JP3690432B2 - Structure foundation - Google Patents

Structure foundation Download PDF

Info

Publication number
JP3690432B2
JP3690432B2 JP15017796A JP15017796A JP3690432B2 JP 3690432 B2 JP3690432 B2 JP 3690432B2 JP 15017796 A JP15017796 A JP 15017796A JP 15017796 A JP15017796 A JP 15017796A JP 3690432 B2 JP3690432 B2 JP 3690432B2
Authority
JP
Japan
Prior art keywords
foundation
fluidization
wall
pressure
footing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15017796A
Other languages
Japanese (ja)
Other versions
JPH09310360A (en
Inventor
孝一 前
克之 出羽
謙司 倉石
宏之 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP15017796A priority Critical patent/JP3690432B2/en
Publication of JPH09310360A publication Critical patent/JPH09310360A/en
Application granted granted Critical
Publication of JP3690432B2 publication Critical patent/JP3690432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は構造物基礎に係り、特に地震の発生に伴う砂質地盤の液状化、またそれに伴う地盤流動化により地盤中に構築された構造物基礎が変位、損壊するのを防止するために流動化圧分散壁と流動化抑止壁とを設けた構造物基礎に関する。
【0002】
【従来の技術】
臨海地域には地震時に液状化の生じるおそれのある埋立て地等が多くある。これらの埋立て地等に建設される高速道路の多くは、空間を重層的に利用して土地の有効利用等を図るために、連続橋梁形式による立体化がなされている。そして橋梁下部工としての橋脚基礎のほとんどは杭基礎によって支持層に支持されている。このため、連続橋梁の基礎が地震時に液状化のおそれのある砂質地盤の層(以下、この層を液状化層と記す。)中に建設されても、その安全性は十分保持されるようになっている。
【0003】
一方、河口近くに造成された埋立て地等には水上交通のために多数の運河等の水路が建設されている。たとえば、図6に示したように、連続橋梁の橋桁51が水路52上を直交あるいは斜交して跨ぐ場合も多い。このとき水路52を跨ぐ橋桁51を支持する橋脚基礎Pは比較的水路護岸に近接して建設されている。当然、この橋脚基礎Pも(常時を破線で表示)液状化層54の下方にある支持層53に基礎杭57により支持されている。
ところで、大きな地震が起こり橋脚基礎Pが建設されている緩い砂質土層が液状化すると、この液状化層54の水平支持力は極端に低下する。同時に橋桁51、柱55および基礎フーチング56に作用する慣性力により杭頭57aには過大な外力が作用し、杭頭57aが塑性変形する。また、液状化によって地盤の水平支持力が失われている状態で液状化圧を含む土水圧が開放面となる水路側の護岸60に向けて作用すると、護岸60の構造が作用土水圧に抵抗できなくなり水路側にはらみ出す。この結果、地盤が陸側から水路側に向かって側方変位する現象が生じ、橋脚基礎Pの基礎杭57、基礎フーチング56も地盤の側方変位により側方へ変位する(本明細書では、以後この地盤の変位現象を「地盤流動化」または単に「流動化」と呼ぶ)。
【0004】
既往の調査、研究によると、地震の被害を受けた橋脚基礎Pの永久変形は、地震時、すなわち液状化時に生じる基礎本体の塑性変形による影響より、液状化に伴い生じた地震後の地盤流動化による側方変位の影響の方が支配的なことが認められている。
また、この流動化が生じた地盤中に橋脚基礎Pが位置していると、図7に示したように、基礎フーチング56及び基礎杭57が地盤の流動化圧を負担し、橋脚基礎Pの側方変位が抑止されることが知られている。このとき、基礎杭57には過大な流動化圧が作用し、塑性変形した杭頭57aには大きな水平力と回転モーメントが作用する。このため、地中の基礎杭57の一部が損壊するとともに、柱55の上端では基礎の変位量が拡大され、橋桁51が沓座(図示せず)から脱落したり、最悪な場合、落橋するおそれもある。
【0005】
したがって、上述のような地盤流動化のおそれのある地盤内に構築された既設の橋脚基礎に対して所定の補強構造を、緊急的に付加することが必要となってきた。その対策工として、橋脚基礎及びその周辺の液状化の生じる範囲を地盤改良する方法と、地中連続壁等の抗土圧構造物で橋脚基礎の外周を取り囲む方法とが提案されている。
【0006】
【発明が解決しようとする課題】
ところが、地盤改良による対策工の場合、既設橋梁の桁下空間での施工が困難であり、また施工範囲が広いため、その工費も高くなるという問題がある。
地中連続壁等の抗土圧構造物で既設橋脚基礎を補強する対策工も、同様に既設橋梁の桁下空間での作業が困難であり、壁体施工費が高いという問題がある。
【0007】
そこで、本発明の目的は、上述した従来の技術が有する問題点を解消し、安価な構造を付加して地盤の流動化によって橋脚基礎に作用する土圧を、基礎フーチングを介して分散させ、既設の杭にかかる負担を軽減させるために、流動化圧分散壁と流動化抑止壁とを設けた構造物基礎を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は地盤背面側に地盤流動化の原因となる開放面が位置する既設の構造物基礎の前面位置に、下端が非流動化層まで根入れされ、上端が前記構造物基礎の基礎版の高さに相当する位置にあり、前記構造物基礎の前面のほぼ全幅にわたって一体的に構築された流動化圧分散壁と、前記構造物基礎版の両側面に、下端が支持層に根入れされ、上端が前記基礎版の高さに相当する位置にあり、前記構造物基礎の流動化方向に沿って一体的に構築された流動化抑止壁とを備え、前記流動化圧分散壁の上端と前記流動化抑止壁の上端とが拡幅基礎版により前記基礎版に連結されることで、前記流動化圧分散壁に作用する流動化圧のうち、前記流動化圧分散壁の上端が負担する流動化圧が、前記拡幅基礎版ないし前記構造物基礎を介して前記流動化抑止壁に伝達され、前記流動化圧が前記流動化抑止壁に支持されるようにしたことを特徴とする。
【0009】
前記流動化圧が、前記基礎構造物を支持して、その先端が支持層に根入れされた基礎杭にも伝達され、前記基礎杭と前記流動化圧抑止壁とで分担支持されるようにすることが好ましい。
【0010】
【発明の実施の形態】
以下、本発明の構造物基礎の一実施の形態について、添付図面を参照して説明する。
図1は、水路護岸の近くに建設された既設の橋脚基礎に付加して構築された構造物基礎の全体を示した斜視図である。同図はその一部が切欠かれ、流動化圧の力の伝達経路が模式的に付加して示されている。図1に示したように、橋脚基礎Pの基礎杭1上の既設の基礎フーチング2の側面には拡幅フーチング10が増設されている。また、この拡幅フーチング10の前面には流動化圧分散壁11が、基礎版としての基礎フーチング2の両側面には流動化抑止壁12が構築されている。なお、橋脚基礎Pの基礎杭1は、液状化層6、非流動化層7を貫通し、先端が支持層8に根入れしている。また流動化圧の作用する側の背面側には水路が位置し、開放面としての水路護岸9が構築されている。以下に詳述するように地震後の地盤の流動化に伴って作用する流動化圧は流動化圧分散壁11に作用し、拡幅フーチング10及び基礎フーチング2を介して流動化抑止壁12及び基礎杭1に伝達される。このように流動化圧に対する基礎杭1の負担は大幅に軽減され、剛性の大きな流動化抑止壁12により基礎フーチング2の側方変位が十分に抑止され、構造物基礎の変位量も許容値内に抑えることができる。
【0011】
以下、流動化圧分散壁と流動化抑止壁とが設けられた構造物基礎の構成について図2〜図4を参照して説明する。既設の橋脚基礎Pの基礎フーチング2は、図2の平面図に示したように、18本の基礎杭1により支持されている。そして基礎フーチング2上には3本の鉄筋コンクリート柱3が橋軸直角方向に並んで立設され、梁4を支持している。さらに基礎フーチング2の周囲の三方の側面を囲むように拡幅フーチング10が増設されている。拡幅フーチング10は鉄筋コンクリートからなり、多数の継手筋(図示せず)が既設の基礎フーチング2の側面にケミカルアンカー等により連結されている。これにより前記継手筋を介して拡幅フーチング10と基礎フーチング2とが構造的に一体化されている。
【0012】
拡幅フーチング10の陸側前面には流動化圧分散壁11としての鋼矢板壁が施工されている。この鋼矢板壁は、図5(a)に示したような断面形状の鋼矢板21を連結して打設された壁体である。この鋼矢板21の断面形はH字形をなし、フランジ21aに相当する部分は直線形鋼矢板が、ウェブ21bに相当する部分には厚板鋼板が2枚のフランジ21aは厚板鋼板からなるウェブ21bで溶接により連結されている。鋼矢板21単体の断面係数はフランジ幅と等しい直径の鋼管矢板等に比べても十分大きい。
【0013】
この鋼矢板21を施工するには、まず基礎フーチング2の周囲を基礎底面まで根切りした後、前述の拡幅フーチング10を施工する前に、図4に示したように、基礎フーチング2の全幅の範囲にわたって施工する。その先端は液状化層6の下の非流動化層7まで根入れされている。この先端は非流動化層7まで根入れされていれば、支持層8まで貫通されていなくてもよい。先端は壁体に荷重が作用した際に、壁体の回転が拘束できる程度に非流動化層7に根入れさせることが好ましい。一方、上端は後打ちされる拡幅フーチング10のコンクリートによって確実に固定される。このため、基礎底面部分から所定ののみ込み長分が突き出した状態で打ち止められる。
なお、流動化圧分散壁11に使用される鋼矢板21としては、図5(a)に示した以外に、同図(b)、(c)に示したような各種の鋼矢板21を使用することができる。同図(b)に示した鋼矢板21ではウェブ21bに相当する厚板鋼板が2枚用いられている。これにより、壁体剛性をより同図(a)より大きくとることができる。また、同図(c)に示したように、U字形鋼矢板を組み合わせた箱形の鋼矢板21を使用してもよい。なお、鋼矢板21の打設は、桁下空間で施工可能な長さのものを接続しながら連結することが好ましい。
【0014】
一方、拡幅フーチング10の両側面には流動化抑止壁12としての公知の地中連続壁が施工されている。この地中連続壁の先端は図3、4に示したように既設の基礎杭1と同じ深さの支持層8まで到達している。また、図2に示したように、橋桁5を受ける梁4が拡幅フーチング10位置まで張り出している。このため、梁下空間に壁体施工のための掘削機が設置できず、梁位置での壁体構築が困難となっている。そこで、本実施の形態では、壁体は2分割施工され、2壁体が1列に梁幅に近い隙間をあけて施工されている。なお、梁下空間で施工可能なコンパクトな掘削機であれば、同掘削機により全体が1枚の地中連続壁を構築するのが好ましい。なお、本実施の形態では、各地中連続壁の上端は拡幅フーチング10と剛接合されている。
【0015】
次に、拡幅フーチング10で支持された流動化圧分散壁11及び流動化抑止壁12の役割について図1を参照して説明する。
図1において、流動化圧分散壁11に作用する流動化圧は白抜き矢印で示されている。この流動化圧は、実際には地盤深さに応じた台形分布荷重として流動化層(液状化層6に一致する。)の全高にわたり流動化圧分散壁11の前面に作用する。この壁面全体に作用した流動化圧は上下端の支点位置15、16で分担支持される。すなわち、各反力は拡幅フーチング10内の上端支点15と、液状化層6より下の非流動化層7内の下端支点16に水平な帯状に分布する。このとき下端支点16が分担する反力は非流動化層7の地盤反力係数によって異なるが、本実施の形態では、上端支点15と下端支点16との荷重分担比はおよそ7:3になっている。上端支点15で負担された流動化圧は、さらに基礎フーチング2及び拡幅フーチング10を介して剛比に応じて流動化抑止壁12及び既設の基礎杭1に伝達される。このときの分担割合はおよそ2:1程度になるように流動化抑止壁12の断面係数を設定することが好ましい。また、地中連続壁を構築する際に溝内に建て込まれる鉄筋かごは上部工と干渉しないように上下方向に分割して建て込みながら鉄筋かごを接続して一体化するようにしてもよい。
【0016】
以上の説明は、既設の橋脚基礎に付加するように流動化圧分散壁と流動化抑止壁とを設けたものであるが、新設の橋脚基礎において流動化抑止壁の配置及び施工延長を増やすことで鉛直支持力をより多く負担するようにし、基礎杭の本数を減らすようにしてもよい。
また、この構造物基礎を、水際に建設された中高層建物の基礎等、橋脚基礎以外の構造物に適用することも有効である。
【0017】
【発明の効果】
以上の説明から明らかなように、本発明によれば、地盤流動化層に構築された既設の構造物基礎の変位を許容値内におさめることができ、地盤の流動化による橋桁等の上部工への影響を最小限に抑えることができる。
【図面の簡単な説明】
【図1】 本発明の構造物基礎の一実施の態様としての橋脚基礎を示した斜視図。
【図2】図1に示した橋脚基礎を平面視して示した平面図。
【図3】図1に示した橋脚基礎をIII−III断面線に沿って示した側面断面図。
【図4】図1に示した橋脚基礎をIV−IV断面線に沿って示した正面断面図。
【図5】流動化圧分散壁を構成する単体鋼矢板の断面形状及び連結状態を示した部分平面図。
【図6】従来の橋脚基礎の地盤流動化による変位状態を示した状態説明図。
【図7】図6に示した変位状態を平面的に示した状態説明図。
【符号の説明】
1 基礎杭
2 基礎フーチング
6 液状化層
7 非流動化層
8 支持層
10 拡幅フーチング
11 流動化圧分散壁
12 流動化抑止壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure foundation, especially flow for liquefaction of sandy soil due to earthquakes, also the structure foundation built in the ground by ground fluidization associated therewith to prevent displacement, from being damaged The present invention relates to a structure foundation provided with a pressure dispersion wall and a fluidization deterring wall .
[0002]
[Prior art]
There are many landfills in the coastal area where liquefaction may occur during an earthquake. Many of the expressways constructed in these landfills are three-dimensional in the form of continuous bridges in order to make effective use of land by using multiple layers of space. And most of the pier foundation as the bridge substructure is supported by the support layer by the pile foundation. For this reason, even if the foundation of a continuous bridge is constructed in a layer of sandy ground that may be liquefied during an earthquake (hereinafter referred to as the liquefied layer), its safety is sufficiently maintained. It has become.
[0003]
On the other hand, a large number of canals and other waterways are constructed in landfills near the river mouth for water transportation. For example, as shown in FIG. 6, the bridge girder 51 of the continuous bridge often straddles the water channel 52 orthogonally or obliquely. At this time, the pier foundation P that supports the bridge girder 51 straddling the water channel 52 is constructed relatively close to the water channel revetment. Naturally, this pier foundation P is also supported by the foundation pile 57 on the support layer 53 below the liquefied layer 54 (always indicated by a broken line).
By the way, when a large earthquake occurs and the loose sandy soil layer on which the pier foundation P is constructed is liquefied, the horizontal supporting force of the liquefied layer 54 is extremely reduced. At the same time, an excessive external force acts on the pile head 57a due to the inertial force acting on the bridge girder 51, the column 55 and the foundation footing 56, and the pile head 57a is plastically deformed. Moreover, when the earth and water pressure including the liquefaction pressure acts toward the revetment 60 on the side of the water channel that becomes an open surface in a state in which the horizontal supporting force of the ground is lost due to liquefaction, the structure of the revetment 60 resists the working earth and water pressure. It can no longer be done and protrudes to the waterway side. As a result, a phenomenon occurs in which the ground is laterally displaced from the land side toward the waterway side, and the foundation pile 57 and the foundation footing 56 of the pier foundation P are also displaced laterally by the lateral displacement of the ground (in this specification, This ground displacement phenomenon is hereinafter referred to as “ground fluidization” or simply “fluidization”).
[0004]
According to past investigations and studies, the permanent deformation of the pier foundation P damaged by the earthquake is due to the liquefaction caused by the plastic deformation of the foundation body during the earthquake, that is, the ground flow after the earthquake caused by the liquefaction. It is recognized that the influence of lateral displacement due to crystallization is dominant.
When the pier foundation P is located in the ground where the fluidization has occurred, the foundation footing 56 and the foundation pile 57 bear the fluidization pressure of the ground as shown in FIG. It is known that lateral displacement is suppressed. At this time, excessive fluidization pressure acts on the foundation pile 57, and a large horizontal force and rotational moment act on the plastically deformed pile head 57a. For this reason, a part of the foundation pile 57 in the ground is damaged, the displacement of the foundation is enlarged at the upper end of the column 55, and the bridge girder 51 is dropped from the scorpio (not shown). There is also a risk.
[0005]
Therefore, it has become necessary to urgently add a predetermined reinforcing structure to the existing pier foundation constructed in the ground where there is a risk of ground fluidization as described above. As countermeasures, there have been proposed a method of improving the ground of the pier foundation and the surrounding liquefaction range, and a method of surrounding the outer periphery of the pier foundation with an anti-earth pressure structure such as an underground continuous wall.
[0006]
[Problems to be solved by the invention]
However, in the case of countermeasure work by ground improvement, there is a problem that it is difficult to construct the existing bridge in the space under the girder, and the construction range is wide, so that the construction cost becomes high.
Measures to reinforce existing pier foundations with anti-earthquake structures such as underground continuous walls are also difficult to work in under-girder space of existing bridges, and there is a problem that wall construction costs are high.
[0007]
Therefore, the object of the present invention is to solve the problems of the conventional technology described above, disperse the earth pressure acting on the pier foundation by adding the inexpensive structure and fluidizing the ground via the foundation footing, The object of the present invention is to provide a structure foundation provided with a fluidization pressure dispersion wall and a fluidization deterring wall in order to reduce the burden on existing piles.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has a lower end rooted up to a non-fluidized layer at the front surface position of an existing structure foundation where an open surface that causes ground fluidization is located on the back surface side of the ground, and the upper end is A fluidized pressure distribution wall which is located at a position corresponding to the height of the base plate of the structure foundation and is integrally constructed over substantially the entire width of the front surface of the structure foundation; A lower end is embedded in the support layer, and an upper end is located at a position corresponding to the height of the foundation plate, and includes a fluidization restraining wall integrally constructed along the fluidization direction of the structure foundation, in the upper end of the upper end and the fluidization deterring wall of the fluidizing pressure distribution wall is connected to the foundation plate by widening foundation plate Rukoto, among flow Ka圧acting on the fluidizing pressure distribution wall, the fluidizing pressure The fluidization pressure borne by the upper end of the dispersion wall is the widened base plate or the structure. It is transmitted to the fluidized deterring wall through the foundation, wherein the fluidizing pressure is to be supported by the fluidized deterring wall.
[0009]
The fluidizing pressure is transmitted to the foundation pile supporting the foundation structure, the tip of which is embedded in the support layer, and is shared and supported by the foundation pile and the fluidizing pressure suppression wall. It is preferable to do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a structure foundation according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view showing the entire structure foundation constructed by adding to an existing pier foundation constructed near a waterway revetment. In the figure, a part thereof is cut out, and a fluid pressure transmission path is schematically added. As shown in FIG. 1, a widening footing 10 is added to the side surface of the existing foundation footing 2 on the foundation pile 1 of the pier foundation P. Further, a fluidizing pressure dispersing wall 11 is constructed on the front surface of the widened footing 10, and a fluidization inhibiting wall 12 is constructed on both side surfaces of the foundation footing 2 as a base plate. In addition, the foundation pile 1 of the pier foundation P penetrates the liquefied layer 6 and the non-fluidized layer 7, and the tip is embedded in the support layer 8. In addition, a water channel is located on the back side of the fluidizing pressure acting side, and a water channel revetment 9 is constructed as an open surface. As will be described in detail below, the fluidizing pressure acting upon the fluidization of the ground after the earthquake acts on the fluidizing pressure dispersion wall 11, and the fluidization deterring wall 12 and the foundation via the widening footing 10 and the foundation footing 2. It is transmitted to the pile 1. In this way, the load on the foundation pile 1 with respect to the fluidization pressure is greatly reduced, and the lateral displacement of the foundation footing 2 is sufficiently restrained by the fluidization restraining wall 12 having a large rigidity, and the displacement amount of the structure foundation is within the allowable value. Can be suppressed.
[0011]
Hereinafter, the structure of the structure foundation provided with the fluidization pressure dispersion wall and the fluidization suppression wall will be described with reference to FIGS. As shown in the plan view of FIG. 2, the foundation footing 2 of the existing pier foundation P is supported by 18 foundation piles 1. On the foundation footing 2, three reinforced concrete columns 3 are erected in a direction perpendicular to the bridge axis to support the beam 4. Further, a widening footing 10 is added so as to surround three side surfaces around the basic footing 2. The widening footing 10 is made of reinforced concrete, and a large number of joint bars (not shown) are connected to the side surface of the existing foundation footing 2 by chemical anchors or the like. Thereby, the widening footing 10 and the basic footing 2 are structurally integrated through the joint bar.
[0012]
A steel sheet pile wall as a fluidization pressure dispersion wall 11 is constructed on the land side front surface of the widening footing 10. This steel sheet pile wall is a wall body formed by connecting steel sheet piles 21 having a cross-sectional shape as shown in FIG. The cross section of the steel sheet pile 21 is H-shaped, the portion corresponding to the flange 21a is a straight steel sheet pile, the portion corresponding to the web 21b is a thick steel plate, and the flange 21a is a web made of thick steel plate. 21b is connected by welding. The section modulus of the steel sheet pile 21 alone is sufficiently larger than that of a steel pipe sheet pile having a diameter equal to the flange width.
[0013]
In order to construct this steel sheet pile 21, first, after cutting the periphery of the foundation footing 2 to the bottom of the foundation, before constructing the aforementioned widening footing 10, as shown in FIG. Install over a range. The tip is embedded in the non-fluidized layer 7 below the liquefied layer 6. As long as this tip is embedded to the non-fluidized layer 7, it does not have to penetrate to the support layer 8. It is preferable that the tip is embedded in the non-fluidized layer 7 to such an extent that the rotation of the wall body can be restricted when a load acts on the wall body. On the other hand, the upper end is securely fixed by the concrete of the widening footing 10 to be post-worked. For this reason, it is stopped in a state where a predetermined indentation length protrudes from the base bottom surface portion.
In addition, as the steel sheet pile 21 used for the fluidization pressure dispersion wall 11, various steel sheet piles 21 as shown in FIGS. 5B and 5C are used in addition to those shown in FIG. can do. In the steel sheet pile 21 shown in FIG. 2B, two thick steel plates corresponding to the web 21b are used. Thereby, wall body rigidity can be taken more largely than the figure (a). Moreover, as shown to the same figure (c), you may use the box-shaped steel sheet pile 21 which combined the U-shaped steel sheet pile. In addition, it is preferable to link the steel sheet pile 21 while connecting the length of the steel sheet pile 21 that can be constructed in the under-girder space.
[0014]
On the other hand, a known underground continuous wall as a fluidization deterring wall 12 is constructed on both side surfaces of the widening footing 10. The tip of the underground continuous wall reaches the support layer 8 having the same depth as the existing foundation pile 1 as shown in FIGS. Further, as shown in FIG. 2, the beam 4 receiving the bridge girder 5 projects to the position of the widening footing 10. For this reason, the excavator for wall construction cannot be installed in the space under the beam, and it is difficult to construct the wall at the beam position. Therefore, in the present embodiment, the wall body is divided into two parts, and the two wall bodies are constructed with a gap close to the beam width in one row. In addition, if it is a compact excavator which can be constructed in the space under the beam, it is preferable that the entire excavator constructs one underground continuous wall. In the present embodiment, the upper end of the continuous wall in each place is rigidly joined to the widening footing 10.
[0015]
Next, the role of the fluidization pressure dispersion wall 11 and the fluidization suppression wall 12 supported by the widening footing 10 will be described with reference to FIG.
In FIG. 1, the fluidization pressure acting on the fluidization pressure dispersion wall 11 is indicated by a white arrow. This fluidization pressure actually acts on the front surface of the fluidization pressure dispersion wall 11 over the entire height of the fluidization layer (corresponding to the liquefaction layer 6) as a trapezoidal distribution load according to the ground depth. The fluidizing pressure acting on the entire wall surface is shared and supported at the fulcrum positions 15 and 16 at the upper and lower ends. That is, each reaction force is distributed in the form of a horizontal strip at the upper end fulcrum 15 in the widened footing 10 and the lower end fulcrum 16 in the non-fluidized layer 7 below the liquefied layer 6. At this time, the reaction force shared by the lower end fulcrum 16 varies depending on the ground reaction force coefficient of the non-fluidized layer 7, but in this embodiment, the load sharing ratio between the upper end fulcrum 15 and the lower end fulcrum 16 is approximately 7: 3. ing. The fluidization pressure borne by the upper end fulcrum 15 is further transmitted to the fluidization suppression wall 12 and the existing foundation pile 1 through the foundation footing 2 and the widening footing 10 according to the rigidity ratio. It is preferable to set the section modulus of the fluidization inhibiting wall 12 so that the sharing ratio at this time is about 2: 1. In addition, the rebar cage built in the groove when constructing the underground continuous wall may be integrated by connecting the rebar cage while building it divided in the vertical direction so as not to interfere with the superstructure. .
[0016]
In the above explanation, a fluidization pressure dispersion wall and a fluidization deterrence wall are provided to be added to the existing pier foundation. It is possible to reduce the number of foundation piles by bearing more vertical support force.
It is also effective to apply this structure foundation to structures other than pier foundations, such as foundations for medium- and high-rise buildings constructed at the water's edge.
[0017]
【The invention's effect】
As is clear from the above description, according to the present invention, the displacement of the existing structure foundation constructed in the ground fluidization layer can be kept within the allowable value, and the superstructure such as a bridge girder by the fluidization of the ground can be achieved. Can be minimized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a pier foundation as an embodiment of a structure foundation according to the present invention.
FIG. 2 is a plan view showing the pier foundation shown in FIG. 1 in plan view.
FIG. 3 is a side cross-sectional view showing the pier foundation shown in FIG. 1 along the line III-III.
4 is a front sectional view showing the pier foundation shown in FIG. 1 along the IV-IV sectional line. FIG.
FIG. 5 is a partial plan view showing a cross-sectional shape and a connected state of a single steel sheet pile constituting a fluidized pressure dispersion wall.
FIG. 6 is a state explanatory diagram showing a displacement state due to ground fluidization of a conventional pier foundation.
7 is a state explanatory view showing the displacement state shown in FIG. 6 in a plan view. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foundation pile 2 Foundation footing 6 Liquefaction layer 7 Non-fluidization layer 8 Support layer 10 Widening footing 11 Fluidization pressure dispersion wall 12 Fluidization suppression wall

Claims (2)

地盤背面側に地盤流動化の原因となる開放面が位置する既設の構造物基礎の前面位置に、下端が非流動化層まで根入れされ、上端が前記構造物基礎の基礎版の高さに相当する位置にあり、前記構造物基礎の前面のほぼ全幅にわたって一体的に構築された流動化圧分散壁と、前記構造物基礎版の両側面に、下端が支持層に根入れされ、上端が前記基礎版の高さに相当する位置にあり、前記構造物基礎の流動化方向に沿って一体的に構築された流動化抑止壁とを備え、
前記流動化圧分散壁の上端と前記流動化抑止壁の上端とが拡幅基礎版により前記基礎版に連結されることで、前記流動化圧分散壁に作用する流動化圧のうち、前記流動化圧分散壁の上端が負担する流動化圧が、前記拡幅基礎版ないし前記構造物基礎を介して前記流動化抑止壁に伝達され、前記流動化圧が前記流動化抑止壁に支持されるようにしたことを特徴とする構造物基礎。
At the front of the existing structure foundation where the open surface that causes ground fluidization is located on the back side of the ground, the lower end is rooted to the non-fluidized layer, and the upper end is the height of the foundation foundation of the structure foundation In the corresponding position, the fluidized pressure distribution wall integrally constructed over almost the entire width of the front surface of the structure foundation, and the lower end is rooted in the support layer on both sides of the structure foundation plate, and the upper end is A fluidization deterring wall that is in a position corresponding to the height of the foundation plate and is integrally constructed along the fluidization direction of the structure foundation;
Wherein at the upper end of the upper end and the fluidization deterring wall of the fluidizing pressure distribution wall is connected to the foundation plate by widening foundation plate Rukoto, among flow Ka圧acting on the fluidizing pressure distribution wall, the fluidization The fluidization pressure borne by the upper end of the pressure dispersion wall is transmitted to the fluidization suppression wall through the widened foundation plate or the structure foundation so that the fluidization pressure is supported by the fluidization suppression wall. A structural foundation characterized by
前記流動化圧が、前記基礎構造物を支持して、その先端が支持層に根入れされた基礎杭にも伝達され、前記基礎杭と前記流動化圧抑止壁とで分担支持されるようにしたことを特徴とする請求項1記載の構造物基礎。The fluidizing pressure is transmitted to the foundation pile supporting the foundation structure, the tip of which is embedded in the support layer, and is shared and supported by the foundation pile and the fluidization pressure suppression wall. The structure foundation according to claim 1, wherein
JP15017796A 1996-05-22 1996-05-22 Structure foundation Expired - Fee Related JP3690432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15017796A JP3690432B2 (en) 1996-05-22 1996-05-22 Structure foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15017796A JP3690432B2 (en) 1996-05-22 1996-05-22 Structure foundation

Publications (2)

Publication Number Publication Date
JPH09310360A JPH09310360A (en) 1997-12-02
JP3690432B2 true JP3690432B2 (en) 2005-08-31

Family

ID=15491195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15017796A Expired - Fee Related JP3690432B2 (en) 1996-05-22 1996-05-22 Structure foundation

Country Status (1)

Country Link
JP (1) JP3690432B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515567B1 (en) * 2002-10-02 2004-04-05 幸武 塩井 Seismic reinforcement structure of structures
JP6216236B2 (en) * 2013-12-03 2017-10-18 鹿島建設株式会社 Lateral flow suppression structure and lateral flow suppression method
JP6719293B2 (en) * 2016-06-28 2020-07-08 株式会社熊谷組 Seismic reinforcement structure of pile foundation

Also Published As

Publication number Publication date
JPH09310360A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP4705513B2 (en) Foundation structure
JP3690432B2 (en) Structure foundation
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
JP4636478B2 (en) Liquefaction prevention structure
JP4543268B2 (en) Liquefaction prevention structure
JP4958064B2 (en) Seismic reinforcement structure of quay
JP6292028B2 (en) Embankment reinforcement structure
JP3805129B2 (en) Foundation structure
JPH09296427A (en) Structure in water area and construction method thereof
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP2002129533A (en) Double sheet pile wall type revetment construction
JP3547271B2 (en) Water body structure using submerged ground driving member
JPH1046619A (en) Foundation structure of construction in sand-layer ground
JP2876471B2 (en) Lateral flow countermeasure structure
JP3616891B2 (en) Ground lateral flow countermeasure structure
JP7364526B2 (en) Quay wall structure and construction method of quay wall structure
CN212316937U (en) Composite steel plate wall semi-rigid cantilever foundation pit supporting system
JP7362325B2 (en) seawall
JP2515234Y2 (en) Steel pipe pile structure
JPH04237714A (en) Concrete reinforcing steel member
JP2006063534A (en) Bridge
JP2564819B2 (en) Seismic reinforcement structure of existing caisson
JP6711006B2 (en) Settling prevention structure for linear structures
JPH09151432A (en) Existing revetment structure reinforcing construction method
JP2001288758A (en) Footing earthquake resistant construction and footing earthquake resistance reinforcing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees