optical fiber. Can do.

特に、励起光源用としての高出力ビームを発射させる場合、活性層とこの活性層の上下両側の光閉じ込め層との厚みの総和が厚いと、発射ビームのビームパターンは楕円パターンとなってしまうが、本発明のように、活性層とこの活性層の上下両側の光閉じ込め層との厚みの総和を2000Å以下に薄型化し、かつ、活性層を挟む光閉じ込め層の厚みは活性層よりは薄くすることにより励起光源用の高出力の発射ビームにおいても良好な円形モードのビームパターンが得られるという効果を奏するものである。 In particular, when a high-power beam for an excitation light source is emitted, if the sum of the thicknesses of the active layer and the light confinement layers on both the upper and lower sides of the active layer is large, the beam pattern of the emitted beam becomes an elliptic pattern. As in the present invention, the total thickness of the active layer and the light confinement layers on both upper and lower sides of the active layer is reduced to 2000 mm or less , and the thickness of the light confinement layer sandwiching the active layer is smaller than that of the active layer. As a result, a good circular mode beam pattern can be obtained even in a high-power emission beam for an excitation light source.

以下、本発明の実施例を図面に基づいて説明する。なお、従来例と同一の部分には同一符号を付し、その重複説明は省略する。図1には本発明に係る半導体レーザ素子の一実施例が示されている。この実施例の半導体レーザ素子も従来例と同様に量子井戸構造を呈して、量子井戸層7と狭窄層8を有している。そして、これら、InP基板1上に形成される各層はMO−CVD(Metal−Organic Chemical Vapor Deposition )による気相成長等を利用して形成されている。この実施例における量子井戸層7は従来例と同様にInP基板1上にN型クラッド層2と光閉じ込め層23と活性層24と光閉じ込め層25とP型クラッド層6を積層して形成されてなるが、本実施例の特徴的なことは、光閉じ込め層23,25と活性層24の厚みの総和を2000Å以下にしたことである。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the part same as a prior art example, and the duplication description is abbreviate | omitted. FIG. 1 shows an embodiment of a semiconductor laser device according to the present invention. The semiconductor laser device of this embodiment also has a quantum well structure as in the conventional example, and has a quantum well layer 7 and a constriction layer 8. Each layer formed on the InP substrate 1 is formed by vapor phase growth by MO-CVD (Metal-Organic Chemical Vapor Deposition). The quantum well layer 7 in this embodiment is formed by laminating the N-type cladding layer 2, the optical confinement layer 23, the active layer 24, the optical confinement layer 25, and the P-type cladding layer 6 on the InP substrate 1 as in the conventional example. However, the characteristic feature of this embodiment is that the total thickness of the optical confinement layers 23 and 25 and the active layer 24 is 2000 mm or less.

半導体レーザを励起光源用の1.48μm帯の励起帯波長で動作させる場合、励起光源としてのビームパワーは通信用のビームパワーよりも大きなパワーであり、励起光源用の1.48μm帯の励起帯波長で動作するためには活性層と上下の光閉じ込め層の厚さの総和に厚さが必要であり、この励起光源用の1.48μm帯の励起帯波長で動作させるのに自ずから定まる前記総和の下限の厚みは1000オングストローム(Å)である。   When the semiconductor laser is operated at an excitation band wavelength of 1.48 μm band for the excitation light source, the beam power as the excitation light source is larger than the beam power for communication, and the 1.48 μm band excitation band for the excitation light source. In order to operate at a wavelength, the total thickness of the active layer and the upper and lower optical confinement layers needs to be thick, and the above-mentioned sum that is automatically determined to operate at the excitation band wavelength of 1.48 μm band for this excitation light source. The lower limit of thickness is 1000 angstroms (Å).

前記光閉じ込め層23はバンドギャップ波長λgが1.20μmと1.30μmであって層厚が共に200Åの異なる2種類のGaInAsPにより構成されており、また、光閉じ込め層25も同一の構成となっている。活性層24は従来例と同様に、バンドギャップ波長λgが1.55μmで層厚が65ÅのGaInAsPのウェル層と、バンドギャップ波長が1.30μmで層厚が80ÅのGaInAsPのバリヤ層からなり、そのウェル数は5である。この実施例では、光閉じ込め層23の層厚が400Å、活性層24の層厚が645Å、光閉じ込め層25の層厚が400Åとしたことで、光閉じ込め層23と活性層24と光閉じ込め層25の厚みの総和は1445Åとなり、従来例の3045Åに比べ薄型となっている。   The optical confinement layer 23 is composed of two types of GaInAsP having bandgap wavelengths λg of 1.20 μm and 1.30 μm and different thicknesses of 200 mm, and the optical confinement layer 25 has the same configuration. ing. Similarly to the conventional example, the active layer 24 is composed of a GaInAsP well layer with a band gap wavelength λg of 1.55 μm and a layer thickness of 65 mm, and a GaInAsP barrier layer with a band gap wavelength of 1.30 μm and a layer thickness of 80 mm, The number of wells is 5. In this embodiment, the optical confinement layer 23 has a thickness of 400 mm, the active layer 24 has a thickness of 645 mm, and the optical confinement layer 25 has a thickness of 400 mm. The total thickness of 25 is 1445 mm, which is thinner than the conventional 3045 mm.

本実施例の半導体レーザ素子を駆動したとき、電極12,13間に流れる電流は量子井戸層7に集中して活性層24内に閉じ込められる光を励起し、活性層24内の光エネルギを高めるが、このとき、光閉じ込め層23,25の層厚を薄くしたことで、光閉じ込め係数が小さくなり、この結果、活性層25内に閉じ込められて活性化された光のクラッド層2,6へのしみ出しが大きくなる。このクラッド層2,6への光のしみ出しは、量子井戸の幅Lの中央部がいちばん大きく、両端側に向かうにつれ、徐々にしみ出し量が小さくなるので、活性層24とクラッド層2,6のしみ出し部分を併せた光放射の断面形状はほぼ円に近い形状となり、これにより、活性層24および光のしみ出し部分から発せられるビームの広がり角は垂直方向と水平方向でほぼ同一の角度となり、ほぼ円形モードパターンの光となって出力されることとなる。   When the semiconductor laser device of this embodiment is driven, the current flowing between the electrodes 12 and 13 is concentrated in the quantum well layer 7 to excite the light confined in the active layer 24 and increase the light energy in the active layer 24. However, at this time, the optical confinement coefficient is reduced by reducing the thickness of the optical confinement layers 23 and 25, and as a result, the light confined in the active layer 25 and activated to the cladding layers 2 and 6. The oozing out increases. The soaking of light into the cladding layers 2 and 6 is the largest at the central portion of the width L of the quantum well, and the amount of soaking gradually decreases toward both ends. The cross-sectional shape of the light emission including the 6 exudation portions is almost a circle, so that the spread angle of the beam emitted from the active layer 24 and the exudation portion of the light is substantially the same in the vertical direction and the horizontal direction. It becomes an angle and is output as light of a substantially circular mode pattern.

本発明者は本実施例の半導体レーザ素子を作製し、その放射されるビームの広がり角度を測定したところ、図2の測定結果を得た。これによれば、50mWの放射パワーの時の垂直方向の広がり角は25.0°(同図の(b))であり、水平方向の広がり角度は25.4°(同図の(a))であり、ほぼ真円に近い放射ビームパターンを作り出すことができた。   The present inventor fabricated the semiconductor laser device of this example and measured the divergence angle of the emitted beam to obtain the measurement result of FIG. According to this, when the radiation power is 50 mW, the vertical spread angle is 25.0 ° ((b) in the figure) and the horizontal spread angle is 25.4 ° ((a) in the figure). It was possible to create a radiation beam pattern that was almost a perfect circle.

図3は本実施例の半導体レーザ素子をAR−HRコーティングして共振器長1mmとしたレーザダイオードに光ファイバを結合してモジュール化した装置の出力特性を示したものである。これによれば、駆動電流1Aのときに、光ファイバの端光出力として128mWという励起光源用として使用され得る高出力が得られており、このときの半導体レーザ素子と光ファイバの結合効率は70%であった。なお、このときの半導体レーザの励起帯波長は活性層のウエル層及びバリヤ層の層厚と各層のバンドギャップ波長から発光波長を計算すると1.48μm帯となる。従来例の半導体レーザ素子と光ファイバの結合効率を同様に調べたところ、その結合効率は50%程度であり、従来例に場合に比べ、本実施例は約20%も結合効率を向上させることができた。   FIG. 3 shows the output characteristics of an apparatus in which an optical fiber is coupled to a laser diode having a resonator length of 1 mm by AR-HR coating of the semiconductor laser element of this embodiment to form a module. According to this, when the driving current is 1 A, a high output that can be used for an excitation light source of 128 mW is obtained as the end light output of the optical fiber, and the coupling efficiency between the semiconductor laser element and the optical fiber at this time is 70 %Met. The excitation band wavelength of the semiconductor laser at this time is 1.48 μm band when the emission wavelength is calculated from the thickness of the well layer and barrier layer of the active layer and the band gap wavelength of each layer. When the coupling efficiency between the semiconductor laser device of the conventional example and the optical fiber was examined in the same manner, the coupling efficiency was about 50%, and this example improved the coupling efficiency by about 20% compared to the conventional example. I was able to.

なお、本発明は上記実施例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記実施例では光閉じ込め層23,25と活性層24の総和の厚みを1445Åにしたが、この総和の厚みは2000Å以下であればよい。本発明者は光閉じ込め層23,25と活性層24の厚みの総和と、クラッド層への光の滲み出しによる出射ビームの広がり角との関係を実験によって調べたところ、前記総和の厚みが2000Åを越えた場合には光滲み出し量はほとんどなくなってビームの出射パターンはほぼ楕円形状となり、光ファイバとの結合効率の特性改善が得られなかったが、総和の厚みが2000Åを境界として、それ以下になるにつれ、光の滲み出しが次第に大きくなり、出射ビームパターンの形状が楕円形から円形に近くなり、光ファイバへの結合効率を向上できることを確認できた。   In addition, this invention is not limited to the said Example, Various aspects can be taken. For example, in the above embodiment, the total thickness of the light confinement layers 23 and 25 and the active layer 24 is 1445 mm, but the total thickness may be 2000 mm or less. The present inventor examined the relationship between the sum of the thicknesses of the light confinement layers 23 and 25 and the active layer 24 and the divergence angle of the outgoing beam due to the oozing of the light into the cladding layer, and found that the thickness of the sum was 2000 mm. In the case of exceeding the above, the amount of light bleed out almost disappeared, and the beam emission pattern was almost elliptical, and the characteristics of the coupling efficiency with the optical fiber could not be improved. As it became below, the oozing of light gradually increased, and the shape of the outgoing beam pattern was changed from an ellipse to a circle, and it was confirmed that the coupling efficiency to the optical fiber could be improved.

また、上記実施例では活性層24の厚みを従来例と同様の厚みにし、光閉じ込め層23,25の厚みを薄くすることで、活性層24と光閉じ込め層23,25の総和の厚みを薄くしたが(本実施例では光閉じ込め層23,25の厚みを活性層24よりも薄くしている)、もちろん、光閉じ込め層23,25と共に、活性層24の厚みを薄くしてもよい。   In the above embodiment, the thickness of the active layer 24 is set to the same thickness as that of the conventional example, and the thickness of the light confinement layers 23 and 25 is reduced, so that the total thickness of the active layer 24 and the light confinement layers 23 and 25 is reduced. However, in this embodiment, the thickness of the light confinement layers 23 and 25 is made thinner than that of the active layer 24. Of course, the thickness of the active layer 24 may be reduced together with the light confinement layers 23 and 25.

本発明に係る半導体レーザ素子の一実施例の断面構成図である。1 is a cross-sectional configuration diagram of an embodiment of a semiconductor laser device according to the present invention. 同実施例の半導体レーザ素子のビーム広がり角のグラフである。It is a graph of the beam divergence angle of the semiconductor laser element of the same Example. 同実施例の半導体レーザ素子を組み込んだモジュールにおける出力特性グラフである。It is an output characteristic graph in the module incorporating the semiconductor laser element of the same Example. 従来の量子井戸構造の半導体レーザ素子の断面図である。It is sectional drawing of the semiconductor laser element of the conventional quantum well structure.

符号の説明Explanation of symbols

1 InP基板
2 N型クラッド層
6,11 P型クラッド層
7 量子井戸層
8 狭窄層
9 P型InP層
10 N型InP層
23,25 光閉じ込め層
24 活性層
DESCRIPTION OF SYMBOLS 1 InP board | substrate 2 N type clad layer 6,11 P type clad layer 7 Quantum well layer 8 Narrowing layer 9 P type InP layer 10 N type InP layer 23,25 Optical confinement layer 24 Active layer

Claims (3)

InP基板上に複数のGa1−XInAs1−Y井戸層とバリヤ層からなる多重量子井戸を含む活性層と、該活性層を上下両側からサンドイッチ状に挟む光閉じ込め層とを有する埋込み型半導体レーザ素子において、前記活性層を上下に挟むそれぞれの光閉じ込め層は活性層中心から順にバンドギャップ波長が短くなるように配置された複数種類の層によって形成され、前記活性層を挟む光閉じ込め層の厚みは活性層よりは薄く、かつ、前記活性層と前記光閉じ込め層の厚さの総和を1000Å以上2000Å以下にしたことを特徴とする半導体レーザ素子。 An active layer comprising a plurality of Ga 1-X In X As 1 -Y P Y well layer and a multiple quantum well composed of a barrier layer on an InP substrate, and an optical confinement layers sandwiching the active layer from upper and lower sides in a sandwich In each of the embedded semiconductor laser elements, the optical confinement layers sandwiching the active layer above and below are formed by a plurality of types of layers arranged so that the band gap wavelength becomes shorter from the center of the active layer, and sandwich the active layer. A semiconductor laser device, wherein the thickness of the light confinement layer is thinner than that of the active layer, and the sum of the thicknesses of the active layer and the light confinement layer is 1000 to 2000 mm. 半導体レーザ素子は励起光源用であって、光ファイバと光結合させて用いるものとした請求項1記載の半導体レーザ素子。 2. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is used for an excitation light source and is optically coupled to an optical fiber. 励起波長を1.48μm帯とした請求項2記載の半導体レーザ素子。 The semiconductor laser device according to claim 2, wherein an excitation wavelength is in a 1.48 μm band.
JP2003416832A 2003-12-15 2003-12-15 Semiconductor laser element Expired - Lifetime JP3691828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416832A JP3691828B2 (en) 2003-12-15 2003-12-15 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416832A JP3691828B2 (en) 2003-12-15 2003-12-15 Semiconductor laser element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002341215A Division JP3572065B2 (en) 2002-11-25 2002-11-25 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2004088133A JP2004088133A (en) 2004-03-18
JP3691828B2 true JP3691828B2 (en) 2005-09-07

Family

ID=32064785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416832A Expired - Lifetime JP3691828B2 (en) 2003-12-15 2003-12-15 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JP3691828B2 (en)

Also Published As

Publication number Publication date
JP2004088133A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US7869483B2 (en) Surface emitting laser
JP4928927B2 (en) Surface emitting semiconductor laser device
JP5005300B2 (en) Semiconductor laser device
WO2018168430A1 (en) Semiconductor laser device, semiconductor laser module, and laser light source system for welding
JPWO2011096040A1 (en) Semiconductor laser device, method for manufacturing semiconductor laser device, and optical module
JP5247444B2 (en) Semiconductor laser device
JP2007095758A (en) Semiconductor laser
US8238398B2 (en) Diode laser, integral diode laser, and an integral semiconductor optical amplifier
WO2006030778A1 (en) Semiconductor laser element and semiconductor laser element array
CN109698466B (en) Semiconductor laser element
JP2010232371A (en) Semiconductor optical amplifier element
JP2004153212A (en) Semiconductor light emitting device
US9787059B2 (en) Semiconductor light emitting element
JP5005937B2 (en) Surface emitting laser element
JP2005268298A (en) Semiconductor laser
JP3691828B2 (en) Semiconductor laser element
JP2007508687A (en) Control of output beam divergence in semiconductor waveguide devices.
JP2702871B2 (en) Semiconductor laser and method of manufacturing the same
JP3572065B2 (en) Semiconductor laser device
JP3408247B2 (en) Semiconductor laser device
JP3234282B2 (en) Semiconductor laser device
JP3691507B2 (en) Semiconductor laser
US6661821B2 (en) Semiconductor laser element having great bandgap difference between active layer and optical waveguide layers, and including arrow structure formed without P-As interdiffusion
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JP3886972B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20031216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040331

A521 Written amendment

Effective date: 20040430

Free format text: JAPANESE INTERMEDIATE CODE: A523

A975 Report on accelerated examination

Effective date: 20040521

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040817

A131 Notification of reasons for refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Effective date: 20050616

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090624

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110624

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

EXPY Cancellation because of completion of term