JP3691659B2 - Method and apparatus for calculating natural frequency of microwave resonance system - Google Patents

Method and apparatus for calculating natural frequency of microwave resonance system Download PDF

Info

Publication number
JP3691659B2
JP3691659B2 JP09148298A JP9148298A JP3691659B2 JP 3691659 B2 JP3691659 B2 JP 3691659B2 JP 09148298 A JP09148298 A JP 09148298A JP 9148298 A JP9148298 A JP 9148298A JP 3691659 B2 JP3691659 B2 JP 3691659B2
Authority
JP
Japan
Prior art keywords
microwave
natural frequency
electric field
frequency
field intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09148298A
Other languages
Japanese (ja)
Other versions
JPH11287772A (en
Inventor
善喜 田中
稔 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP09148298A priority Critical patent/JP3691659B2/en
Publication of JPH11287772A publication Critical patent/JPH11287772A/en
Application granted granted Critical
Publication of JP3691659B2 publication Critical patent/JP3691659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
フィルム、繊維織物、不織布、板、紙などポリマー分子などで構成される成形体は、ポリマー分子配向(すなわち配向の向き)によって、力学的、電気的、光学的性質が変わることはよく知られている。したがって、これら成形体の製造においては分子配向は製品の品質を左右する重要な検査項目の一つである。
【0002】
【従来の技術】
従来、上記分子配向を表わす数値として、分子配向度〔大崎茂芳「化学技術誌MOL」Vol.26,No.1,pp92-100,(1988) 〕、屈折率などがあるが、いずれにおいてもマイクロ波による分子配向の測定においては、被測定試料をマイクロ波共振導波管に挿入したときに最大マイクロ波電場強度を与えるマイクロ波振動数、すなわちマイクロ波共振系のマイクロ波固有振動数を見出すことが必須である。また、マイクロ波を利用した分子配向測定だけでなく、あらゆるマイクロ波利用技術(高周波利用技術)、例えばマイクロ波による加熱技術において、マイクロ波発生の能力を最大にするためにマイクロ波固有振動数を見出すことが必須である。
【0003】
図2は、マイクロ波共振系におけるマイクロ波電場強度のマイクロ波振動数依存性を示す特性図である。横軸はマイクロ波振動数v,縦軸はマイクロ波電場強度を示す。図2のように、マイクロ波共振系においては、マイクロ波固有振動数近傍におけるマイクロ波電場強度が特に大きく、このマイクロ波固有振動数から離れた振動数においてはマイクロ波電場強度は非常に小さいので、特性曲線は鋭いピーク形状を示すものとなる。ピークのボトムに相当する非常に小さいマイクロ波電場強度はホワイトノイズ強度である。
【0004】
上記マイクロ波固有振動数を求めるために、従来技術においては、マイクロ波共振系において、先ず固有振動数値の大まかな見当をつけておいて、例えば、以下の方法により行われていた。
第1の方法は、マイクロ波固有振動数の付近でマイクロ波振動数を細かく次々に変化させてマイクロ波電場強度を検出し、マイクロ波電場強度を最も大きくするマイクロ波振動数すなわち固有振動数を求める方法である。
また、第2の方法は、マイクロ波振動数を10〜20段階変化させて、その段階ごとにマイクロ波電場強度を検出し、図2の最大マイクロ波電場強度(ピーク)の両側の直線部に2直線をあてはめ、該2直線の交点の横座標からマイクロ波固有振動数を求める処理を行う方法である。すなわち、この第2の方法では、少なくともピークの両側で2点、計4点を測定する必要がある。
【0005】
【発明が解決しようとする課題】
しかし、第1の方法では、マイクロ波振動数を細かく、例えば、1000〜10000段階に変化させ、その段階ごとにマイクロ波電場強度を検出する必要があり、さらに、マイクロ波振動数とマイクロ波電場強度との関係におけるピーク両側の直線部の直線の延長の交点を求める必要があるので、マイクロ波固有振動数を求めるためには少なからぬ時間を要していた。
【0006】
また、第2の方法では、10〜20段階ごとにマイクロ波電場強度を検出し、ピークの両側の直線部に2直線をあてはめ、該2直線の交点の横座標からマイクロ波固有振動数を求める処理を行う必要があるので、やはり、マイクロ波固有振動数を求めるためには少なからぬ時間を要していた。また、この方法ではマイクロ波電場強度の最大点を精度よく求めることが難しいという問題もあった。
【0007】
このために、例えば、マイクロ波共振系において、系に挿入された物体の時間的な変化に追従してマイクロ波固有振動数を見出すことは不可能であった。ここでいう時間的な変化とは、該物体自体の変化の他に、物体の位置や回転角度の変化も含まれるものである。
【0008】
本発明は、上記問題点を解決し、迅速かつ精度よくマイクロ波固有振動数を求めることができるマイクロ波共振系の固有振動数演算方法および装置を提供するものである。
【0009】
【課題を解決するための手段】
請求項1に係るマイクロ波共振系の固有振動数演算方法は、物体に照射するマイクロ波の半波長のN倍の長さをもつマイクロ波共振導波管に物体を挿入して、物体を構成する分子の配向を測定するマイクロ波共振系におけるマイクロ波固有振動数vmax を求める方法であって、前記物体に振動数v,振幅A0 のマイクロ波を照射したときのマイクロ波電場強度Iv を測定し、Hをホワイトノイズ強度として、前記マイクロ波固有振動数vmax を、次式(1)により求める方法である。
【0010】
【数1】

Figure 0003691659
【0011】
請求項2に係るマイクロ波共振系の固有振動数演算装置は、物体に照射するマイクロ波の半波長のN倍の長さをもつマイクロ波共振導波管に物体を挿入して、物体を構成する分子の配向を測定するマイクロ波共振系におけるマイクロ波固有振動数vmax を求める装置であって、前記物体に振動数v,振幅A0 のマイクロ波を照射したときのマイクロ波電場強度Iv を検出する電場強度検出手段と、上記のデータおよびホワイトノイズ強度Hに基づいて、次式(1)の演算を行って、前記マイクロ波固有振動数vmax を求める固有振動数演算手段とを備えている。
【0012】
【数1】
Figure 0003691659
【0013】
一般に、マイクロ波共振導波管内のk次定常波の電場Ek は次式(2)で示される。
ただし、iを虚数,A0 を入力マイクロ波の振幅,ωを角速度,tを時間,n1 を物体の屈折率虚数項,n2 を物体の屈折率実数項,αを導波管反射面の反射率,cを光速度,z0 をマイクロ波共振導波管の長さ,dzを物体厚さとする。
【0014】
【数2】
Figure 0003691659
【0015】
本発明において、マイクロ波共振導波管内のマイクロ波の強度式は、この式(2)の電場Ek をk=1〜∞の範囲で重ね合わせて導かれたものである。すなわち、上記電場Ek の2乗は電場のエネルギー、つまりマイクロ波の電場強度Iv を与えるので、Iv ∝Ek 2 の関係にあり、この式からマイクロ波電場強度Iv が導かれる。
こうして導かれたマイクロ波電場強度Iv は、マイクロ波固有振動数vmax とマイクロ波振動数vの関数である。このマイクロ波電場強度Iv の関係式は図2の特性曲線と高い精度で合致するものである。
【0016】
上記式(1)における数式群Γv ,Pv ,Av およびGv は、このマイクロ波電場強度Iv の関係式を、マイクロ波固有振動数vmax に対するマイクロ波振動数vおよびマイクロ波電場強度Iv の関係式に置き換えて整理したものである。式(1)における数式Pv のホワイトノイズHは、図2の特性曲線におけるピークのボトムに相当する両端の低いマイクロ波電場強度の平均値から求められるもので、実際の演算では一定値としている。また、マイクロ波電場強度Iv の関係式には、上記式(2)におけるマイクロ波共振導波管内の物体厚さdzも含まれている。
【0017】
したがって、この式(1)における数式群に基づいて、マイクロ波振動数vにおけるマイクロ波電場強度Iv を検出することにより、物体の影響を加味したマイクロ波共振系のマイクロ波固有振動数vmax を求めることができる。
【0018】
ここで示された式(1)における数式群は、ただ1個のマイクロ波振動数vに対するただ1個のマイクロ波電場強度Iv を検出し与えるだけでマイクロ波固有振動数vmax が得られることを示している。これにより、従来技術では長時間を要していたマイクロ波固有振動数を求める処理が、本発明により提供される手段を用いれば、目的とするマイクロ波固有振動数が、ただ1個のマイクロ波電場強度を検出するだけで、迅速かつ精度よく得られる。
上記数式群はコンピュータ等を用いて簡単に計算できることはいうまでもない。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係るマイクロ波共振系の固有振動数演算装置を示す構成図である。本装置は、例えば、厚さdzをもつフィルムのような物体5を挿入するマイクロ波共振導波管4を有し、この物体5の分子配向度を測定するマイクロ波分子配向度測定装置(例えば、KSシステムズ社製分子配向度測定機MOA-2001A )2を用いて、物体5の分子配向度を求めるのに必須なマイクロ波共振系のマイクロ波固有振動数を求めるものである。
【0020】
上記マイクロ波分子配向度測定装置2は、上記物体5に照射する所定波長のマイクロ波を発生させるマイクロ波発生装置3、上記マイクロ波の半波長のN倍の長さをもつマイクロ波共振導波管4および電場強度(透過強度)検出手段8とを備えている。上記マイクロ波共振導波管4は、その中央部に、マイクロ波の進行方向にフィルム面が垂直になるようにフィルム5を配置し、このフィルム5を、図示しない回転機構により、マイクロ波の進行方向と垂直な面内でR方向に回転可能な状態にして保持するとともに、物体5を透過するマイクロ波を、両端部に設けられた一対の反射鏡7,7で反射させることにより共振させるものである。上記マイクロ波が物体5を透過した後の電場強度(透過強度)は、電場強度(透過強度)検出手段8により検出される。
【0021】
上記電場強度検出手段8は、上記マイクロ波共振導波管4内の後方の所定位置に挿入した検出素子8aでマイクロ波電場強度を検出するものであり、物体5にマイクロ波振動数v,振幅A0 のマイクロ波を照射したときのマイクロ波電場強度Iv を検出する。上記検出素子8aには、例えばフォトダイオード等が用いられる。データ入力手段12は、上記マイクロ波共振導波管4の長さを示すN,マイクロ波の振幅A0 ,ホワイトノイズ強度H等のデータを固有振動数演算手段10に入力する。
【0022】
固有振動数演算手段10は、上記電場強度検出手段8により検出されたマイクロ波振動数vのマイクロ波を照射したときのマイクロ波電場強度Iv および上記の入力データに基づいて、上記式(1)の演算を行って、マイクロ波固有振動数vmax を求める。
【0023】
これにより、従来技術では長時間を要していたマイクロ波固有振動数を求める処理が、本発明により提供される手段を用いれば、目的とするマイクロ波固有振動数がただ1 個のマイクロ波電場強度を検出するだけで、迅速かつ精度よく得られる。
【0024】
上記マイクロ波共振系のマイクロ波固有振動数vmax は、物体5の屈折率を求める場合に必要となり、さらに、マイクロ波による加熱技術のようなマイクロ波利用技術(高周波利用技術)において求められる重要な数値である。
【0025】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
〔参考例〕
6−ヒドロキシ−2−ナフトエ酸単位27モル%及びp−ヒドロキシ安息香酸単位73モル%からなるサーモトロピック液晶ポリエステルをTダイから溶融押出しすることにより厚み50μmのフィルムを得た。得られた液晶ポリマーフィルムの融点(Tm)は280°Cであり、熱変形温度は220°Cであった。
【0026】
〔実施例1〕
図1のマイクロ波分子配向度測定装置2を用いて、厚さ50μmの液晶ポリマーフィルムを1枚から10枚重ねまで種々の枚数を重ねて、マイクロ波共振導波管4に、マイクロ波進行方向に対してフィルム面が垂直になるように挿入し、マイクロ波振動数を3.986229GHz に設定し、電場強度検出手段8によりマイクロ波電場強度Iv を検出し、固有振動数演算手段10によりマイクロ波固有振動数vmax を得た。
また、同様に液晶ポリマーフィルムを用いて、上記従来技術に記載された第2の方法を用いてマイクロ波固有振動数vmax を得た。表1はこれらの結果をまとめて示すものである。なお、表1中、フィルム厚さ500μmとは、厚さ50μmのフィルムを10枚重ねたことを意味している。
【0027】
【表1】
Figure 0003691659
【0028】
表1により、フィルムの厚さにかかわらず、本発明によりマイクロ波固有振動数vmax を得る所要時間は70msecであり、従来方法による所要時間の1500msecと比較して、25倍速くなっており、本発明の効果が明らかである。また、本発明において、マイクロ波固有振動数vmax の精度も確保されている。
【0029】
【発明の効果】
以上述べたように、本発明はマイクロ波固有振動数を迅速に求める手段を提供するものである。これにより、マイクロ波を用いるフィルムなどの分子配向の測定がすばやくできるようになり、またマイクロ波共振系におけるマイクロ波電場強度を最大に設定することも迅速にできるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るマイクロ波共振系の固有振動数演算装置を示す構成図である。
【図2】マイクロ波電場強度のマイクロ波振動数依存性を示す特性図である。
【符号の説明】
4…マイクロ波共振導波管、5…物体、8…電場強度検出手段、10…固有振動数演算手段。[0001]
BACKGROUND OF THE INVENTION
It is well known that a molded body composed of polymer molecules such as films, fiber fabrics, nonwoven fabrics, boards, and papers has different mechanical, electrical, and optical properties depending on the polymer molecular orientation (ie orientation direction). Yes. Therefore, in the production of these molded products, the molecular orientation is one of the important inspection items that influence the quality of the product.
[0002]
[Prior art]
Conventionally, numerical values representing the molecular orientation include the degree of molecular orientation (Shigeyoshi Osaki “Chemical Technology Journal MOL” Vol.26, No.1, pp92-100, (1988)), refractive index, etc. In the measurement of molecular orientation by waves, find the microwave frequency that gives the maximum microwave electric field strength when the sample to be measured is inserted into the microwave resonant waveguide, that is, the microwave natural frequency of the microwave resonant system. Is essential. In addition to the measurement of molecular orientation using microwaves, in any microwave application technology (high frequency application technology), for example, heating technology using microwaves, the microwave natural frequency is set to maximize the ability to generate microwaves. It is essential to find out.
[0003]
FIG. 2 is a characteristic diagram showing the microwave frequency dependence of the microwave electric field strength in the microwave resonance system. The horizontal axis represents the microwave frequency v, and the vertical axis represents the microwave electric field strength. As shown in FIG. 2, in the microwave resonance system, the microwave electric field strength in the vicinity of the microwave natural frequency is particularly large, and the microwave electric field strength is very small at a frequency away from the microwave natural frequency. The characteristic curve shows a sharp peak shape. The very small microwave field intensity corresponding to the bottom of the peak is the white noise intensity.
[0004]
In order to obtain the above-mentioned microwave natural frequency, in the prior art, in the microwave resonance system, first, a rough estimate of the natural frequency is obtained, and for example, the following method is used.
In the first method, the microwave electric field strength is detected by changing the microwave frequency minutely one after another in the vicinity of the microwave natural frequency, and the microwave frequency that maximizes the microwave electric field strength, that is, the natural frequency is determined. It is a method to seek.
In the second method, the microwave frequency is changed by 10 to 20 steps, and the microwave electric field strength is detected for each step. This is a method of fitting two straight lines and performing a process of obtaining the microwave natural frequency from the abscissa of the intersection of the two straight lines. That is, in the second method, it is necessary to measure a total of four points, at least two points on both sides of the peak.
[0005]
[Problems to be solved by the invention]
However, in the first method, it is necessary to change the microwave frequency finely, for example, in 1000 to 10000 steps, and to detect the microwave electric field intensity at each step, and further, the microwave frequency and the microwave electric field are detected. Since it is necessary to find the intersection of straight line extensions on both sides of the peak in relation to intensity, it took a considerable amount of time to find the microwave natural frequency.
[0006]
In the second method, the microwave electric field strength is detected every 10 to 20 steps, two straight lines are fitted to the linear portions on both sides of the peak, and the microwave natural frequency is obtained from the abscissa of the intersection of the two straight lines. Since it is necessary to carry out the processing, it still takes a considerable amount of time to obtain the microwave natural frequency. In addition, this method has a problem that it is difficult to accurately obtain the maximum point of the microwave electric field intensity.
[0007]
For this reason, for example, in a microwave resonance system, it has been impossible to find the microwave natural frequency following the temporal change of an object inserted into the system. The temporal change referred to here includes not only the change of the object itself but also the change of the position and rotation angle of the object.
[0008]
The present invention provides a method and apparatus for calculating the natural frequency of a microwave resonance system that solves the above-described problems and can quickly and accurately determine the microwave natural frequency.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for calculating the natural frequency of a microwave resonance system by inserting an object into a microwave resonance waveguide having a length N times the half wavelength of the microwave irradiated to the object. Is a method for obtaining a microwave natural frequency v max in a microwave resonance system for measuring the orientation of molecules to be emitted, and the microwave electric field intensity I v when the object is irradiated with microwaves having a frequency v and an amplitude A 0. And the microwave natural frequency v max is obtained by the following equation (1), where H is white noise intensity.
[0010]
[Expression 1]
Figure 0003691659
[0011]
An apparatus for calculating the natural frequency of a microwave resonance system according to claim 2 is configured by inserting an object into a microwave resonant waveguide having a length N times the half wavelength of the microwave irradiated to the object. Is a device for obtaining a microwave natural frequency v max in a microwave resonance system for measuring the orientation of molecules to be emitted, and a microwave electric field intensity I v when the object is irradiated with microwaves having a frequency v and an amplitude A 0. And a natural frequency calculating means for calculating the microwave natural frequency v max by performing the calculation of the following equation (1) based on the above data and the white noise intensity H. ing.
[0012]
[Expression 1]
Figure 0003691659
[0013]
In general, the electric field E k of the k-th order standing wave in the microwave resonant waveguide is expressed by the following equation (2).
Where i is the imaginary number, A 0 is the input microwave amplitude, ω is the angular velocity, t is the time, n 1 is the imaginary refractive index term of the object, n 2 is the real refractive index term of the object, and α is the waveguide reflecting surface. , C is the speed of light, z 0 is the length of the microwave resonant waveguide, and dz is the object thickness.
[0014]
[Expression 2]
Figure 0003691659
[0015]
In the present invention, the microwave intensity formula in the microwave resonant waveguide is derived by superposing the electric field E k of the formula (2) in the range of k = 1 to ∞. That is, the square of the electric field E k gives the electric field energy, that is, the electric field intensity I v of the microwave, and therefore has a relation of I v ∝ E k 2 , and the microwave electric field intensity I v is derived from this equation.
The microwave electric field intensity I v thus derived is a function of the microwave natural frequency v max and the microwave frequency v. The relational expression of the microwave electric field intensity I v matches the characteristic curve of FIG. 2 with high accuracy.
[0016]
The formula group Γ v , P v , A v, and G v in the above equation (1) represents the relational expression of the microwave electric field intensity I v by the microwave frequency v and the microwave electric field with respect to the microwave natural frequency v max . This is organized by replacing with the relational expression of the intensity I v . The white noise H in the equation Pv in the equation (1) is obtained from the average value of the low microwave electric field intensity at both ends corresponding to the bottom of the peak in the characteristic curve of FIG. 2, and is a constant value in the actual calculation. . Further, the relation of the microwave field intensity I v is also included object thickness dz of the microwave resonant waveguide in the formula (2).
[0017]
Therefore, by detecting the microwave electric field intensity I v at the microwave frequency v based on the group of equations in the equation (1), the microwave natural frequency v max of the microwave resonance system in consideration of the influence of the object. Can be requested.
[0018]
The mathematical formula group in the formula (1) shown here can obtain the microwave natural frequency v max only by detecting and giving only one microwave electric field intensity I v for only one microwave frequency v. It is shown that. As a result, if the processing for obtaining the microwave natural frequency, which has taken a long time in the prior art, is performed using the means provided by the present invention, the target microwave natural frequency is only one microwave. It can be obtained quickly and accurately by simply detecting the electric field strength.
Needless to say, the mathematical formula group can be easily calculated using a computer or the like.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram illustrating a natural frequency calculation device for a microwave resonance system according to an embodiment of the present invention. This apparatus has, for example, a microwave resonant waveguide 4 into which an object 5 such as a film having a thickness dz is inserted, and a microwave molecular orientation degree measuring apparatus (for example, a molecular orientation degree measuring apparatus 5 (for example, Using the molecular orientation measuring machine MOA-2001A) 2 manufactured by KS Systems, the microwave natural frequency of the microwave resonance system that is essential for obtaining the molecular orientation of the object 5 is obtained.
[0020]
The microwave molecular orientation measuring device 2 includes a microwave generating device 3 that generates a microwave having a predetermined wavelength to irradiate the object 5, and a microwave resonant waveguide having a length N times the half wavelength of the microwave. A tube 4 and an electric field intensity (transmission intensity) detecting means 8 are provided. The microwave resonant waveguide 4 has a film 5 disposed at the center thereof so that the film surface is perpendicular to the traveling direction of the microwave, and the film 5 is moved by a rotating mechanism (not shown). In a plane perpendicular to the direction, it is held in a rotatable state in the R direction, and the microwave transmitted through the object 5 is resonated by being reflected by a pair of reflecting mirrors 7 and 7 provided at both ends. It is. The electric field intensity (transmission intensity) after the microwave has passed through the object 5 is detected by the electric field intensity (transmission intensity) detection means 8.
[0021]
The electric field intensity detecting means 8 detects the microwave electric field intensity with a detection element 8a inserted at a predetermined position behind the microwave resonant waveguide 4, and the object 5 has a microwave frequency v and an amplitude. The microwave electric field intensity I v when the microwave of A 0 is irradiated is detected. For example, a photodiode or the like is used as the detection element 8a. The data input unit 12 inputs data such as N indicating the length of the microwave resonant waveguide 4, the amplitude A 0 of the microwave, and the white noise intensity H to the natural frequency calculation unit 10.
[0022]
The natural frequency calculating means 10 is based on the microwave electric field intensity I v when the microwave having the microwave frequency v detected by the electric field intensity detecting means 8 is irradiated and the above input data. ) To obtain the microwave natural frequency v max .
[0023]
As a result, the processing for obtaining the microwave natural frequency, which has taken a long time in the prior art, can be achieved by using the means provided by the present invention. It can be obtained quickly and accurately simply by detecting the intensity.
[0024]
The microwave natural frequency v max of the microwave resonance system is necessary for obtaining the refractive index of the object 5 and is also important in microwave utilization technology (high frequency utilization technology) such as a heating technology using microwaves. It is a numerical value.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.
[Reference example]
A film having a thickness of 50 μm was obtained by melt-extruding a thermotropic liquid crystal polyester comprising 27 mol% of 6-hydroxy-2-naphthoic acid units and 73 mol% of p-hydroxybenzoic acid units from a T-die. The obtained liquid crystal polymer film had a melting point (Tm) of 280 ° C. and a heat distortion temperature of 220 ° C.
[0026]
[Example 1]
Using the microwave molecular orientation measuring apparatus 2 of FIG. 1, various numbers of liquid crystal polymer films having a thickness of 50 μm are stacked one to ten, and the microwave resonant waveguide 4 is placed in the microwave traveling direction. The microwave frequency is set to 3.986229 GHz, the microwave electric field intensity I v is detected by the electric field intensity detecting means 8, and the microwave is calculated by the natural frequency calculating means 10. A natural frequency v max was obtained.
Similarly, using the liquid crystal polymer film, the microwave natural frequency v max was obtained using the second method described in the above prior art. Table 1 summarizes these results. In Table 1, a film thickness of 500 μm means that 10 films having a thickness of 50 μm are stacked.
[0027]
[Table 1]
Figure 0003691659
[0028]
According to Table 1, regardless of the thickness of the film, the time required to obtain the microwave natural frequency v max according to the present invention is 70 msec, which is 25 times faster than the required time of 1500 msec according to the conventional method. The effect of the present invention is clear. In the present invention, the accuracy of the microwave natural frequency v max is also ensured.
[0029]
【The invention's effect】
As described above, the present invention provides means for quickly obtaining the microwave natural frequency. This makes it possible to quickly measure the molecular orientation of a film or the like that uses microwaves, and to quickly set the microwave electric field strength in the microwave resonance system to the maximum.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a natural frequency calculation device of a microwave resonance system according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing the microwave frequency dependence of the microwave electric field intensity.
[Explanation of symbols]
4 ... Microwave resonance waveguide, 5 ... Object, 8 ... Electric field intensity detection means, 10 ... Natural frequency calculation means.

Claims (2)

物体に照射するマイクロ波の半波長のN倍の長さをもつマイクロ波共振導波管に物体を挿入して、物体を構成する分子の配向を測定するマイクロ波共振系におけるマイクロ波固有振動数vmax を求める方法であって、
前記物体に振動数v,振幅A0 のマイクロ波を照射したときのマイクロ波電場強度Iv を検出し、Hをホワイトノイズ強度として、前記マイクロ波固有振動数vmax を、次式(1)により求めるマイクロ波共振系の固有振動数演算方法。
Figure 0003691659
Microwave natural frequency in a microwave resonant system in which an object is inserted into a microwave resonant waveguide having a length N times the half wavelength of the microwave irradiated to the object, and the orientation of molecules constituting the object is measured. A method for obtaining v max ,
A microwave electric field intensity I v is detected when the object is irradiated with a microwave having a frequency v and an amplitude A 0 , H is a white noise intensity, and the microwave natural frequency v max is expressed by the following equation (1). Method for calculating the natural frequency of a microwave resonance system obtained by
Figure 0003691659
物体に照射するマイクロ波の半波長のN倍の長さをもつマイクロ波共振導波管に物体を挿入して、物体を構成する分子の配向を測定するマイクロ波共振系におけるマイクロ波固有振動数vmax を求める装置であって、
前記物体に振動数v,振幅A0 のマイクロ波を照射したときのマイクロ波電場強度Iv を検出する電場強度検出手段と、
上記のデータおよびホワイトノイズ強度Hに基づいて、次式(1)の演算を行って、前記マイクロ波固有振動数vmax を求める固有振動数演算手段とを備えたマイクロ波共振系の固有振動数演算装置。
Figure 0003691659
Microwave natural frequency in a microwave resonant system in which an object is inserted into a microwave resonant waveguide having a length N times the half wavelength of the microwave irradiated to the object, and the orientation of molecules constituting the object is measured. a device for determining v max ,
Electric field intensity detecting means for detecting a microwave electric field intensity I v when the object is irradiated with microwaves having a frequency v and an amplitude A 0 ;
Based on the above data and the white noise intensity H, the natural frequency of the microwave resonance system including the natural frequency calculation means for calculating the microwave natural frequency v max by performing the calculation of the following equation (1). Arithmetic unit.
Figure 0003691659
JP09148298A 1998-04-03 1998-04-03 Method and apparatus for calculating natural frequency of microwave resonance system Expired - Lifetime JP3691659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09148298A JP3691659B2 (en) 1998-04-03 1998-04-03 Method and apparatus for calculating natural frequency of microwave resonance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09148298A JP3691659B2 (en) 1998-04-03 1998-04-03 Method and apparatus for calculating natural frequency of microwave resonance system

Publications (2)

Publication Number Publication Date
JPH11287772A JPH11287772A (en) 1999-10-19
JP3691659B2 true JP3691659B2 (en) 2005-09-07

Family

ID=14027637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09148298A Expired - Lifetime JP3691659B2 (en) 1998-04-03 1998-04-03 Method and apparatus for calculating natural frequency of microwave resonance system

Country Status (1)

Country Link
JP (1) JP3691659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005001756U1 (en) * 2004-02-12 2005-05-04 Trützschler GmbH & Co KG Microwave sensor for measuring a dielectric property of a product
CN112327063B (en) * 2020-09-24 2024-04-30 中国科学院大学 Device and method for improving spatial resolution of microwave electric field measurement

Also Published As

Publication number Publication date
JPH11287772A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
Truax et al. Laser Doppler velocimeter for velocity and length measurements of moving surfaces
Šimon Spectroscopy in infrared by reflection and its use for highly absorbing substances
Ivanov et al. New method for high-range resolution measurements of light scattering in optically dense inhomogeneous media
Jiang et al. Rotation velocity measurement based on self-mixing interference with a dual-external-cavity single-laser diode
Zhang et al. Spectroscopic study of terahertz reflection and transmission properties of carbon-fiber-reinforced plastic composites
JP2012132886A (en) Method and device for measuring optical characteristics of dielectric on metal thin film
Hochman et al. Efficient and spurious-free integral-equation-based optical waveguide mode solver
Ashkin et al. Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique
JP3691659B2 (en) Method and apparatus for calculating natural frequency of microwave resonance system
CN114813580A (en) Material phase change detection device and method
Flizikowski et al. Influence of edge effects on laser-induced surface displacement of opaque materials by photothermal interferometry
Michihata et al. In-process diameter measurement technique for micro-optical fiber with standing wave illumination
EP0973025B1 (en) Orientation measuring instrument
Takai et al. Dynamic statistical properties of vibrating laser speckle in the diffraction field
US20220034951A1 (en) Measurement device and measurement method
Lettieri et al. Light scattering from glossy coatings on paper
Patil et al. Objective speckle pattern-based surface roughness measurement using matrix factorization
JP3691658B2 (en) Molecular orientation measurement method and apparatus using microwaves
Van Horn et al. Conoscopic measurement of birefringence and orientation in biaxially stretched polymer films and sheets
Äyräs et al. Conoscopic interferometry of surface-acoustic-wave substrate crystals
JP4895428B2 (en) Method and apparatus for measuring alignment parameters of liquid crystal cell
Demner et al. Weakly absorbing layers: interferometric determination of their optical parameters
Zhang et al. Configuration optimization of photothermal deflection for measurement sensitivity enhancement
JP3691657B2 (en) Method and apparatus for drawing molecular alignment pattern by microwave
JPH08271449A (en) Method and apparatus for measuring molecular orientation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

EXPY Cancellation because of completion of term