JP3690643B2 - Passive matrix organic thin-film light-emitting display - Google Patents

Passive matrix organic thin-film light-emitting display Download PDF

Info

Publication number
JP3690643B2
JP3690643B2 JP32471499A JP32471499A JP3690643B2 JP 3690643 B2 JP3690643 B2 JP 3690643B2 JP 32471499 A JP32471499 A JP 32471499A JP 32471499 A JP32471499 A JP 32471499A JP 3690643 B2 JP3690643 B2 JP 3690643B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
passive matrix
organic thin
matrix organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32471499A
Other languages
Japanese (ja)
Other versions
JP2001142415A (en
Inventor
貴稔 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP32471499A priority Critical patent/JP3690643B2/en
Publication of JP2001142415A publication Critical patent/JP2001142415A/en
Application granted granted Critical
Publication of JP3690643B2 publication Critical patent/JP3690643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機発光素子を用いたパッシブマトリクス有機薄膜発光ディスプレイに関し、特に低電圧、低消費電力、高輝度で駆動可能なパッシブマトリクス有機薄膜発光ディスプレイに関する。
【0002】
【従来の技術】
有機発光素子は、自己発光型素子であるため視認性が高く、低電圧で駆動できるという特徴を持つため実用化研究が積極的になされている。有機発光素子としては、透明基板上に陽極の透明導電性膜、有機物から成る正孔輸送層と発光層、陰極の金属膜を形成した有機層が2層からなる構造や、有機層が、正孔輸送層、発光層、電子輸送層の3層からなる構造などが知られている。
【0003】
有機発光素子の発光機構は次のように考えられている。陰極から注入された電子と、陽極から注入された正孔とが、正孔輸送層と発光層の界面近傍で再結合することにより励起子が生じ、この励起子が放射失活する過程で光を放つ。この光が陽極である透明導電性膜および透明基板を通して外部に放出される。
【0004】
有機発光素子の用途の一つに、図7に一例として示すような、パッシブマトリクス型(単純マトリクス型)ディスプレイがある。図7に示すパッシブマトリクス型ディスプレイは、透明基板上に複数列に配置された陽極1と、陽極1に交差するように複数行に配置された陰極2と、これらに挟持された(発光層を含む)有機層とから構成される。陽極1と陰極2の交差領域の発光部を1単位として1画素を形成し、この画素を2次元的に複数個配列することにより表示部3が形成される。R(赤)、G(緑)およびB(青)の各色の発光層が図7に示すように順番に配置されている。陽極1および陰極2を表示部3より基板周囲へ延長し形成した接続部を介して、外部駆動回路(データ側駆動回路4および走査側駆動回路5)と表示部3とを接続することによりディスプレイ装置が構成される。図8に示されるように、画像信号(RGBデータ)はメモリコントローラ6によって書き込みおよび読み出しが制御されるフレームメモリ7に一時記憶され、例えば線順次走査に応答して読み出され、階調制御回路8によって階調が制御されてデータ側駆動回路4に供給される。メモリコントローラ6、階調制御回路8、データ側駆動回路4および走査側駆動回路5は、クロック発生器9からのクロックに基づいて、その動作タイミングが制御され、例えば線順次走査された画像が表示部3に表示される。
【0005】
【発明が解決しようとする課題】
近年、ディスプレイの大型化や高精細化が要求されている。このため線順次走査を行なう上で、1本の走査線を選択する時間が短くなっている。このことはパッシブマトリクス・ディスプレイにおいては、1本の走査線を発光させる時間が短くなり、その結果輝度低下を招く。これを補うためには表示部への印加電圧を上昇させる必要があり、消費電力の増大をもたらす。
【0006】
線順次走査における走査線の発光時間の制限を排除するために考えられたのがアクティブマトリクス駆動である。これは各画素毎にスイッチング素子と情報保持用のキャパシタンスを持つことを特徴とする。これにより駆動Dutyを限りなく1に近づけることができ、高い輝度が得られる。しかしその半面、スイッチング素子の作り込みに多大な技術とコストが必要となり、また製品の歩留まりも低下する。
【0007】
上述したようにパッシブマトリクス・ディスプレイは高精細化に当たって輝度が低下し、また消費電力が増大するという問題点を持ち、アクティブマトリクス・ディスプレイは歩留まり低下とコスト増大をもたらす。
【0008】
本発明は、パッシブマトリクス有機薄膜発光ディスプレイにおいて、駆動Dutyを増加させ発光時間を増加させることにより、低電圧駆動化と低消費電力化ならびに高輝度を実現することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、請求項1の発明は、透明基板上に、複数列に配置された第一の電極部と、複数行に配置された第二の電極部とを有し、かつ前記第一および第二電極部間に少なくとも有機発光層を挟持してなるパッシブマトリクス有機薄膜発光ディスプレイにおいて、前記第一の電極部の各列は、複数の画素電極と当該複数の画素電極に給電する給電電極とから構成して、前記給電電極上に前記複数の画素電極を配置し、前記給電電極の幅を前記画素電極の幅より小さくし、同一行上の隣接画素電極間の非発光領域上に隣接行の給電電極を配置し、前記第一および第二の電極部は、それぞれ複数組の電気的に独立したマトリクスに分けて、前記各マトリクスを同時に駆動することを特徴とする。
【0010】
請求項2の発明は、請求項1において、前記非発光領域の幅は前記画素電極の幅より小さいことを特徴とする。
【0011】
請求項3の発明は、請求項1または2において、前記画素電極は透明導電性膜であり、前記給電電極は金属電極であることを特徴とする。
【0013】
【発明の実施の形態】
図1は、本発明の第1の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。なお、本実施形態および以下に示す各実施形態では、第一の電極部を陽極とし、第二の電極部を陰極としたが、本発明は、これに限定されず、この逆の場合でもよい。
【0014】
この第1の実施形態に係る、パッシブマトリクス有機薄膜発光素子においては、基板上に、複数列に配置された第一の電極部としてのストライプ状にパターニングされた透明性導電膜からなる陽極と、それと交差し複数行に配置された第二の電極部としての金属膜からなる陰極とが形成され、陽極、絶縁膜、有機層、陰極が順次積層されて表示部が形成されている。陽極と陰極の交差領域の発光部を1単位として1画素を形成し、この画素を2次元的に複数個配列することにより表示部12が形成される。R(赤)、G(緑)およびB(青)の各色の発光層が図1に示すように順番に配置されている。なお、陽極と陰極が交差している部分のうち、画素となる部分に絶縁膜は形成されず、画素とならない部分には絶縁膜を形成する。これにより、画素とならない陽極と陰極の交点における短絡を防ぐことができる。
【0015】
第一の電極部の奇数列目の電極21は奇数列データ側駆動回路11に接続し、第一の電極部の偶数列目の電極22は偶数列データ側駆動回路10に接続し、第二の電極部の電極は走査側駆動回路5に接続して、第一の電極部の奇数列目の電極21と第二の電極部の奇数行目の電極23とを電気的に独立した一つのマトリクスとし、且つ第一の電極部の偶数列目の電極22と第二の電極部の偶数行目の電極24とを電気的に独立した別のマトリクスとすることによって、それぞれのマトリクス内を同時に線順次走査する。すなわち、図9に示されるように、画像信号(RGBデータ)はメモリコントローラ6によって書き込みおよび読み出しが制御されるフレームメモリ7に一時記憶され、例えば線順次走査に応答して読み出され、階調制御回路8によって階調が制御されて奇数列データ側駆動回路11および偶数列データ側駆動回路10に供給される。メモリコントローラ6、階調制御回路8、奇数列データ側駆動回路11、偶数列データ側駆動回路10および走査側駆動回路5は、クロック発生器9からのクロックに基づいて、その動作タイミングが制御される。例えば第二の電極部の奇数行目の電極のうちの任意の1行と偶数行目の電極のうちの任意の1行を同時に選択し、線順次走査を行なうことができる。これによって、駆動Dutyを2倍にすることができる。つまり一画面を構成する時間を短縮でき、また各1行毎の選択時間を長くすることができる。これによりフレーム周波数を下げることなく高精細化が可能となり、またメモリ効果を有しない有機薄膜発光ディスプレイにおいては輝度向上を図ることができる。よって低電圧駆動化と低消費電力化を可能とする。
【0016】
図2は本発明の第2の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。
【0017】
本実施形態においては、第一の電極部の各列の電極を、(透明)画素電極(25で例示)と当該画素電極に給電する給電電極(26で例示)とから構成し、給電電極は同一列上の画素電極間を接続する。第1の実施形態のマトリックスの構成の仕方、駆動回路および図9の信号処理手段等は、本実施形態にそのまま適用される。
【0018】
給電電極を細くすることで非発光部分を減らし、それぞれのマトリクス内を同時に線順次走査する。給電電極26の幅を画素電極25の幅より小さく(細く)することによって、同一行上で、隣接する画素電極同士を接近させることができる。これによって、非発光部分を減らし、また画素ピッチを狭くすることで高精細化を可能としている。尚、画素間を接続している給電電極に金属電極を用いることで配線抵抗を低減できる。
【0019】
図3は、本発明の第3の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。
【0020】
本実施形態は、表示部の上および下側に奇数列データ側駆動回路11および偶数列データ側駆動回路10をそれぞれ配置し、走査側駆動回路を2つから構成して、2つの走査側駆動回路5A,5Bの各々を表示部の両側に配置したものであり、それ以外は、第2の実施形態と同様であり、図9の信号処理手段と同様の構成の信号処理手段が適用される。高精細化することにより電極間のピッチが狭くなった場合は、本実施形態のように第一の電極部の各列の給電電極を交互に反対方向に取り出すことによりデータ側駆動回路の回路接続の簡便性を得ることができる。さらに本実施形態では第二の電極部の各電極に対して、両側の2つの走査側駆動回路5A,5Bから電力供給も可能なので、第二の電極部の各電極の配線抵抗を下げ電圧降下を抑制するとができる。これにより第二の電極部の1つ1つの電極内の輝度差を低減し、大面積化に対応している。
【0021】
図4は、本発明の第4の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。
【0022】
本実施形態は、画素電極間を接続する給電電極の配置を変更した場合の電極構造の一例であり、第二の電極部の各行の電極を2つの走査側駆動回路5A,5Bに交互に接続し、給電電極26を画素電極25の端部に位置させた以外は、図3の実施形態と同様である。画素電極間を接続する給電電極の配置はこれらの例に制限されない。
【0023】
図5は、本発明の第5の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。
【0024】
本実施形態は、表示部18を上側および下側の2つの部分に分け、各部分は、第2の実施形態と同様の構成としたものである。したがって、4つの独立したマトリックスが形成され、通常の単純マトリクスの4倍の駆動Dutyが得られ、有機薄膜発光ディスプレイにおいては4倍の輝度を得ることができる。
【0025】
図5および図10に示すように、上側の部分においては、第一の電極部の奇数列目の電極は上側奇数列データ側駆動回路17に接続し、第一の電極部の偶数列目の電極は上側偶数列データ側駆動回路16に接続し、第二の電極部の電極は上側走査側駆動回路13Aに接続して、第一の電極部の奇数列目の電極と第二の電極部の奇数行目の電極とを電気的に独立した一つのマトリクスとし、且つ第一の電極部の偶数列目の電極と第二の電極部の偶数行目の電極とを電気的に独立した別のマトリクスとする。同様に、下側の部分においては、第一の電極部の奇数列目の電極は下側奇数列データ側駆動回路14に接続し、第一の電極部の偶数列目の電極は下側偶数列データ側駆動回路15に接続し、第二の電極部の電極は下側走査側駆動回路13Bに接続して、第一の電極部の奇数列目の電極と第二の電極部の奇数行目の電極とを電気的に独立した一つのマトリクスとし、且つ第一の電極部の偶数列目の電極と第二の電極部の偶数行目の電極とを電気的に独立した別のマトリクスとする。これによって、4つのマトリクス内を同時に線順次走査することができる。
【0026】
図6は、本発明の第6の実施形態に係る、パッシブマトリクス有機薄膜発光素子の電極構造の一例を示す。
【0027】
本実施形態は、3つのデータ側駆動回路27,28,29を有し、第一の電極部の各列の給電電極(26で例示)を順次各データ側駆動回路に接続したものであって、3つの電気的に独立なマトリクスを構成することができる。3つの駆動回路の信号処理手段は、図9の回路に順じて構成することができる(データ側駆動回路が2つから3つに増える)。
【0028】
なお、上記各実施形態においては、非発光領域において、第一の電極部と第二の電極部が接触し、短絡が発生するのを防止するために、第一の電極部と第二の電極部問に絶縁膜を形成する。絶縁膜は、金属膜よりも移動度の小さな材料であればキャリアの注入性を低くすることができ、発光損失を低減させる。例えば、金属膜を形成した後に酸化珪素やアルミナなどの酸化物をスパッタリング法や、ゾルゲル法等の方法で形成した後に、例えばリフトオフなどの方法で目的の形状に形成することや、フォトレジストなどの有機高分子膜を形成することが適用される。
【0029】
本発明においては、基板としてガラス基板のほかにポリマーフイルム等のフイルム状基板や、ガラス基板上のカラーフィルター等の有機膜に対しても適用可能である。
【0030】
透明導電性膜材料としてはITOやインジウム亜鉛酸化物のほかに、酸化錫や酸化亜鉛、アルミニウム錫酸化物などを用いることができる。
【0031】
【発明の効果】
以上のように、本発明によれば、少なくとも2行を同時に選択し線順次走査を行なうことができる。その結果、高精細、低駆動電圧、低消費電力、高輝度が可能なパッシブマトリクス有機薄膜発光ディスプレイが得られる。
【図面の簡単な説明】
【図1】本発明に係るパッシブマトリクス型有機発光素子ディスプレイの電極構造の一例を示す図である。
【図2】本発明に係るパッシブマトリクス型有機発光素子ディスプレイの電極構造の他の一例を示す図である。
【図3】本発明に係るパッシブマトリクス型有機発光素子ディスプレイの電極構造のさらに他の一例を示す図である。
【図4】本発明に係るパッシブマトリクス型有機発光素子ディスプレイの電極構造のさらに他の一例を示す図である。
【図5】本発明を用いた4画面分割駆動の電極構造の一例を示す図である。
【図6】本発明に係るパッシブマトリクス型有機発光素子ディスプレイの電極構造のさらに他の一例を示す図である。
【図7】従来のパッシブマトリクス型有機発光素子ディスプレイの電極構造の一例を示す図である。
【図8】図7の駆動回路に適用する信号処理手段のブロック図である。
【図9】図1等の駆動回路に適用する信号処理手段のブロック図である。
【図10】図5の駆動回路に適用する信号処理手段のブロック図である。
【符号の説明】
5 走査側駆動回路
10 偶数列データ側駆動回路
11 奇数列データ側駆動回路
12 表示部
21 第一の電極部の奇数列目の電極
22 第一の電極部の偶数列目の電極
23 第二の電極部の奇数行目の電極
24 第二の電極部の偶数行目の電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a passive matrix organic thin film light emitting display using organic light emitting elements, and more particularly to a passive matrix organic thin film light emitting display that can be driven with low voltage, low power consumption, and high luminance.
[0002]
[Prior art]
Since organic light-emitting elements are self-luminous elements and have high visibility and can be driven at a low voltage, practical research has been actively conducted. The organic light-emitting device includes a transparent conductive film of an anode on a transparent substrate, a hole transport layer made of an organic material and a light-emitting layer, and a structure in which an organic layer having a metal film of a cathode is formed of two layers. A structure including three layers of a hole transport layer, a light emitting layer, and an electron transport layer is known.
[0003]
The light emission mechanism of the organic light emitting device is considered as follows. The electrons injected from the cathode and the holes injected from the anode recombine in the vicinity of the interface between the hole transport layer and the light-emitting layer to generate excitons. Unleash. This light is emitted to the outside through the transparent conductive film as the anode and the transparent substrate.
[0004]
One application of the organic light emitting device is a passive matrix type (simple matrix type) display as shown in FIG. 7 as an example. The passive matrix display shown in FIG. 7 includes anodes 1 arranged in a plurality of columns on a transparent substrate, cathodes 2 arranged in a plurality of rows so as to intersect the anodes 1, and sandwiched between them (a light emitting layer is formed). Including) organic layer. A display unit 3 is formed by forming one pixel with the light emitting portion in the intersecting region of the anode 1 and the cathode 2 as a unit and arranging a plurality of pixels two-dimensionally. The light emitting layers of R (red), G (green), and B (blue) are arranged in order as shown in FIG. By connecting the external drive circuit (the data side drive circuit 4 and the scan side drive circuit 5) and the display unit 3 via a connection unit formed by extending the anode 1 and the cathode 2 from the display unit 3 to the periphery of the substrate, a display is provided. The device is configured. As shown in FIG. 8, the image signal (RGB data) is temporarily stored in a frame memory 7 which is controlled to be written and read by the memory controller 6, and is read out in response to, for example, line sequential scanning. The gradation is controlled by 8 and supplied to the data side drive circuit 4. The memory controller 6, the gradation control circuit 8, the data side drive circuit 4, and the scan side drive circuit 5 have their operation timing controlled based on the clock from the clock generator 9, and display, for example, line-sequentially scanned images. Part 3 is displayed.
[0005]
[Problems to be solved by the invention]
In recent years, there has been a demand for larger displays and higher definition of displays. For this reason, in performing line sequential scanning, the time for selecting one scanning line is shortened. This means that in a passive matrix display, the time for emitting one scanning line is shortened, resulting in a decrease in luminance. In order to compensate for this, it is necessary to increase the voltage applied to the display unit, resulting in an increase in power consumption.
[0006]
In order to eliminate the limitation of the light emission time of the scanning line in the line sequential scanning, the active matrix driving is considered. This is characterized in that each pixel has a switching element and a capacitance for holding information. As a result, the driving duty can be made as close to 1 as possible, and high luminance can be obtained. However, on the other hand, a great deal of technology and cost are required to make the switching element, and the yield of the product is lowered.
[0007]
As described above, the passive matrix display has the problems that the luminance is reduced and the power consumption is increased when the definition is increased, and the active matrix display brings about a decrease in yield and an increase in cost.
[0008]
An object of the present invention is to realize low voltage driving, low power consumption, and high luminance by increasing the driving duty and increasing the light emission time in a passive matrix organic thin film light emitting display.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 has a first electrode portion arranged in a plurality of columns and a second electrode portion arranged in a plurality of rows on a transparent substrate, and In a passive matrix organic thin film light emitting display in which at least an organic light emitting layer is sandwiched between the first and second electrode portions , each column of the first electrode portions feeds a plurality of pixel electrodes and the plurality of pixel electrodes. A plurality of pixel electrodes arranged on the power supply electrode, the width of the power supply electrode is made smaller than the width of the pixel electrode, and a non-light emitting region between adjacent pixel electrodes on the same row Adjacent rows of feeding electrodes are arranged above, and the first and second electrode portions are divided into a plurality of sets of electrically independent matrices, respectively, and each matrix is driven simultaneously.
[0010]
According to a second aspect of the present invention, in the first aspect, the width of the non-light-emitting region is smaller than the width of the pixel electrode.
[0011]
According to a third aspect of the present invention, in the first or second aspect, the pixel electrode is a transparent conductive film, and the power supply electrode is a metal electrode.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of an electrode structure of a passive matrix organic thin-film light-emitting element according to the first embodiment of the present invention. In the present embodiment and each of the embodiments described below, the first electrode portion is an anode and the second electrode portion is a cathode. However, the present invention is not limited to this, and vice versa. .
[0014]
In the passive matrix organic thin-film light emitting device according to the first embodiment, an anode made of a transparent conductive film patterned in a stripe shape as a first electrode portion arranged in a plurality of rows on a substrate, A cathode made of a metal film as a second electrode portion that is arranged in a plurality of rows intersecting therewith is formed, and a display portion is formed by sequentially stacking an anode, an insulating film, an organic layer, and a cathode. The display unit 12 is formed by forming one pixel with the light emitting portion in the intersection region of the anode and the cathode as one unit, and arranging a plurality of the pixels two-dimensionally. The light emitting layers of R (red), G (green), and B (blue) are arranged in order as shown in FIG. Note that, of the portion where the anode and the cathode intersect, the insulating film is not formed in the portion that becomes the pixel, and the insulating film is formed in the portion that does not become the pixel. Thereby, it is possible to prevent a short circuit at the intersection of the anode and the cathode that do not become a pixel.
[0015]
The electrode 21 in the odd-numbered column of the first electrode part is connected to the odd-numbered column data side drive circuit 11, the electrode 22 in the even-numbered column of the first electrode part is connected to the even-numbered column data side drive circuit 10, The electrode part of the first electrode part is connected to the scanning side drive circuit 5 so that the odd-numbered column electrode 21 of the first electrode part and the odd-numbered electrode 23 of the second electrode part are electrically independent. By forming the matrix and the electrodes 22 in the even-numbered columns of the first electrode portion and the electrodes 24 in the even-numbered rows of the second electrode portion are separate electrically independent matrices, Line sequential scanning. That is, as shown in FIG. 9, the image signal (RGB data) is temporarily stored in the frame memory 7 which is controlled to be written and read by the memory controller 6, and read out in response to, for example, line sequential scanning. The gradation is controlled by the control circuit 8 and supplied to the odd-numbered column data side driving circuit 11 and the even-numbered column data side driving circuit 10. The operation timing of the memory controller 6, the gradation control circuit 8, the odd column data side drive circuit 11, the even column data side drive circuit 10 and the scanning side drive circuit 5 is controlled based on the clock from the clock generator 9. The For example, any one of the odd-numbered electrodes in the second electrode portion and any one of the even-numbered electrodes can be simultaneously selected to perform line sequential scanning. As a result, the driving duty can be doubled. That is, the time for configuring one screen can be shortened, and the selection time for each row can be lengthened. As a result, high definition can be achieved without lowering the frame frequency, and brightness can be improved in an organic thin film light emitting display having no memory effect. Therefore, low voltage driving and low power consumption are possible.
[0016]
FIG. 2 shows an example of an electrode structure of a passive matrix organic thin film light emitting device according to the second embodiment of the present invention.
[0017]
In this embodiment, the electrodes in each column of the first electrode portion are composed of (transparent) pixel electrodes (illustrated by 25) and power feeding electrodes (illustrated by 26) for feeding power to the pixel electrodes. The pixel electrodes on the same column are connected. The matrix configuration method, the drive circuit, the signal processing means in FIG. 9 and the like of the first embodiment are applied to this embodiment as they are.
[0018]
By narrowing the power supply electrode, the non-light-emitting portion is reduced, and each matrix is scanned line-sequentially simultaneously. By making the width of the power supply electrode 26 smaller (thinner) than the width of the pixel electrode 25, adjacent pixel electrodes can be brought close to each other on the same row. As a result, the non-light emitting portion is reduced and the pixel pitch is narrowed, thereby enabling high definition. In addition, wiring resistance can be reduced by using a metal electrode for the feed electrode which connects between pixels.
[0019]
FIG. 3 shows an example of an electrode structure of a passive matrix organic thin-film light emitting device according to the third embodiment of the present invention.
[0020]
In the present embodiment, the odd-numbered column data-side drive circuit 11 and the even-numbered column data-side drive circuit 10 are respectively arranged on the upper and lower sides of the display unit, and the two scanning-side drive circuits are configured to provide two scanning-side drives. Each of the circuits 5A and 5B is arranged on both sides of the display unit, and other than that is the same as the second embodiment, and the signal processing means having the same configuration as the signal processing means of FIG. 9 is applied. . When the pitch between the electrodes becomes narrow due to high definition, the circuit connection of the data side driving circuit is taken out by alternately taking out the feeding electrodes of each column of the first electrode portion in the opposite direction as in this embodiment. The convenience can be obtained. Furthermore, in this embodiment, power can be supplied from the two scanning-side drive circuits 5A and 5B on both sides to each electrode of the second electrode portion, so that the wiring resistance of each electrode of the second electrode portion is lowered and the voltage drop is reduced. Can be suppressed. As a result, the luminance difference in each electrode of the second electrode portion is reduced, which corresponds to an increase in area.
[0021]
FIG. 4 shows an example of an electrode structure of a passive matrix organic thin-film light emitting device according to the fourth embodiment of the present invention.
[0022]
The present embodiment is an example of an electrode structure when the arrangement of the power supply electrodes that connect the pixel electrodes is changed, and the electrodes in each row of the second electrode section are alternately connected to the two scanning side drive circuits 5A and 5B. The embodiment is the same as the embodiment of FIG. 3 except that the feeding electrode 26 is positioned at the end of the pixel electrode 25. The arrangement of the feeding electrodes that connect the pixel electrodes is not limited to these examples.
[0023]
FIG. 5 shows an example of an electrode structure of a passive matrix organic thin-film light emitting device according to the fifth embodiment of the present invention.
[0024]
In the present embodiment, the display unit 18 is divided into two parts, an upper part and a lower part, and each part has the same configuration as that of the second embodiment. Accordingly, four independent matrices are formed, and a driving duty four times that of a normal simple matrix can be obtained. In an organic thin film light emitting display, four times the luminance can be obtained.
[0025]
As shown in FIGS. 5 and 10, in the upper part, the odd-numbered column electrodes of the first electrode part are connected to the upper odd-numbered column data side drive circuit 17 and the even-numbered columns of the first electrode part are connected. The electrodes are connected to the upper even column data side drive circuit 16, the electrodes of the second electrode unit are connected to the upper scanning side drive circuit 13A, and the odd number column electrodes and the second electrode unit of the first electrode unit The odd-numbered electrode of the first electrode part is an electrically independent matrix, and the even-numbered electrode of the first electrode part and the even-numbered electrode of the second electrode part are electrically independent separately. The matrix is Similarly, in the lower part, the odd-numbered columns of the first electrode section are connected to the lower odd-numbered column data side drive circuit 14, and the even-numbered columns of the first electrode section are connected to the lower even number. The column data side drive circuit 15 is connected, the electrodes of the second electrode section are connected to the lower scanning side drive circuit 13B, and the odd-numbered columns of the first electrode section and the odd-numbered rows of the second electrode section The first electrode part is an electrically independent matrix, and the even-numbered column electrodes of the first electrode part and the even-numbered electrode lines of the second electrode part are electrically independent matrixes; To do. As a result, it is possible to perform line-sequential scanning simultaneously in the four matrices.
[0026]
FIG. 6 shows an example of an electrode structure of a passive matrix organic thin film light emitting device according to the sixth embodiment of the present invention.
[0027]
This embodiment has three data side drive circuits 27, 28, 29, and the power supply electrodes (illustrated by 26) of each column of the first electrode portion are sequentially connected to each data side drive circuit. Three electrically independent matrices can be constructed. The signal processing means of the three drive circuits can be configured in accordance with the circuit of FIG. 9 (the number of data side drive circuits is increased from two to three).
[0028]
In each of the above embodiments, in order to prevent the first electrode portion and the second electrode portion from contacting each other and causing a short circuit in the non-light-emitting region, the first electrode portion and the second electrode An insulating film is formed on the part. If the insulating film is a material having a mobility lower than that of the metal film, the carrier injecting property can be lowered and light emission loss can be reduced. For example, after forming a metal film, an oxide such as silicon oxide or alumina is formed by a sputtering method, a sol-gel method, or the like, and then formed into a desired shape by a method such as lift-off, or a photoresist, etc. It is applied to form an organic polymer film.
[0029]
In the present invention, the substrate can be applied to a film substrate such as a polymer film in addition to a glass substrate, and an organic film such as a color filter on the glass substrate.
[0030]
As the transparent conductive film material, in addition to ITO and indium zinc oxide, tin oxide, zinc oxide, aluminum tin oxide, and the like can be used.
[0031]
【The invention's effect】
As described above, according to the present invention, at least two rows can be simultaneously selected and line sequential scanning can be performed. As a result, a passive matrix organic thin film light emitting display capable of high definition, low drive voltage, low power consumption, and high brightness can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an electrode structure of a passive matrix organic light emitting device display according to the present invention.
FIG. 2 is a view showing another example of the electrode structure of the passive matrix organic light emitting device display according to the present invention.
FIG. 3 is a view showing still another example of the electrode structure of the passive matrix organic light emitting device display according to the present invention.
FIG. 4 is a view showing still another example of the electrode structure of the passive matrix organic light emitting device display according to the present invention.
FIG. 5 is a diagram showing an example of an electrode structure for four-screen division driving using the present invention.
FIG. 6 is a view showing still another example of the electrode structure of the passive matrix organic light emitting device display according to the present invention.
FIG. 7 is a diagram illustrating an example of an electrode structure of a conventional passive matrix organic light emitting device display.
8 is a block diagram of signal processing means applied to the drive circuit of FIG.
FIG. 9 is a block diagram of signal processing means applied to the drive circuit of FIG. 1 and the like.
10 is a block diagram of signal processing means applied to the drive circuit of FIG.
[Explanation of symbols]
5 Scanning side drive circuit 10 Even number column data side drive circuit 11 Odd number column data side drive circuit 12 Display unit 21 Odd column electrode 22 of first electrode unit Second column electrode 23 of first electrode unit Second Electrode 24 in odd-numbered row of electrode portion Electrode in even-numbered row in second electrode portion

Claims (3)

透明基板上に、複数列に配置された第一の電極部と、複数行に配置された第二の電極部とを有し、かつ前記第一および第二電極部間に少なくとも有機発光層を挟持してなるパッシブマトリクス有機薄膜発光ディスプレイにおいて、
前記第一の電極部の各列は、複数の画素電極と当該複数の画素電極に給電する給電電極とから構成して、前記給電電極上に前記複数の画素電極を配置し、
前記給電電極の幅を前記画素電極の幅より小さくし、同一行上の隣接画素電極間の非発光領域上に隣接行の給電電極を配置し、
前記第一および第二の電極部は、それぞれ複数組の電気的に独立したマトリクスに分けて、前記各マトリクスを同時に駆動することを特徴とするパッシブマトリクス有機薄膜発光ディスプレイ。
On the transparent substrate, it has first electrode portions arranged in a plurality of columns and second electrode portions arranged in a plurality of rows, and at least an organic light emitting layer is provided between the first and second electrode portions. In a passive matrix organic thin-film light-emitting display that is sandwiched,
Each column of the first electrode portion is composed of a feeding electrode for feeding power to the plurality of pixel electrodes and the plurality of pixel electrodes, arranging the plurality of pixel electrodes on the feeding electrode,
The width of the power supply electrode is made smaller than the width of the pixel electrode, and the power supply electrode in an adjacent row is disposed on a non-light emitting region between adjacent pixel electrodes on the same row,
The passive matrix organic thin-film light-emitting display, wherein the first and second electrode portions are divided into a plurality of sets of electrically independent matrices, and the matrices are driven simultaneously.
請求項1記載のパッシブマトリクス有機薄膜発光ディスプレイにおいて、
前記非発光領域の幅は前記画素電極の幅より小さいことを特徴とするパッシブマトリクス有機薄膜発光ディスプレイ。
The passive matrix organic thin film light emitting display according to claim 1,
A passive matrix organic thin film light emitting display, wherein a width of the non-light emitting region is smaller than a width of the pixel electrode.
請求項1または2に記載のパッシブマトリクス有機薄膜発光ディスプレイにおいて、前記画素電極は透明導電性膜であり、前記給電電極は金属電極であることを特徴とするパッシブマトリクス有機薄膜発光ディスプレイ。  3. The passive matrix organic thin film light emitting display according to claim 1, wherein the pixel electrode is a transparent conductive film, and the feeding electrode is a metal electrode.
JP32471499A 1999-11-15 1999-11-15 Passive matrix organic thin-film light-emitting display Expired - Lifetime JP3690643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32471499A JP3690643B2 (en) 1999-11-15 1999-11-15 Passive matrix organic thin-film light-emitting display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32471499A JP3690643B2 (en) 1999-11-15 1999-11-15 Passive matrix organic thin-film light-emitting display

Publications (2)

Publication Number Publication Date
JP2001142415A JP2001142415A (en) 2001-05-25
JP3690643B2 true JP3690643B2 (en) 2005-08-31

Family

ID=18168898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32471499A Expired - Lifetime JP3690643B2 (en) 1999-11-15 1999-11-15 Passive matrix organic thin-film light-emitting display

Country Status (1)

Country Link
JP (1) JP3690643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394006B1 (en) * 2001-05-04 2003-08-06 엘지전자 주식회사 dual scan structure in current driving display element and production method of the same

Also Published As

Publication number Publication date
JP2001142415A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
EP2206104B1 (en) Tiled passive matrix electro-luminescent display
JP4000515B2 (en) Electro-optical device, matrix substrate, and electronic apparatus
EP2426659B1 (en) Passive matrix thin-film electro-luminescent display
JP4688732B2 (en) Organic electroluminescent device and manufacturing method thereof
JP2002215063A (en) Active matrix type display device
US6788298B2 (en) Driving circuit of display and display device
US10411076B2 (en) EL display device
KR20170023300A (en) Transparent display pannel transparent display device including the same
US6710549B2 (en) Driving method for matrix type organic EL element and matrix type organic EL apparatus
JP2003197380A (en) Panel for organic el device and its manufacturing method
JP2011526719A (en) Light emitting device
US6774575B2 (en) Organic electroluminescence display
US20050104822A1 (en) Self light emission display device
JP2007140276A (en) Active matrix type display device
US11342386B2 (en) Array substrate and display device each having a data line connecting sub-pixels of different colors
JP3690643B2 (en) Passive matrix organic thin-film light-emitting display
JP4939608B2 (en) Display device
JP2008233285A (en) Display device
JP2005181703A (en) Display panel and method for wiring display panel
CN114695778A (en) Field sequence display module and display device
JP2005275263A (en) El display device
CN114724492A (en) Display panel and display device
JP5223538B2 (en) Electro-optical device and electronic apparatus
JP2005266077A (en) Display panel and its wiring method
JP2009277616A (en) Organic el display

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Ref document number: 3690643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

EXPY Cancellation because of completion of term