JP3691389B2 - Thermal insulation device using thermal insulation material and method of manufacturing the same - Google Patents

Thermal insulation device using thermal insulation material and method of manufacturing the same Download PDF

Info

Publication number
JP3691389B2
JP3691389B2 JP2000398046A JP2000398046A JP3691389B2 JP 3691389 B2 JP3691389 B2 JP 3691389B2 JP 2000398046 A JP2000398046 A JP 2000398046A JP 2000398046 A JP2000398046 A JP 2000398046A JP 3691389 B2 JP3691389 B2 JP 3691389B2
Authority
JP
Japan
Prior art keywords
metal wire
heat insulating
storage chamber
mat
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398046A
Other languages
Japanese (ja)
Other versions
JP2002192303A (en
Inventor
謙一郎 亀井
晃弘 勝矢
透 白石
健 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2000398046A priority Critical patent/JP3691389B2/en
Publication of JP2002192303A publication Critical patent/JP2002192303A/en
Application granted granted Critical
Publication of JP3691389B2 publication Critical patent/JP3691389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱の流通を遮断する保温材を用いた保温装置及びその装置の製造方法に関する。
【0002】
【従来の技術】
自動車部品等を造形する鋳造においては、鋳造材料の凝固時における熱収縮によって製品面に所謂ひけ等が現れるのを防止する目的で、製品キャビティに隣接させて押湯を設けるようにしている。そして、この押湯は、鋳造時に製品キャビティ内の溶湯が充分に凝固するまでの間、押湯としての機能が確実に発揮されるよう保温材によって形成されることがある。
【0003】
この押湯を保温材によって形成する技術は、例えば特開昭59-152706号公報に記載されているものや、特開平10-152706号公報に記載されているものがある。
【0004】
前者に記載の保温材は、繊維状のセラミックスや珪藻土を固めて所定形状に造形したものであり、後者に記載の保温材は、粉末金属を所定形状に焼結成形して多孔質の基材を造形し、その基材を保温液に浸漬した後に乾燥させたものである。
【0005】
【発明が解決しようとする課題】
しかし、前者の保温材は比較的大きな保温効果が得られるものの、構成材料が材質的に脆いため、熱衝撃やバリの差し込み等の外力によって破損が生じ易く、頻繁な部品交換や修理を余儀なくされる。したがって、メンテナンスが煩雑であるうえ、そのメンテナンスのための費用が嵩むことが問題となっている。
【0006】
また、後者の保温材は逆に材質的には比較的強いものの、前者の保温材に比較して高い保温効果を得ることができない。
【0007】
そこで本発明は、耐久性が高く、しかも、充分な保温効果を得ることのできる保温材と、その保温材を用いる保温装置及びその装置の製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載の発明は、金属線材マットの金属線群の積層方向が壁厚方向となるように積層しかつ前記金属線材マット同士をプレス成形によって結合して断熱壁を形成したことを特徴としている。
【0009】
この発明の場合、金属線材マットは、空孔率が高いために空気による大きな断熱効果を得ることができ、しかも、金属細線を主材料として構成されていることから、大きな強度も得ることができる。金属線材マットを構成する金属細線は、金属線群の積層方向で点接触となっているため、その方向の熱伝導率は特に低くなる。
また、保温装置の断熱壁が、保温材を構成する金属マットの最も断熱効率良い(熱伝導率の低い)向きで用いられることとなる。
しかも、接着工程を必要とせず、一度のプレス成形によって貯留室を造形することが可能になる。また、すべての金属線群がプレス成形時に同様に曲げられるため、貯留室内の物質との接触面は金属線群の積層方向に対して常にほぼ直交することとなる。
【0010】
請求項2に記載の発明は、保温が必要な物質を保温貯留する貯留室を前記断熱壁によって形成すると共に、前記貯留室が鋳造金型の押湯であることを特徴としている。
【0011】
この発明の場合、貯留室が断熱効率の高い断熱壁によって構成されるため、貯留室内の物質の温度変化は小さく抑えられる。
また、押湯内に流入した溶湯は断熱壁によって放熱を抑制され、押湯室内の溶湯の凝固時間は充分に遅くなる。このため、溶湯温度をより低い温度にすることができ、製造工程の省エネルーギー化を達成できると共に、鋳造製品の品質を向上させることができる。即ち、溶湯温度が高温化すると溶湯表面に酸化皮膜が形成されて、注湯時にこれが製品形状部に巻き込まれて欠陥を生じやすいが、溶湯温度を低温化することによってこの欠陥の発生を防止することができる。
【0012】
請求項3に記載の発明は、複数の金属細線がほぼ一平面上でランダムに交差して成る金属線群を、この金属線群の成す平面と略直交する方向に積層して形成された、多孔質の金属線材マットを所定形状に切断し、その切断したマット片を無機質接着剤で接着して貯留室の外形を造形し、その後に少なくとも貯留室の内面側に封孔材を被覆あるいは含浸させることによって保温装置を製造するようにした。
【0013】
この発明の場合、マット片を接着した後に接着部も含めて全体に封孔材が付着され、各マット片の金属細線間の微細な孔が封孔材によって閉塞されると共に、接着部の隙間等も封孔材によって埋められる。
【0014】
請求項4に記載の発明は、複数の金属細線がほぼ一平面上でランダムに交差して成る金属線群を、この金属線群の成す平面と略直交する方向に積層して形成された、多孔質の金属線材マットをプレス成形して貯留室を造形し、その後に少なくとも貯留室の内面側に封孔材を被覆あるいは含浸させることによって保温装置を製造するようにした。
【0015】
この発明の場合、接着工程を必要とせず、一度のプレス成形によって貯留室を造形することが可能になる。また、すべての金属線群がプレス成形時に同様に曲げられるため、貯留室内の物質との接触面は金属線群の積層方向に対して常にほぼ直交することとなる。
【0016】
請求項5に記載の発明は、前記封孔材を被覆する際に、最初に金属を主成分とする下地材被覆した後に、セラミックスを主成分とする表皮材を被覆するようにした。
【0017】
この発明の場合、セラミックスを主成分とする封孔材が、金属を主成分とする下地材を仲立ちとして金属線材マットの表面に強固に被着される。
【0024】
【発明の実施の形態】
次に、本発明の一実施形態を図1〜図7に基づいて説明する。
【0025】
図1は本発明にかかる保温材1を示すものである。この保温材1は、図2に示すように、鉄,クロム,シリコンと希土類金属を成分とする複数の金属細線10a(直径20〜100μm)を素材として構成されている。具体的には、複数の金属細線10aがほぼ一平面上でランダムに交差して成る金属線群10を、その金属線群10の成す平面と略直交する方向に積層し焼結成形することによって多孔質(空孔率50〜95%)の金属線材マット11を形成し、その金属線材マット11にセラミックス等の封孔材12を被覆あるいは含浸させた構造となっている。尚、封孔材12は、保温材1に接する気体や液体が金属線材マット11内に浸入するのを阻止するように機能する。
【0026】
図2(ア)は、金属線材マット11を金属線群10の積層方向と直交する方向(積層面に沿う方向)に沿って切った拡大断面を示し、図2(イ)は、同マット11を金属線群10の積層方向に沿って切った拡大断面を示すものであるが、これらの図からも明らかなように金属線材マット11内の金属細線10aは積層方向には延出しておらず、細線相互はほぼ点で接触している。したがって、この金属線材マット11は前記のように空孔率が高く多くの空気を保持することができるが、特に、積層方向(厚み方向)については、金属細線10aの向きが関係して熱伝導率がより小さくなっている。
【0027】
また、この実施形態の場合、封孔材12は、図1に示すように、クロム等の金属を主成分とする下地材12aとアルミナ(Al2O3)やジルコン(ZrO2+SiO2)等のセラミックスを主成分とする表皮材12bを二層にして用いている。これは金属線材マット11に直接セラミックスを溶射した場合には、アルミナ等のセラミックス自体が脆く、かつ応力集中する箇所ができ易いことから、マット11の細線10aに対する結合強度が低下しがちとなるが、金属を主成分とする下地材12aを先に溶射することにより、その下地材12aを仲立ちとしてセラミックス(表皮材12b)を細線10aに強固に結合することができる。また、下地材としてニクロムを用いた場合には熱衝撃性をより高めることができる。
【0028】
したがって、この保温材1は、金属線材マット11の金属線群10の積層方向が壁厚方向となるように断熱壁を形成し、その断熱壁を金属溶湯の保温用その他の保温装置に用いることにより、高い保温性能(押湯の壁に用いた場合にはセラミックスや珪藻土等を使用したときと同等の保温性能。)を得ることができると共に、金属細線10aを主な構成素材としたことから大きな強度得ることができる。
【0029】
図3,図4は、保温材1をアルミ鋳造金型(この実施形態の場合、同金型の一部が本発明にかかる保温装置を構成。)の押湯2(貯留室)に適用した例を示すものであり、同図中3は金型本体、4は中子、5は金型本体3と中子4によって形成された製品キャビティであり、6は溶湯を注入する湯口、7は湯道、8は湯道7から製品キャビティ5に溶湯を供給する堰である。押湯2は、金型本体3の製品キャビティ5の上部両側に一対設けられている。各押湯室2はほぼ方形状に形成されて成り、保温材1から成る断熱壁9によって四面若しくは五面を囲まれると共に、下端部が製品キャビティ5に対して導通している。
【0030】
押湯2の製造方法としては、できあがった前記の保温材1をそのまま貼り合わせて使用することも考えられるが、この実施形態の場合、押湯2は前記金属線材マット11を図5に示すように所定形状のマット片11a〜11dに切断し、そのマット片11a〜11dを、金属線群10の積層方向(厚み方向)が溶湯との接触面(押湯室2の内面)と直交するように組付け、図6に示すように無機質接着剤13によってマット片相互を接着すると共に、図7に示すように継ぎ目のコーナ部を同接着剤13によってRを設けるように埋め込むようにしている。尚、図5〜図7では図示説明の関係上、図1のものとは異なる四面の断熱壁9から成る押湯2を示しているが、両者とも断熱壁9の数が異なるだけで基本構造は同様となっている。また、前記のマット片11a〜11dの切断と接着だけでは対応できない押湯2の形状については適宜切削等によって対処する。
【0031】
この後、マット片11a〜11dによって造形された押湯2には封孔材12を溶射してその表面を被覆する。ここで用いる封孔材12は、金属線材マット11への溶湯の差込みや濡れ性(親和性)を抑制し、離型性等を向上させる観点からはアルミナ(Al2O3)やジルコン(ZrO2+SiO2)等のセラミックスを用いることが有効であるが、この実施形態の場合、図1に示すように金属線材マット11に対して先にニクロム等の金属を主成分とする下地材12aを溶射し、その後に前記セラミックスより成る表皮材12bを溶射若しくは含浸するようにしている。
【0032】
押湯2を構成する金属線材マット11の表皮にはこうして封孔材12が被覆され、溶湯に接する表皮部分での溶湯の差込みや濡れは確実に防止される。
【0033】
押湯2は以上のように構成することにより、熱伝導率が0.3〜0.4w/m・kとなり、高い保温性を得ることが可能になる。このため、鋳造時には押湯2内の溶湯の凝固時間が製品キャビティ5内の溶湯の凝固時間に比較して充分に遅くなり、製品表面にひけ等が発生する不具合が確実に防止される。
【0034】
また、押湯2を構成する各断熱壁9は金属細線10aを素材として形成されているため、曲げ強度が30MPa程度となって熱衝撃等の外力の入力に対する強度が大幅に高まると共に、耐摩耗性も高まる。このため、こうして形成された押湯室2は、繰り返し使用によっても「欠け」や「割れ」等の破損が生じにくくなると共に、摩耗も生じにくくなる。したがって、押湯2に対しては定期的にアルミの付着状況の確認と除去等を行うことにより、長期に亙って使用を続けることができる。
【0035】
さらに、押湯2を構成する金属線材マット11(マット片11a〜11d)の表皮は封孔材12によって微細な孔を塞がれているため、このことによって溶湯の熱を金属線材マット11の内部に入り込みにくくして保温性をより高めることができると共に、金属線材マット11の表面での溶湯の差込みや濡れ等を防止して凝固金属の剥離を容易にすることができる。
【0036】
つづいて、図8〜図10に示す他の実施形態について説明する。
【0037】
この実施形態は、前述した実施形態と同様に本発明にかかる保温材1をアルミ鋳造金型の押湯2に適用したものであるが、前述の実施形態とは押湯2の形成の仕方が異なっている。
【0038】
即ち、押湯2は、金属線材マット11の切断と接着によって造形するのではなく、金属線材マット11を焼結成形前に、図8に示すようなプレス型15に入れ、プレス成形による荷重の付与によって全体を一度に所定の形状に造形し、その後に焼結成形を施して、さらに前述の実施形態と同様に金属線材マット11に封孔材12を被着する。尚、要すれば、プレス成形された金属線材マット11の形状の微調整は切削等によって適宜行う。また、プレス成形と同時に焼結しても良い。
【0039】
この製造方法の場合、押湯2の外形をプレス成形によって一度に形成することができることから、生産効率が良く、大量生産する場合には製造コストを大幅に削減することができる。また、この製造方法は、前述の実施形態の方法と異なり、接着強度のばらつきの心配もない。
【0040】
さらに、この実施形態の製造方法によれば、金属線材マット11を適宜切断し張り合わせて使用するものでないことから、できあがった押湯2にまったく継ぎ目ができず、しかも、溶湯の接する面のすべての部分において、その面に対して金属線群10の積層方向が略直交することとなる(金属線群10を構成する金属細線がその面に略直交して延出しなくなる)ため、押湯2の全域にわたって均一な断熱効果を得ることができる。つまり、前述した実施形態のマット片11a〜11dの継ぎ目部分のように、溶湯に接する箇所に金属細線10aが押湯室2の厚み方向を横切る部分があると、その箇所の断熱効果が部分的に低下してしまうが、この実施形態の方法を用いた場合にはこのような不具合は生じない。
【0041】
尚、本発明の実施形態は以上で説明したものに限るものでなく、同様の保温材1を鋳造金型に用いる場合であっても、例えば、図11〜図13に示すように略円錐状の押湯22の断熱壁に適用したり、通路23の壁の一部に適用することも可能である。また、本発明にかかる保温材1の用途は前記の押湯に限らず、図14,図15に示すように鋳造用給湯機30のレードル(とりべ)31部分に適用しても良い。
【0042】
さらに、保温材1は鋳造用の器具に限らず、その他のあらゆる保温装置の遮断壁に適用することができ、保温装置の内部に入れる物質も高温のものに限らず、低温のものであっても良い。また、金属線材マットを被覆する封孔材は、保温材の用途によっては、例えば金属箔によって構成し、その金属箔を金属マット表面に貼着するようにしても良い。
【0043】
【発明の効果】
以上のように、請求項1に記載の発明によれば、金属線材マットは、空孔率が高いために空気による大きな断熱効果を得ることができ、また、金属細線を主材料として構成されていることから、大きな強度も得ることができる。金属線材マットを構成する金属細線は、金属線群の積層方向で点接触となっているため、その方向の熱伝導率は特に低くなり、大きな保温効果を得ることができると共に、全体の強度及び耐久性が図れる。
また、保温装置の断熱壁が、保温材を構成する金属マットの最も断熱効率良い(熱伝導率の低い)向きで用いられることとなるため、保温装置の保温性能をより高めることができる。
しかも、接着工程を必要とせず、一度のプレス成形によって断熱壁を形成することが可能になる。また、すべての金属線群がプレス成形時に同様に曲げられるため、断熱壁によって造形された例えば貯留室内の物質との接触面は金属線群の積層方向に対して常にほぼ直交することとなる。この結果、例えば前記貯留室の全域において均一な断熱効果を得ることができる。
【0044】
請求項2に記載の発明によれば、貯留室を断熱効率の高い前記断熱壁によって構成したため、貯留室内に入れられた物質をより確実に保温状態に維持することができる。
また、押湯内に流入した溶湯の凝固を、断熱効率の高い前記断熱壁によって充分に遅らせることができるため、製品面上にひけ等が発生するのを確実に抑えて鋳造品の品質をより高めることができ、さらには、溶湯温度を低下させて製造工程を省エネルギー化を図ることができると共に、酸化皮膜の形成による製品内部の欠陥の発生をも防止することができる。また、断熱壁を構成する金属線材マットの表面の微細な孔が封孔材によって閉塞されているため、マット内への溶湯の差込み等を無くし、断熱壁からの凝固金属の剥離を容易にすることができる。
【0045】
請求項3に記載の発明によれば、接着部の隙間等も封孔材によって埋めることができるため、断熱壁に接触する物質の剥離性を良好にすることができると共に、貯留室の破損をも防止することができる。また、この発明においては、造形の自由度が高いため、種々の形状の貯留室に容易に適用できるという利点もある。
【0046】
請求項4に記載の発明によれば、接着工程を必要とせず、一度のプレス成形によって継ぎ目のない滑らかな形状の貯留室を容易に造形することができるうえ、貯留室内の物質との接触面を、いずれの部分においても金属線群の積層方向に対してほぼ直交させることができるため、貯留室の全域において均一な断熱効果を得ることができる。
【0047】
請求項5に記載の発明によれば、保温装置の製造工程において、少なくとも貯留室の内面にセラミックスを強固にかつ効率良く被覆することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す保温材の断面図。
【図2】図1のB−B線に沿う拡大断面図(ア)と図1のC−C線に沿う拡大断面図(イ)を並べた図面。
【図3】本発明の一実施形態を示す鋳造金型の断面図。
【図4】図3のA−A線に沿う断面図。
【図5】同実施形態を示すマット片の組付説明図。
【図6】同実施形態を示す斜視図。
【図7】同実施形態を示す貯留室の斜視図と拡大断面図を併せた図。
【図8】本発明の他の実施形態を示す断面図。
【図9】同実施形態を示す平面図。
【図10】図9のD−D線に沿う断面図。
【図11】本発明の他の適用例を示す断面図。
【図12】同適用例を示す平面図。
【図13】同適用例を示す図11のE−E線に沿う断面図。
【図14】本発明のさらに他の適用例を示す側面図。
【図15】同適用例の要部の断面図。
【符号の説明】
1…保温材
2…押湯室(貯留室)
9…断熱壁
10…金属線群
10a…金属細線
11…金属線材マット
11a〜11d…マット片
12…封孔材
12a…表皮材
13…無機質接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a thermal insulation device and that device using the heat insulator you block the flow of heat.
[0002]
[Prior art]
In casting for modeling automobile parts and the like, for the purpose of preventing so-called sink marks and the like from appearing on the product surface due to heat shrinkage when the casting material is solidified, a feeder is provided adjacent to the product cavity. And this hot water supply may be formed with a heat insulating material so that the function as a hot water supply is reliably exhibited until the molten metal in a product cavity fully solidifies at the time of casting.
[0003]
Techniques for forming the hot water with a heat insulating material include those described in, for example, Japanese Patent Laid-Open No. 59-152706 and those described in Japanese Patent Laid-Open No. 10-152706.
[0004]
The heat insulating material described in the former is obtained by solidifying fibrous ceramics or diatomaceous earth and shaped into a predetermined shape, and the heat insulating material described in the latter is a porous base material obtained by sintering and molding powder metal into a predetermined shape. Is formed, and the substrate is dipped in a heat retaining liquid and then dried.
[0005]
[Problems to be solved by the invention]
However, although the former heat insulating material has a relatively large heat insulating effect, it is easily damaged due to external force such as thermal shock or insertion of burrs because the material of the material is brittle, and frequent parts replacement and repair are forced. The Therefore, the maintenance is complicated and the cost for the maintenance is increased.
[0006]
On the other hand, although the latter heat insulating material is relatively strong in terms of material, a high heat insulating effect cannot be obtained as compared with the former heat insulating material.
[0007]
Therefore, the present invention intends to provide a heat insulating material that has high durability and can obtain a sufficient heat insulating effect, a heat insulating device using the heat insulating material, and a method of manufacturing the device.
[0008]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, the invention according to claim 1 is characterized in that the metal wire mats are laminated so that the lamination direction of the metal wire group is the wall thickness direction, and the metal wire mats are press-molded. It is characterized by being bonded to form a heat insulating wall.
[0009]
In the case of this invention, since the metal wire material mat has a high porosity, it can obtain a large heat insulating effect by air, and since the metal wire is mainly used as the main material, it can also obtain a high strength. . Since the fine metal wires constituting the metal wire mat are in point contact in the stacking direction of the metal wire group, the thermal conductivity in that direction is particularly low.
Moreover, the heat insulation wall of a heat retention apparatus will be used in the direction with the most heat insulation efficiency (low heat conductivity) of the metal mat which comprises a heat retention material.
In addition, it is possible to form the storage chamber by a single press molding without requiring an adhesion process. Further, since all the metal wire groups are bent in the same manner during press molding, the contact surface with the substance in the storage chamber is always substantially orthogonal to the stacking direction of the metal wire groups.
[0010]
The invention described in claim 2 is characterized in that a storage chamber for storing and storing a substance that needs to be kept warm is formed by the heat insulating wall, and the storage chamber is a feeder for a casting mold.
[0011]
In the case of this invention, since a storage chamber is comprised by the heat insulation wall with high heat insulation efficiency, the temperature change of the substance in a storage chamber can be suppressed small.
Further, the molten metal flowing into the feeder is prevented from releasing heat by the heat insulation wall, and the solidification time of the molten metal in the feeder is sufficiently delayed. For this reason, the molten metal temperature can be set to a lower temperature, energy saving routine can be achieved in the manufacturing process, and the quality of the cast product can be improved. That is, when the molten metal temperature rises, an oxide film is formed on the molten metal surface, and this is easily caught in the product shape part during pouring, but the defect is prevented by lowering the molten metal temperature. be able to.
[0012]
The invention according to claim 3 is formed by laminating a metal wire group in which a plurality of fine metal wires intersect substantially randomly on one plane in a direction substantially orthogonal to a plane formed by the metal wire group. Cut a porous metal wire rod mat into a predetermined shape, bond the cut mat pieces with an inorganic adhesive to shape the external shape of the storage chamber, and then cover or impregnate at least the inner surface of the storage chamber with a sealing material Insulating device was manufactured.
[0013]
In the case of the present invention, after the mat pieces are bonded, the sealing material is adhered to the entire surface including the bonded portion, and the fine holes between the fine metal wires of each mat piece are closed by the sealing material, and the gap between the bonded portions Etc. are also filled with a sealing material.
[0014]
The invention according to claim 4 is formed by laminating a metal wire group in which a plurality of fine metal wires intersect at random on substantially one plane in a direction substantially perpendicular to a plane formed by the metal wire group, A heat insulating device is manufactured by press-molding a porous metal wire rod mat to form a storage chamber, and then covering or impregnating a sealing material on at least the inner surface side of the storage chamber.
[0015]
In the case of this invention, it is possible to form the storage chamber by a single press molding without requiring an adhesion step. Further, since all the metal wire groups are bent in the same manner during press molding, the contact surface with the substance in the storage chamber is always substantially orthogonal to the stacking direction of the metal wire groups.
[0016]
In the invention according to claim 5, when the sealing material is coated, first, a base material mainly composed of metal is coated, and then a skin material mainly composed of ceramic is coated.
[0017]
In the case of the present invention, the sealing material mainly composed of ceramics is firmly attached to the surface of the metal wire mat with the base material mainly composed of metal as an intermediate.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS.
[0025]
FIG. 1 shows a heat insulating material 1 according to the present invention. As shown in FIG. 2, the heat insulating material 1 is composed of a plurality of fine metal wires 10a (diameter 20 to 100 μm) containing iron, chromium, silicon and rare earth metal as components. Specifically, by laminating a metal wire group 10 in which a plurality of fine metal wires 10a intersect at random on a substantially flat surface in a direction substantially perpendicular to the plane formed by the metal wire group 10, and sintering and forming the metal wire group 10 A porous (wire porosity 50 to 95%) metal wire mat 11 is formed, and the metal wire mat 11 is covered or impregnated with a sealing material 12 such as ceramics. The sealing material 12 functions to prevent the gas or liquid in contact with the heat insulating material 1 from entering the metal wire mat 11.
[0026]
FIG. 2A shows an enlarged cross section of the metal wire mat 11 cut along a direction orthogonal to the stacking direction of the metal wire group 10 (direction along the stacking surface). FIG. Is an enlarged cross section cut along the stacking direction of the metal wire group 10, but as is clear from these drawings, the metal thin wire 10a in the metal wire mat 11 does not extend in the stacking direction. The thin wires are almost in contact with each other at points. Therefore, the metal wire mat 11 has a high porosity and can hold a large amount of air as described above. In particular, in the lamination direction (thickness direction), the heat conduction is related to the direction of the thin metal wire 10a. The rate is getting smaller.
[0027]
In this embodiment, as shown in FIG. 1, the sealing material 12 includes a base material 12a mainly composed of a metal such as chromium, alumina (Al 2 O 3 ), zircon (ZrO 2 + SiO 2 ), and the like. The skin material 12b mainly composed of ceramics is used in two layers. This is because when ceramics are sprayed directly onto the metal wire mat 11, the bonding strength of the mat 11 with respect to the thin wire 10a tends to decrease because the ceramic itself such as alumina is brittle and a stress-concentrating portion is easily formed. By first spraying the base material 12a containing metal as a main component, the ceramic (skin material 12b) can be firmly bonded to the thin wire 10a with the base material 12a as an intermediate. Further, when nichrome is used as the base material, the thermal shock resistance can be further enhanced.
[0028]
Therefore, this heat insulating material 1 forms a heat insulating wall so that the lamination direction of the metal wire group 10 of the metal wire mat 11 is the wall thickness direction, and uses the heat insulating wall for other heat insulating devices for heat retention of the molten metal. With this, it is possible to obtain high heat insulation performance (heat insulation performance equivalent to the use of ceramics, diatomaceous earth, etc. when used for the wall of the hot water) and the metal thin wire 10a as the main constituent material. Great strength can be obtained.
[0029]
3 and 4, the heat insulating material 1 is applied to a hot water 2 (storage chamber) of an aluminum casting mold (in the case of this embodiment, a part of the mold constitutes a heat retaining device according to the present invention). In the figure, 3 is a mold body, 4 is a core, 5 is a product cavity formed by the mold body 3 and the core 4, 6 is a gate for pouring molten metal, and 7 is A runner 8 is a weir that supplies molten metal from the runner 7 to the product cavity 5. A pair of feeders 2 are provided on both upper sides of the product cavity 5 of the mold body 3. Each of the hot water chambers 2 is formed in a substantially rectangular shape, and is surrounded by four or five surfaces by a heat insulating wall 9 made of the heat insulating material 1, and its lower end portion is electrically connected to the product cavity 5.
[0030]
As a manufacturing method of the feeder 2, it is conceivable to use the heat insulating material 1 that has been completed as it is, but in this embodiment, the feeder 2 has the metal wire mat 11 as shown in FIG. 5. The mat pieces 11a to 11d are cut into predetermined shapes, and the lamination direction (thickness direction) of the metal wire group 10 is orthogonal to the contact surface with the molten metal (the inner surface of the hot water chamber 2). 6, the mat pieces are bonded to each other by the inorganic adhesive 13 as shown in FIG. 6, and the corner portion of the seam is embedded to provide R by the adhesive 13 as shown in FIG. 7. 5 to 7 show the feeder 2 composed of the four heat insulating walls 9 different from that shown in FIG. 1 for the purpose of illustration and explanation, both of them have a basic structure only in the number of the heat insulating walls 9. Is the same. Further, the shape of the feeder 2 that cannot be dealt with only by cutting and bonding the mat pieces 11a to 11d is appropriately dealt with by cutting or the like.
[0031]
After that, the sealing material 12 is sprayed on the feeder 2 formed by the mat pieces 11a to 11d to cover the surface thereof. The sealing material 12 used here suppresses the insertion of the molten metal into the metal wire mat 11 and wettability (affinity), and from the viewpoint of improving the releasability and the like, alumina (Al 2 O 3 ) or zircon (ZrO). It is effective to use ceramics such as 2 + SiO 2 ). However, in this embodiment, as shown in FIG. Thermal spraying is performed, and then the skin material 12b made of the ceramic is sprayed or impregnated.
[0032]
Thus, the sealing material 12 is coated on the skin of the metal wire material mat 11 constituting the feeder 2, and the insertion and wetting of the molten metal in the skin portion in contact with the molten metal is surely prevented.
[0033]
By configuring the feeder 2 as described above, the thermal conductivity becomes 0.3 to 0.4 w / m · k, and high heat retention can be obtained. For this reason, at the time of casting, the solidification time of the molten metal in the feeder 2 is sufficiently delayed as compared with the solidification time of the molten metal in the product cavity 5, so that a problem that sinks or the like occur on the product surface is surely prevented.
[0034]
Moreover, since each heat insulation wall 9 which comprises the feeder 2 is formed with the metal fine wire 10a as a raw material, the bending strength becomes about 30 MPa, and the strength against the input of external force such as thermal shock is greatly increased, and the wear resistance is increased. The nature will also increase. For this reason, the hot water chamber 2 formed in this manner is less likely to be damaged such as “chips” and “cracks” even after repeated use, and wear is also less likely to occur. Therefore, it is possible to continue to use the feeder 2 for a long period of time by periodically checking and removing the aluminum adhesion state.
[0035]
Further, since the skin of the metal wire mat 11 (mat pieces 11a to 11d) constituting the feeder 2 is closed with fine holes by the sealing material 12, the heat of the molten metal is thereby absorbed by the metal wire mat 11. It is possible to increase the heat retaining property by making it difficult to enter the inside, and to prevent the molten metal from being inserted or wetted on the surface of the metal wire mat 11 to facilitate the peeling of the solidified metal.
[0036]
Next, another embodiment shown in FIGS. 8 to 10 will be described.
[0037]
In this embodiment, the heat insulating material 1 according to the present invention is applied to the feeder 2 of the aluminum casting mold as in the embodiment described above, but the method of forming the feeder 2 is different from the embodiment described above. Is different.
[0038]
That is, the hot metal 2 is not shaped by cutting and bonding the metal wire mat 11, but before the metal wire mat 11 is sintered and molded, it is placed in a press die 15 as shown in FIG. By applying, the whole is formed into a predetermined shape at a time, and then sintered, and then the sealing material 12 is attached to the metal wire mat 11 similarly to the above-described embodiment. If necessary, fine adjustment of the shape of the press-formed metal wire mat 11 is appropriately performed by cutting or the like. Moreover, you may sinter simultaneously with press molding.
[0039]
In the case of this manufacturing method, since the outer shape of the feeder 2 can be formed at a time by press molding, the production efficiency is good, and the manufacturing cost can be greatly reduced in the case of mass production. In addition, this manufacturing method does not have a fear of variations in adhesive strength, unlike the method of the above-described embodiment.
[0040]
Furthermore, according to the manufacturing method of this embodiment, since the metal wire mat 11 is not used by being cut and bonded as appropriate, there is no seam in the finished presser 2 and all the surfaces on which the molten metal comes into contact are formed. In the portion, the laminating direction of the metal wire group 10 is substantially orthogonal to the surface (the metal fine wires constituting the metal wire group 10 do not extend substantially orthogonal to the surface). A uniform heat insulating effect can be obtained over the entire region. That is, if there is a portion where the thin metal wire 10a crosses the thickness direction of the hot water chamber 2 at a location in contact with the molten metal, such as the joint portion of the mat pieces 11a to 11d of the above-described embodiment, the heat insulation effect at that location is partially However, such a problem does not occur when the method of this embodiment is used.
[0041]
The embodiment of the present invention is not limited to the above-described one, and even when the same heat insulating material 1 is used for a casting mold, for example, as shown in FIGS. It is also possible to apply to the heat insulating wall of the hot water 22 or to a part of the wall of the passage 23. In addition, the use of the heat insulating material 1 according to the present invention is not limited to the above-described hot water supply, but may be applied to a ladle 31 portion of a casting water heater 30 as shown in FIGS.
[0042]
Furthermore, the heat insulating material 1 is not limited to a casting tool, but can be applied to a barrier wall of any other heat insulating device, and the material to be placed inside the heat insulating device is not limited to a high temperature, but a low temperature one. Also good. Moreover, the sealing material which coat | covers a metal wire rod mat may be comprised, for example with metal foil depending on the use of a heat insulating material, and you may make it stick the metal foil on the metal mat surface.
[0043]
【The invention's effect】
As described above, according to the invention described in claim 1, a metal wire mat, because the porosity is high it is possible to obtain a large heat insulating effect by air, also consists of fine metal wires as a main material Therefore, a large strength can be obtained. Since the metal thin wire constituting the metal wire mat is point contact in the stacking direction of the metal wire group, the thermal conductivity in that direction is particularly low, a large heat retention effect can be obtained, and the overall strength and Durability can be achieved.
Moreover , since the heat insulation wall of the heat retaining device is used in the direction with the best heat insulation efficiency (low thermal conductivity) of the metal mat constituting the heat retaining material, the heat retaining performance of the heat retaining device can be further enhanced.
In addition, the heat insulating wall can be formed by a single press molding without requiring an adhesion step. In addition, since all the metal wire groups are bent in the same manner during press molding, the contact surface with, for example, the substance in the storage chamber formed by the heat insulating wall is always substantially orthogonal to the stacking direction of the metal wire groups. As a result, for example, a uniform heat insulating effect can be obtained throughout the entire storage chamber.
[0044]
According to invention of Claim 2, since the storage chamber was comprised by the said heat insulation wall with high heat insulation efficiency, the substance put into the storage chamber can be more reliably maintained in a heat retention state.
In addition, since the solidification of the molten metal that has flowed into the feeder can be sufficiently delayed by the heat insulation wall having high heat insulation efficiency, it is possible to reliably suppress the occurrence of sink marks on the product surface and to improve the quality of the cast product. In addition, the temperature of the molten metal can be lowered to save energy in the manufacturing process, and the occurrence of defects inside the product due to the formation of an oxide film can also be prevented. In addition, since the fine holes on the surface of the metal wire mat constituting the heat insulating wall are blocked by the sealing material, the insertion of the molten metal into the mat is eliminated, and the solidified metal can be easily separated from the heat insulating wall. be able to.
[0045]
According to the third aspect of the present invention, since the gap or the like of the bonding portion can be filled with the sealing material, the releasability of the substance that contacts the heat insulating wall can be improved, and the storage chamber can be damaged. Can also be prevented. Moreover, in this invention, since the freedom degree of modeling is high, there also exists an advantage that it can apply easily to the storage chamber of various shapes.
[0046]
According to the invention described in claim 4, it is possible to easily form a seamless storage chamber without a joint by a single press molding, and to contact a substance in the storage chamber. Can be made substantially orthogonal to the stacking direction of the metal wire group in any part, so that a uniform heat insulating effect can be obtained in the entire region of the storage chamber.
[0047]
According to the fifth aspect of the present invention , at least the inner surface of the storage chamber can be firmly and efficiently coated with ceramics in the manufacturing process of the heat retaining device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heat insulating material showing an embodiment of the present invention.
2 is a drawing in which an enlarged cross-sectional view (A) along the line BB in FIG. 1 and an enlarged cross-sectional view (A) along the line CC in FIG. 1 are arranged.
FIG. 3 is a cross-sectional view of a casting mold showing an embodiment of the present invention.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is an explanatory diagram of the mat piece assembly showing the embodiment.
FIG. 6 is a perspective view showing the embodiment.
FIG. 7 is a view in which a perspective view and an enlarged sectional view of the storage chamber showing the embodiment are combined.
FIG. 8 is a cross-sectional view showing another embodiment of the present invention.
FIG. 9 is a plan view showing the embodiment.
10 is a cross-sectional view taken along the line DD of FIG.
FIG. 11 is a cross-sectional view showing another application example of the present invention.
FIG. 12 is a plan view showing the same application example.
13 is a cross-sectional view taken along line EE of FIG. 11 showing the same application example.
FIG. 14 is a side view showing still another application example of the invention.
FIG. 15 is a sectional view of the main part of the application example.
[Explanation of symbols]
1 ... Insulation material 2 ... Hot water chamber (storage chamber)
DESCRIPTION OF SYMBOLS 9 ... Heat insulation wall 10 ... Metal wire group 10a ... Metal fine wire 11 ... Metal wire mats 11a-11d ... Mat piece 12 ... Sealing material 12a ... Skin material 13 ... Inorganic adhesive

Claims (5)

金属線材マットの金属線群の積層方向が壁厚方向となるように積層しかつ前記金属線材マット同士をプレス成形によって結合して断熱壁を形成したことを特徴とする保温材を用いた保温装置。A heat insulating device using a heat insulating material, characterized in that a heat insulating wall is formed by laminating the metal wire group of the metal wire mat so that the lamination direction of the metal wire group is a wall thickness direction and bonding the metal wire mats together by press molding . 保温が必要な物質を保温貯留する貯留室を前記断熱壁によって形成すると共に、前記貯留室が鋳造金型の押湯であることを特徴とする請求項1に記載の保温材を用いた保温装置。2. A heat retaining device using a heat retaining material according to claim 1, wherein a storage chamber that retains and stores a material that needs to be kept warm is formed by the heat insulating wall, and the storage chamber is a feeder of a casting mold. . 複数の金属細線がほぼ一平面上でランダムに交差して成る金属線群を、この金属線群の成す平面と略直交する方向に積層して形成された、多孔質の金属線材マットを所定形状に切断し、その切断したマット片を無機質接着剤で接着して貯留室の外形を造形し、その後に少なくとも貯留室の内面側に封孔材を被覆あるいは含浸させたことを特徴とする保温装置の製造方法。A porous metal wire mat formed in a predetermined shape by laminating metal wire groups consisting of a plurality of thin metal wires randomly intersecting on one plane in a direction substantially perpendicular to the plane formed by the metal wire groups. The heat insulating device is characterized in that the cut mat piece is bonded with an inorganic adhesive to shape the outer shape of the storage chamber, and then at least the inner surface side of the storage chamber is covered or impregnated with a sealing material Manufacturing method. 複数の金属細線がほぼ一平面上でランダムに交差して成る金属線群を、この金属線群の成す平面と略直交する方向に積層して形成された、多孔質の金属線材マットをプレス成形して貯留室を造形し、その後に少なくとも貯留室の内面側に封孔材を被覆あるいは含浸させたことを特徴とする保温装置の製造方法。A porous metal wire rod mat formed by laminating metal wire groups consisting of multiple thin metal wires intersecting at random on a plane in a direction substantially perpendicular to the plane formed by the metal wire groups is press-formed. Then, the storage chamber is formed, and then the inner surface side of the storage chamber is coated or impregnated with a sealing material. 前記封孔材を被覆する際に、最初にニクロム金属を主成分とする下地材被覆した後に、セラミックスを主成分とする表皮材を被覆することを特徴とする請求項3または4に記載の保温装置の製造方法。 5. The heat insulating material according to claim 3, wherein when the sealing material is coated, first, a base material mainly composed of nichrome metal is coated, and thereafter a skin material mainly composed of ceramic is coated. Device manufacturing method.
JP2000398046A 2000-12-27 2000-12-27 Thermal insulation device using thermal insulation material and method of manufacturing the same Expired - Fee Related JP3691389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398046A JP3691389B2 (en) 2000-12-27 2000-12-27 Thermal insulation device using thermal insulation material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398046A JP3691389B2 (en) 2000-12-27 2000-12-27 Thermal insulation device using thermal insulation material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002192303A JP2002192303A (en) 2002-07-10
JP3691389B2 true JP3691389B2 (en) 2005-09-07

Family

ID=18863088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398046A Expired - Fee Related JP3691389B2 (en) 2000-12-27 2000-12-27 Thermal insulation device using thermal insulation material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3691389B2 (en)

Also Published As

Publication number Publication date
JP2002192303A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US5985464A (en) Composite structure, and method of making same
JP3691389B2 (en) Thermal insulation device using thermal insulation material and method of manufacturing the same
NL1026378C2 (en) Material for synthetic resin mold and synthetic resin mold.
JP2004522572A (en) Filter element and manufacturing method thereof
JP4136208B2 (en) Casting core and method for producing casting core
CN104602853A (en) Pressure impregnation type method for preparing metal matrix composite
ITMI961260A1 (en) BODY PRINTED IN MMC WITH MODULAR STRUCTURE
JPH0353003Y2 (en)
JPS6167540A (en) Casting mold
JP3581687B2 (en) Sand core for casting and method for producing the same
JP2005536434A (en) Composite comprising ceramic layers and method for producing the composite
JPH09277018A (en) Cylinder head of internal combustion engine and production thereof
JPH0222128Y2 (en)
JPS6327105B2 (en)
JP6281332B2 (en) Piston of internal combustion engine
JP6343975B2 (en) Piston for internal combustion engine and method for manufacturing the same
JPH06341472A (en) Brake rotor made of composite material and its manufacture
JPS61250132A (en) Manufacture of composite member
JP2529729Y2 (en) Evanescent model for casting
JP2734074B2 (en) Leachable core for resin molding
JP2607103B2 (en) Method for forming cavity of resin-sealed resonator
JPH08300102A (en) Sand core for pressure casting and its production
TW200300386A (en) Method for forming a shoe mold
JP2015169193A (en) Piston for internal combustion engine
JP2005288874A (en) Mold assembly of injection-molded product and molding method of injection-molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees