JP3690019B2 - Aromatic polysulfone polymer and process for producing the same - Google Patents

Aromatic polysulfone polymer and process for producing the same Download PDF

Info

Publication number
JP3690019B2
JP3690019B2 JP33671496A JP33671496A JP3690019B2 JP 3690019 B2 JP3690019 B2 JP 3690019B2 JP 33671496 A JP33671496 A JP 33671496A JP 33671496 A JP33671496 A JP 33671496A JP 3690019 B2 JP3690019 B2 JP 3690019B2
Authority
JP
Japan
Prior art keywords
group
aromatic polysulfone
polymer
polysulfone polymer
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33671496A
Other languages
Japanese (ja)
Other versions
JPH10168193A (en
Inventor
和雄 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP33671496A priority Critical patent/JP3690019B2/en
Publication of JPH10168193A publication Critical patent/JPH10168193A/en
Application granted granted Critical
Publication of JP3690019B2 publication Critical patent/JP3690019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、側鎖としてポリ(アルキルアミン)残基をグラフト基として導入した芳香族ポリスルホン重合体およびその製造方法に関するものであり、さらに詳しくは、イオン性物質や生理活性物質などの吸着、分離、固定などに好適に使用し得るポリ(アルキルアミン)グラフト芳香族ポリスルホン重合体およびその製造方法に関する。
【0002】
【従来の技術】
従来、特定の生理活性物質等を不溶性担体に固定化したものは、アフィニティークロマトグラフ用吸着剤、治療用血液処理材、細胞培養用器材、抗菌性材料、その他、分析用試薬などとして広く利用されており、今後、さらに幅広い応用が期待される重要な分野である。
【0003】
不溶性担体としてはセルロース、アガロース、ポリスチレンなどが古くから知られているが、これらは不溶性の成型品として存在する。一方、芳香族ポリスルホン重合体は成型性が良く、透析用中空糸として利用できるので、吸着能を発揮する官能基を導入すると、その利用価値は高い。そのためクロルメチル化ポリスルホン{樋口ほかJ.Appl.Polymer Chem. 46, 449-457 (1992)}やアミドメチル化ポリスルホン(特開平6−500925)などが開発され、これらを坦体として用いる研究がなされ始めている。
【0004】
しかし、芳香族ポリスルホン重合体はポリマー主鎖の凝集力でその高い機械的性質を保っているので、その主鎖または側鎖に官能基をあまりに多数導入し過ぎると、その優れた機械的性質が失われてしまう。一方、官能基の導入密度が少なすぎると吸着能が小さすぎて目的を果たせないジレンマがある。
【0005】
【発明が解決しようとする課題】
本発明は、かかる従来技術の問題点を解決しようとするものであり、有用な反応性の官能基が十分な量導入され、且つ、高い機械的性質を有する新規ポリスルホンおよびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するため、下記の構成を有する。
【0007】
「(1)側鎖官能基として、下記一般式(I)で示される基{但し、式中、Eはポリ(アルキルアミノアルキレン)基を示し、R1 は炭素数1〜20のアルキル基を示し、R2 は水素原子、または、炭素数1〜5のアルキル基を示し、R1 とR2 は同一でも異なっていても良い。}が導入されてなることを特徴とする芳香族ポリスルホン重合体。
【0008】
E−CH(R1 )−CO−NR2 −CH2 − (I)
(2)下記一般式(III)で示されるハロゲン置換基(但し、式中、Xはハロゲン原子を示す。)を有する芳香族ポリスルホン重合体を、ポリアミン化合物と反応させることを特徴とする請求項1記載の芳香族ポリスルホン重合体の製造方法。
【0009】
X−CH(R1 )−CO−N(R2 )−CH2 − (III)」
【0010】
【発明の実施の形態】
続いて、本発明について詳細に説明する。
【0011】
本発明で言う、側鎖として一般式(I)で示される基を導入した芳香族ポリスルホン重合体(以下、ポリスルホンという場合がある)とは、主鎖に芳香核とスルホニル基をもつポリスルホン重合体であって、その芳香核が一般式(I)で示される基で置換されているものであればよく、かかる一般式(I)で示される基は、繰り返し単位当たり0.0001〜0.3の密度で置換されていることが好ましい。
【0012】
当該芳香族ポリスルホン重合体の具体例としては、市場に広く出回っているポリ(p−フェニレンエーテルスルホン):−{(p−C64 )−SO2 −(p−C64 )−O−}n−や、”ユーデル・ポリスルホン”:−{(p−C64)−SO2 −(p−C64 )−O−(p−C64 )−C(CH32 −(p−C64 )−O}n−のほか、−{(p−C64 )−SO2 −(p−C64 )−O−(p−C64 )−O}n−、−{(p−C64 )−SO2 −(p−C64 )−S−(p−C64 )−O}n−、−{(p−C64 )−SO2 −(p−C64 )−O−(p−C64 )−C(CF32 −(p−C64 )−O}n−などの構造を有する重合体であって、その芳香核が一般式(I)で示される基、例えば、(N1 ,N2 ,N3 −トリオクチル−ジエチレントリアミノ)−アセトアミドメチル基、(N1 ,N2 ,N3 ,N4 −テトラオクチル−トリエチレンテトラアミノ)−アセトアミドメチル基、{ポリ(N−ラウリルテトラエチレンイミノ)}−アセトアミドメチル基、ポリ(N−ラウリルエチレンイミノ)−アセトアミドメチル基などによって置換されているものをあげることができる。
【0013】
さらに詳しく一般式(I)で示される基を説明すると、R1 およびR2 は水素原子、または、メチル基、エチル基、プロピル基、ブチル基などのアルキル基を示し、R1 とR2 は同一でも異なっていても良いが、R2 が水素原子のもの、とりわけ、R1 、R2 が共に水素原子のものが最も製造しやすく、かつ、反応性も高いので好ましい。また、一般式(I)中のEのポリ(アルキルアミノアルキレン)基とはポリ(エチレンイミン)基などで代表されるポリ(アミノアルキレン)基のアミノ基に結合した水素原子の一部または全部を炭素数1〜24のアルキル基で置換したものを意味する。炭素数が少ないものは親水性が高く、炭素数が多いものは疎水性が高いが、吸着剤として用いる場合には適度な疎水性があるほうが好ましい。一般的に炭素数6〜18のものが吸着剤として特に好ましく用いられる。当該水素原子のアルキル基による置換率は、アルキル基の炭素数にもよるが、低すぎると、親水性が高すぎて吸着剤として必要な適度な疎水性が出にくいので、通常、アルキル基炭素数10以下では1%〜100%、より好ましくは10%〜100%、炭素数10以上では0.1%〜100%、より好ましくは1%〜50%である。
【0014】
また、本発明においては、上記一般式(I)中のEが、下記一般式(II)で示される基の窒素原子に結合した水素原子の一部または全部を炭素数2〜24のアルキル基で置換したものであることが吸着性能の点で好ましい。
【0015】
34 N(A1 −NR5 −A2 −NR6n− (II)
一般式(II)中のR3 、R4 、R5 、R6 は水素原子、または、炭素数1〜 24のアルキル基で、かつ、該置換水素原子の数が窒素原子の数の99%以下であれば、何でも良く、特に制限は無い。ここで、R3 、R4 、R5 、R6 は同一でも異なっていても良いが、同一のものが最も作りやすい。これらが炭素数10以上の長鎖アルキル基である場合は、疎水性が強く出るので、疎水性相互作用の吸着剤に好ましく用いられる。
【0016】
一般式(II)中のA1 、A2 の例としては、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、1−メチルエチレン基、2−エチルエチレン基、p−キシリレン基などを上げることができるが、A1 とA2 は同一でも異なっていても良い。
【0017】
側鎖置換基の一般式(II)中のnは小さすぎるとグラフト構造の効果が出にくく、一方、大きすぎると有機溶媒に対する溶解性が落ちて、加工しにくくなるので、2〜5000、とりわけ、5〜2000が好ましい。また、一般式(I)で示される基の密度とnの関係は重合体の性能を大きく左右する。即ち、一般式(I)で示される基の密度が高い場合は、nは小さくしないとポリスルホンの優れた物理的性質が維持されにくいので、nは小さい方が良く、一方、該密度が低い場合は、nが小さいと、グラフト構造の効果が出にくいので、nは大きい方が良い。このポリ(アミノアルキレン)基は一部分岐していても良い。これらの基は単独で、あるいは、使用目的によっては複数で存在しても良い。
【0018】
さらに一般式(I)中のEのポリ(アミノアルキレン)基がエチレンイミンの重合体である場合、重合度が低すぎると、官能基の効果が出すためには、側鎖官能基密度を高くしなければならず、得られるものの物理的特性が低くなる傾向があるので、重合度は4以上であることが好ましい。また、重合度が高すぎると得られるものの粘度が高くなりすぎたり、親水性のために加工性が低下したりする場合があるので、4以上で10000以下、とりわけ、10以上4000以下が好ましい。このエチレンイミンの重合体は一部分岐していても良い。これらの基は単独で、あるいは、使用目的によっては複数で存在しても良い。
【0019】
一般式(I)で示される基がポリスルホンの主鎖に結合している位置はどこでも良く、特に限定はないが、アミドメチル化反応によって導入するのが容易であるので、主鎖のエーテル基に対してオルト位置のものが得やすい。例えば、ビスフールAとジ(クロルフェニル)スルホンから合成される”ユーデル・ポリスルホン”では、ビスフェノールAの水酸基からオルトの位置に一般式(I)で示される基が入ったものが得やすい。
【0020】
本発明重合体中における一般式(I)で示される基の適正な量、即ち、密度は幹となる重合体の化学構造および用途により異なるが、少なすぎるとその機能が発現しにくく、一方、多すぎると、単独では強靭な膜に成りにくく、また、ポリスルホンと混合して用いるにしても、ポリスルホンとの相溶性が悪くなり、成膜しにくくなる傾向があるので、通常、繰り返し単位当たり0.0001〜0.3個、とりわけ、0.001〜0.1個が好ましい。
【0021】
本発明重合体の製造方法の一例としては、ハロアセトアミドメチル化ポリスルホンの溶液中に対応したポリアミン化合物を加えて、0〜100℃の温度で反応させる方法が挙げられる。ポリアミンの量には特に制限はないが、可溶性のポリマーを得るためにはハロアセトアミドメチル基に対し2倍モル以上用いるのが望ましい。とりわけ、分岐のあるポリアミンの場合は、可溶性の重合体を得るためにはポリアミンを大過剰用いるのが好ましい。ポリアミン化合物としては最終的に必要な量のN−アルキル基を持ったポリアミンを使用するのが常法であるが、N−アルキル化率が高くなると溶媒に溶けにくくなるので、最終的に必要な量よりも少ないN−アルキル基を持ったポリアミンを使用するか、あるいは、全くN−アルキル化していないポリアミンを使用した後、ハロゲン化アルキル等のアルキル化試薬で必要量のアルキル化を行う方法も適宜採用される。
【0022】
また、反応溶媒としては、均一系で反応させる場合にはテトラヒドロフラン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどが好ましく用いられる。また、ハロアセトアミドメチル化ポリスルホンを成形後、表面処理する方法により、ポリアミンを導入することも可能で、そのためには水、メタノール、エタノールなどのポリスルホンを溶かさず、ポリアミンを溶かす溶媒が好ましく用いられる。
【0023】
本発明の重合体はそれ自体で吸着剤として、あるいは、より高度な機能をもつ吸着剤の製造中間体として用いられ、また、平膜、中空糸膜の形で各種物質の濾過分離・濃縮などに用いられる。また、細胞培養用器具、人工臓器、人工血管、カテーテル等への用途などが考えられる。
【0024】
【実施例】
以下、実験例により本発明をさらに具体的に説明する。
【0025】
なお、本実施例中の評価方法は、以下に従った。
【0026】
1.赤外線吸収スペクトル
ポリマーをクロロホルムに溶解し、ガラス板上に流して、フィルム状に成型したものを、島津フーリエ変換赤外分光光度計FT−IR4300を用いて測定した。
【0027】
実施例1
ニトロベンゼン8mLと硫酸15mLの混合溶液を0℃に冷却後、2.0gのN−メチロール−α−クロルアセトアミドを加えて溶解し、これを、300gのユーデルポリスルホンP3500を3Lのニトロベンゼンに溶かした溶液に、良く撹拌しながら加えた。さらに、室温で3時間撹拌した後、反応混合物を大過剰の冷メタノール中に入れ、ポリマーを沈殿させた。沈殿をメタノールで良く洗った後、乾燥した。これをジメチルホルムアミドに溶解した後、メタノールで再沈殿させて、精製し、308gのα−クロルアセトアミドメチル化ポリスルホン(重合体−I)を得た。このポリマーは赤外線吸収スペクトルで1676cm-1にアミド基の吸収を示した。
【0028】
ポリエチレンイミン(平均分子量10000:和光純薬)60gを300mLのジメチルホルムアミドに溶かした溶液に臭化ラウリル34.9gを加え、室温で3日間撹拌して、ラウリルポリエチレンイミン溶液を調製した。別に、上記で得た重合体−I 30gを300mLのジメチルホルムアミドに溶かした溶液を作り、ラウリル化ポリエチレンイミン溶液と混合して、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、29gの本発明重合体を得た。
【0029】
このポリマーは赤外線吸収スペクトルで1666cm-1にアミド基の吸収を示し、2966cm-1と2926cm-1および2853cm-1にメチレン基(エチレンジアミノ基とラウリル基)の吸収を示した。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量はは2.8ミリモル/gであった。
【0030】
このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性の変わらない半透膜が得られた。
【0031】
実施例2
実施例1で得た重合体−I 40gを400mLのジメチルホルムアミドに溶かし、これに30%ポリエチレンイミン水溶液(平均分子量70000:和光純薬)270mLを減圧濃縮して脱水したものを240mLのジメチルホルムアミドに溶かした溶液に加え、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、38gの重合体を得た。この重合体8gを100mLのジメチルホルムアミドに溶かし、これにヨウ化カリウム2gと臭化ラウリル4mLを加え、室温で24時間撹拌した。反応混合物を大過剰のメタノール中に入れ、ポリマーを沈殿させ、沈殿をメタノールおよび水で良く洗った後、乾燥して、6.3gの本発明重合体を得た。
【0032】
このポリマーは赤外線吸収スペクトルで1666cm-1にアミド基の吸収を示し、2966cm-1と2926cm-1および2853cm-1にメチレン基(エチレンジアミノ基とラウリル基)の吸収を示した。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量はは1.0ミリモル/gであった。
【0033】
このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性の変わらない半透膜が得られた。
【0034】
実施例3
ポリエチレンイミン(平均分子量10000:和光純薬)20gを100mLのジメチルホルムアミドに溶かした溶液に臭化ラウリル11gを加え、室温で3日間撹拌してラウリル化ポリエチレンイミン溶液を調製した。別に、実施例1で得た重合体−I 10gを100mLのジメチルホルムアミドに溶かした溶液を作り、上記ラウリル化ポリエチレンイミン溶液と混合して、室温で1日間撹拌した。さらに臭化ラウリル55gを加え、室温で2日間撹拌した。反応混合物を大過剰のメタノール中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、10gの本発明重合体をえた。
【0035】
このポリマーは赤外線吸収スペクトルで1666cm-1にアミド基の吸収を示し、2966cm-1と2926cm-1および2854cm-1にメチレン基(エチレンジアミノ基とラウリル基)の吸収を示した。特に、2926cm-1の吸収が2966cm-1および2854cm-1の吸収に比べ、大きい。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量は2.8ミリモル/gであった。
【0036】
このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性の変わらない半透膜が得られた。
【0037】
実施例4
ポリエチレンイミン(平均分子量10000:和光純薬)20gを100mLのジメチルホルムアミドに溶かした溶液に臭化ヘキシル15gを加え、室温で2日間撹拌してヘキシル化ポリエチレンイミン溶液を調製した。別に、実施例1で得た重合体−I 10gを100mLのジメチルホルムアミドに溶かした溶液を作り、ヘキシル化ポリエチレンイミン溶液と混合して、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、10gの本発明重合体をえた。
【0038】
このポリマーは赤外線吸収スペクトルで1670cm-1にアミド基の吸収を示し、2968cm-1と2932cm-1および2872cm-1にメチレン基(エチレンジアミノ基とヘキシル基)の吸収を示した。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量は2.6ミリモル/gであった。
【0039】
このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性の変わらない半透膜が得られた。
【0040】
実施例5
ポリエチレンイミン(平均分子量25000:アルドリッチ・カンパニー)20gを100mLのジメチルホルムアミドに溶かした溶液に臭化ラウリル11gを加え、室温で2日間撹拌してラウリルポリエチレンイミン溶液を調製した。別に、実施例1で得た重合体−I 10gを100mLのジメチルホルムアミドに溶かした溶液を作り、ラウリルポリエチレンイミン溶液と混合して、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、乾燥して、11gの本発明重合体を得た。
【0041】
このポリマーは赤外線吸収スペクトルで1670cm-1にアミド基の吸収を示し、2966cm-1と2923cm-1および2853cm-1にメチレン基(エチレンジアミノ基とラウリル基)の吸収を示した。特に、2926cm-1の吸収が2966cm-1および2854cm-1の吸収に比べ、大きい。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量は2.9ミリモル/gであった。このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性は変わらないが、親水性が高い半透膜が得られた。
【0042】
実施例6
実施例1で得た重合体−I 20gを200mLのジメチルホルムアミドに溶かし、これにポリエチレンイミン(平均分子量700:アルドリッチ・カンパニー)40gを200mLのジメチルホルムアミドに溶かした溶液に加え、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、18gの重合体をえた。この重合体8gを100mLのジメチルホルムアミドに溶かし、これにヨウ化カリウム2gと臭化ステアリル16mLを加え、室温で24時間撹拌した。反応混合物を大過剰のメタノール中に入れ、ポリマーを沈殿させ、沈殿をエタノールおよび水で良く洗った後、乾燥して、8.3gの本発明重合体をえた。 このポリマーは赤外線吸収スペクトルで1668cm-1にアミド基の吸収を示し、2968cm-1と2926cm-1および2853cm-1にメチレン基(エチレンジアミノ基とステアリル基)の吸収を示した。特に、2926cm-1の吸収が2966cm-1および2854cm-1の吸収に比べ、大きい。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量は0.9ミリモル/gであった。
【0043】
このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性の変わらない半透膜が得られた。
【0044】
実施例7
ニトロベンゼン16mLと硫酸31mLの混合溶液を0℃に冷却後、4.2g(0.034モル)のN−メチロール−α−クロルアセトアミドを加えて、溶解し、この液を、300g(0.68モル)のユーデルポリスルホンP3500を360mLのニトロベンゼンに溶かした溶液に、良く撹拌しながら加えた。さらに、室温で3時間撹拌した。その後、反応混合物を大過剰の冷メタノール中に入れ、ポリマーを沈殿させた。沈殿をメタノールで良く洗った後、乾燥して、308gのα−クロルアセトアミドメチル化ポリスルホン(重合体−II)をえた。このものは赤外線吸収スペクトルで1676cm-1にアミド基の吸収を示した。
【0045】
上記で得た重合体−II 20gを200mLのジメチルホルムアミドに溶かし、 ポリエチレンイミン(平均分子量25000:アルドリッチ・カンパニー)20gを100mLのジメチルホルムアミドに溶かした溶液に臭化ラウリル11gを加え、室温で2日間撹拌してラウリルポリエチレンイミン溶液を調製した。別に、上記で得た重合体−II 10gを100mLのジメチルホルムアミドに溶かした溶液を作り、ラウリルポリエチレンイミン溶液と混合して、室温で3日間撹拌した。反応混合物を大過剰の飽和食塩水中に投じて、ポリマーを沈殿させ、沈殿を水およびメタノールで良く洗った後、乾燥して、乾燥して、11gの本発明重合体をえた。
【0046】
このポリマーは赤外線吸収スペクトルで1670cm-1にアミド基の吸収を示し、2966cm-1と2923cm-1および2853cm-1にメチレン基(エチレンジアミノ基とラウリル基)の吸収を示した。特に、2926cm-1の吸収が2966cm-1および2854cm-1の吸収に比べ、大きい。これはテトラヒドロフラン、クロロホルム、ジメチルホルムアミドによく溶けた。元素分析による窒素含有量は2.9ミリモル/gであった。このポリマーのジメチルアセトアミド溶液をガラス上に塗布し、水の中に入れて成膜した結果、ポリスルホンと比較して機械的特性は変わらないが、親水性が高い半透膜が得られた。
【0047】
【発明の効果】
以上詳述したように、本発明は、主鎖の芳香族ポリスルホンに、側鎖として特定のポリアルキルアミングラフト基を導入することにより、優れた特性を有する可溶性の新規芳香族ポリスルホン重合体を得ることができ、イオン性物質や生理活性物質などの吸着、分離、固定などの処理材料として有用である。
【0048】
また、当該芳香族ポリスルホン重合体は、シャーレ、瓶、膜、繊維、中空糸、粒状物またはこれらを用いた組み立て品などの成型品の形で、アフィニティークロマトグラフ用吸着剤、治療用血液処理剤、抗菌性材料等の原材料として好適に使用することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aromatic polysulfone polymer having a poly (alkylamine) residue introduced as a graft group as a side chain, and a method for producing the same, and more specifically, adsorption and separation of ionic substances and physiologically active substances. The present invention relates to a poly (alkylamine) grafted aromatic polysulfone polymer that can be suitably used for fixation and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, a specific physiologically active substance or the like immobilized on an insoluble carrier has been widely used as an adsorbent for affinity chromatography, a blood treatment material for treatment, a cell culture device, an antibacterial material, and other analytical reagents. This is an important field where a wider range of applications is expected in the future.
[0003]
Cellulose, agarose, polystyrene and the like have been known for a long time as insoluble carriers, but these exist as insoluble molded products. On the other hand, the aromatic polysulfone polymer has good moldability and can be used as a hollow fiber for dialysis. Therefore, when a functional group exhibiting adsorption ability is introduced, its utility value is high. Therefore, chloromethylated polysulfone {Higuchi et al., J. Appl. Polymer Chem. 46 , 449-457 (1992)}, amidomethylated polysulfone (JP-A-6-50095), etc. have been developed, and research using these as a carrier has begun. .
[0004]
However, the aromatic polysulfone polymer maintains its high mechanical properties due to the cohesive strength of the polymer main chain, so if too many functional groups are introduced into its main chain or side chain, its excellent mechanical properties are It will be lost. On the other hand, if the introduction density of the functional group is too low, there is a dilemma in which the adsorptive capacity is too small to achieve its purpose.
[0005]
[Problems to be solved by the invention]
The present invention is intended to solve such problems of the prior art, and provides a novel polysulfone having a sufficient amount of useful reactive functional groups introduced therein and having high mechanical properties, and a method for producing the same. For the purpose.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0007]
“(1) As a side chain functional group, a group represented by the following general formula (I) {wherein E represents a poly (alkylaminoalkylene) group, and R 1 represents an alkyl group having 1 to 20 carbon atoms. R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 1 and R 2 may be the same or different.} Coalescence.
[0008]
E—CH (R 1 ) —CO—NR 2 —CH 2 — (I)
(2) An aromatic polysulfone polymer having a halogen substituent represented by the following general formula (III) (wherein X represents a halogen atom) is reacted with a polyamine compound. 2. A process for producing an aromatic polysulfone polymer according to 1.
[0009]
X-CH (R 1) -CO -N (R 2) -CH 2 - (III) '
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
[0011]
The aromatic polysulfone polymer introduced with the group represented by the general formula (I) as a side chain in the present invention (hereinafter sometimes referred to as polysulfone) is a polysulfone polymer having an aromatic nucleus and a sulfonyl group in the main chain. It is sufficient that the aromatic nucleus is substituted with a group represented by the general formula (I), and the group represented by the general formula (I) is 0.0001 to 0.3 per repeating unit. It is preferable to be substituted at a density of
[0012]
Poly Specific examples of the aromatic polysulfone polymer, which is widely available on the market (p- phenylene ether sulfone): - {(p-C 6 H 4) -SO 2 - (p-C 6 H 4) - O-} n - or, "Udel-polysulfone": - {(p-C 6 H 4) -SO 2 - (p-C 6 H 4) -O- (p-C 6 H 4) -C (CH 3) 2 - (p-C 6 H 4) -O} n - other, - {(p-C 6 H 4) -SO 2 - (p-C 6 H 4) -O- (p-C 6 H 4) -O} n -, - {(p-C 6 H 4) -SO 2 - (p-C 6 H 4) -S- (p-C 6 H 4) -O} n -, - { (p-C 6 H 4) -SO 2 - (p-C 6 H 4) -O- (p-C 6 H 4) -C (CF 3) 2 - (p-C 6 H 4) -O} the n - a polymer having a structure such as, groups the aromatic nuclei represented by the general formula (I), for example , (N 1, N 2, N 3 - trioctyl - diethylenetriamino) - acetamidomethyl group, (N 1, N 2, N 3, N 4 - tetraoctyl - triethylenetetramine amino) - acetamidomethyl group, {poly ( N-lauryltetraethyleneimino)}-acetamidomethyl group, poly (N-laurylethyleneimino) -acetamidomethyl group and the like can be mentioned.
[0013]
The group represented by the general formula (I) will be described in more detail. R 1 and R 2 represent a hydrogen atom or an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, and R 1 and R 2 represent Although they may be the same or different, those in which R 2 is a hydrogen atom, particularly those in which both R 1 and R 2 are hydrogen atoms are most preferable because they are most easily produced and have high reactivity. In addition, the poly (alkylaminoalkylene) group of E in the general formula (I) is a part or all of hydrogen atoms bonded to the amino group of a poly (aminoalkylene) group represented by a poly (ethyleneimine) group. Is substituted with an alkyl group having 1 to 24 carbon atoms. Those having a small number of carbon atoms have high hydrophilicity, and those having a large number of carbon atoms have high hydrophobicity. However, when used as an adsorbent, it is preferable to have moderate hydrophobicity. In general, those having 6 to 18 carbon atoms are particularly preferably used as the adsorbent. The substitution rate of the hydrogen atom with an alkyl group depends on the number of carbon atoms in the alkyl group, but if it is too low, the hydrophilicity is too high and the appropriate hydrophobicity required as an adsorbent is difficult to be obtained. When it is several tens or less, it is 1% to 100%, more preferably 10% to 100%, and when it is 10 or more carbon atoms, it is 0.1% to 100%, more preferably 1% to 50%.
[0014]
In the present invention, E in the general formula (I) is an alkyl group having 2 to 24 carbon atoms in which some or all of the hydrogen atoms bonded to the nitrogen atom of the group represented by the following general formula (II) are bonded. It is preferable from the viewpoint of adsorption performance that it is substituted with.
[0015]
R 3 R 4 N (A 1 -NR 5 -A 2 -NR 6) n - (II)
R 3 , R 4 , R 5 and R 6 in the general formula (II) are hydrogen atoms or alkyl groups having 1 to 24 carbon atoms, and the number of substituted hydrogen atoms is 99% of the number of nitrogen atoms. Anything is possible as long as it is as follows, and there is no particular limitation. Here, R 3 , R 4 , R 5 , and R 6 may be the same or different, but the same is most easily produced. When these are long-chain alkyl groups having 10 or more carbon atoms, hydrophobicity is strong, and therefore, they are preferably used as adsorbents for hydrophobic interaction.
[0016]
Examples of A 1 and A 2 in the general formula (II) include ethylene group, trimethylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, 1-methylethylene group, 2-ethylethylene group, it can be increased and p- xylylene group, a 1 and a 2 may be the same or different.
[0017]
If n in the general formula (II) of the side chain substituent is too small, the effect of the graft structure is difficult to be obtained. On the other hand, if it is too large, the solubility in an organic solvent is lowered and the processing becomes difficult. 5 to 2000 is preferable. Further, the relationship between the density of the group represented by formula (I) and n greatly affects the performance of the polymer. That is, when the density of the group represented by the general formula (I) is high, it is difficult to maintain the excellent physical properties of polysulfone unless n is decreased. Therefore, n is preferably small, while the density is low. If n is small, the effect of the graft structure is difficult to obtain. Therefore, n is preferably large. This poly (aminoalkylene) group may be partially branched. These groups may be present alone or in plural depending on the purpose of use.
[0018]
Furthermore, when the poly (aminoalkylene) group of E in the general formula (I) is a polymer of ethyleneimine, if the degree of polymerization is too low, the functional group effect is increased to increase the side chain functional group density. The degree of polymerization is preferably 4 or more because the physical properties of the resulting product tend to be low. Moreover, since the viscosity of what is obtained when the degree of polymerization is too high may be too high, or the processability may be lowered due to hydrophilicity, it is preferably 4 or more and 10,000 or less, particularly preferably 10 or more and 4000 or less. The ethyleneimine polymer may be partially branched. These groups may be present alone or in plural depending on the purpose of use.
[0019]
The position where the group represented by the general formula (I) is bonded to the main chain of the polysulfone may be anywhere, and is not particularly limited, but can be easily introduced by an amide methylation reaction. It is easy to get the one in the ortho position. For example, in “Udel polysulfone” synthesized from bisfur A and di (chlorophenyl) sulfone, it is easy to obtain those containing the group represented by the general formula (I) at the ortho position from the hydroxyl group of bisphenol A.
[0020]
The proper amount of the group represented by the general formula (I) in the polymer of the present invention, that is, the density varies depending on the chemical structure and use of the main polymer, but if it is too small, its function is difficult to express, If the amount is too large, it is difficult to form a tough film by itself, and even when mixed with polysulfone, the compatibility with polysulfone tends to be poor and film formation tends to be difficult. 0.0001 to 0.3, especially 0.001 to 0.1 is preferable.
[0021]
As an example of the manufacturing method of this invention polymer, the method of adding the corresponding polyamine compound in the solution of haloacetamidomethylated polysulfone, and making it react at the temperature of 0-100 degreeC is mentioned. There are no particular restrictions on the amount of polyamine, but it is desirable to use at least twice the mole of haloacetamidomethyl groups to obtain a soluble polymer. In particular, in the case of a branched polyamine, it is preferable to use a large excess of polyamine in order to obtain a soluble polymer. As a polyamine compound, it is a usual method to use a polyamine having a necessary amount of N-alkyl groups in the end, but it becomes difficult to dissolve in a solvent when the N-alkylation rate increases. There is also a method of using a polyamine having an N-alkyl group less than the amount, or using a polyamine which is not N-alkylated at all and then performing a necessary amount of alkylation with an alkylating reagent such as an alkyl halide. Adopted as appropriate.
[0022]
As the reaction solvent, tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like are preferably used when the reaction is carried out in a homogeneous system. Further, it is possible to introduce a polyamine by surface treatment after molding the haloacetamidomethylated polysulfone. For this purpose, a solvent that dissolves the polyamine without dissolving the polysulfone such as water, methanol, and ethanol is preferably used.
[0023]
The polymer of the present invention is used as an adsorbent by itself or as an intermediate for the production of adsorbents with higher functions, and is used for filtration separation and concentration of various substances in the form of flat membranes and hollow fiber membranes. Used for. Moreover, the use to a cell culture instrument, an artificial organ, an artificial blood vessel, a catheter, etc. can be considered.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically by experimental examples.
[0025]
In addition, the evaluation method in a present Example followed the following.
[0026]
1. An infrared absorption spectrum polymer was dissolved in chloroform, poured onto a glass plate, and molded into a film shape, and measured using a Shimadzu Fourier transform infrared spectrophotometer FT-IR4300.
[0027]
Example 1
After cooling a mixed solution of 8 mL of nitrobenzene and 15 mL of sulfuric acid to 0 ° C., 2.0 g of N-methylol-α-chloroacetamide was added and dissolved, and this was a solution of 300 g of Udelpolysulfone P3500 dissolved in 3 L of nitrobenzene. Was added with good stirring. Further, after stirring at room temperature for 3 hours, the reaction mixture was placed in a large excess of cold methanol to precipitate the polymer. The precipitate was washed well with methanol and dried. This was dissolved in dimethylformamide and then reprecipitated with methanol and purified to obtain 308 g of α-chloroacetamidomethylated polysulfone (Polymer-I). This polymer showed absorption of an amide group at 1676 cm −1 in an infrared absorption spectrum.
[0028]
34.9 g of lauryl bromide was added to a solution of 60 g of polyethyleneimine (average molecular weight 10,000: Wako Pure Chemical Industries) dissolved in 300 mL of dimethylformamide, and stirred at room temperature for 3 days to prepare a lauryl polyethyleneimine solution. Separately, 30 g of the polymer-I obtained above was dissolved in 300 mL of dimethylformamide, mixed with the laurylated polyethyleneimine solution, and stirred at room temperature for 3 days. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer. The precipitate was washed well with water and methanol and then dried to obtain 29 g of the polymer of the present invention.
[0029]
This polymer showed absorption of an amide group at 1666 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylenediamino group and lauryl group) at 2966 cm −1 , 2926 cm −1 and 2853 cm −1 . This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 2.8 mmol / g.
[0030]
A dimethylacetamide solution of this polymer was applied onto glass and placed in water to form a film. As a result, a semipermeable membrane having mechanical properties unchanged from that of polysulfone was obtained.
[0031]
Example 2
40 g of the polymer-I obtained in Example 1 was dissolved in 400 mL of dimethylformamide, and 270 mL of 30% polyethyleneimine aqueous solution (average molecular weight 70000: Wako Pure Chemical Industries) was concentrated under reduced pressure to obtain 240 mL of dimethylformamide. It was added to the dissolved solution and stirred at room temperature for 3 days. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer. The precipitate was washed well with water and methanol and then dried to obtain 38 g of a polymer. 8 g of this polymer was dissolved in 100 mL of dimethylformamide, 2 g of potassium iodide and 4 mL of lauryl bromide were added thereto, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was put in a large excess of methanol to precipitate the polymer. The precipitate was washed well with methanol and water and then dried to obtain 6.3 g of the polymer of the present invention.
[0032]
This polymer showed absorption of an amide group at 1666 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylenediamino group and lauryl group) at 2966 cm −1 , 2926 cm −1 and 2853 cm −1 . This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 1.0 mmol / g.
[0033]
A dimethylacetamide solution of this polymer was applied onto glass and placed in water to form a film. As a result, a semipermeable membrane having mechanical properties unchanged from that of polysulfone was obtained.
[0034]
Example 3
11 g of lauryl bromide was added to a solution of 20 g of polyethyleneimine (average molecular weight 10,000: Wako Pure Chemical Industries) dissolved in 100 mL of dimethylformamide, and stirred at room temperature for 3 days to prepare a laurylated polyethyleneimine solution. Separately, 10 g of the polymer-I obtained in Example 1 was dissolved in 100 mL of dimethylformamide, mixed with the laurylated polyethyleneimine solution, and stirred at room temperature for 1 day. Further, 55 g of lauryl bromide was added and stirred at room temperature for 2 days. The reaction mixture was poured into a large excess of methanol to precipitate the polymer. The precipitate was washed well with water and methanol and then dried to obtain 10 g of the polymer of the present invention.
[0035]
This polymer showed an absorption of amide group at 1666 cm -1 in the infrared absorption spectrum showed absorption methylene groups (ethylene diamino group and lauryl group) to 2966cm -1 and 2926cm -1 and 2854cm -1. In particular, the absorption of 2926cm -1 is compared with the absorption of 2966cm -1 and 2854cm -1, greater. This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 2.8 mmol / g.
[0036]
A dimethylacetamide solution of this polymer was applied onto glass and placed in water to form a film. As a result, a semipermeable membrane having mechanical properties unchanged from that of polysulfone was obtained.
[0037]
Example 4
15 g of hexyl bromide was added to a solution of 20 g of polyethyleneimine (average molecular weight 10,000: Wako Pure Chemical Industries) dissolved in 100 mL of dimethylformamide, and stirred at room temperature for 2 days to prepare a hexylated polyethyleneimine solution. Separately, 10 g of the polymer-I obtained in Example 1 was dissolved in 100 mL of dimethylformamide, mixed with a hexylated polyethyleneimine solution, and stirred at room temperature for 3 days. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer. The precipitate was washed well with water and methanol and then dried to obtain 10 g of the polymer of the present invention.
[0038]
This polymer showed absorption of amide groups at 1670 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylenediamino group and hexyl group) at 2968 cm −1 , 2932 cm −1 and 2872 cm −1 . This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 2.6 mmol / g.
[0039]
A dimethylacetamide solution of this polymer was applied onto glass and placed in water to form a film. As a result, a semipermeable membrane having mechanical properties unchanged from that of polysulfone was obtained.
[0040]
Example 5
11 g of lauryl bromide was added to a solution of 20 g of polyethyleneimine (average molecular weight 25000: Aldrich Company) in 100 mL of dimethylformamide, and stirred at room temperature for 2 days to prepare a lauryl polyethyleneimine solution. Separately, 10 g of the polymer-I obtained in Example 1 was dissolved in 100 mL of dimethylformamide, mixed with the laurylpolyethyleneimine solution, and stirred at room temperature for 3 days. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer, and the precipitate was washed well with water and methanol, then dried and dried to obtain 11 g of the polymer of the present invention.
[0041]
This polymer showed absorption of amide groups at 1670 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylenediamino group and lauryl group) at 2966 cm −1 , 2923 cm −1 and 2853 cm −1 . In particular, the absorption of 2926cm -1 is compared with the absorption of 2966cm -1 and 2854cm -1, greater. This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 2.9 mmol / g. As a result of coating a dimethylacetamide solution of this polymer on glass and placing it in water to form a film, a semipermeable membrane having high hydrophilicity was obtained, although the mechanical properties were not changed compared to polysulfone.
[0042]
Example 6
20 g of the polymer-I obtained in Example 1 was dissolved in 200 mL of dimethylformamide, and 40 g of polyethyleneimine (average molecular weight 700: Aldrich Company) was added to the solution in 200 mL of dimethylformamide, and stirred at room temperature for 3 days. did. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer. The precipitate was washed well with water and methanol, and then dried to obtain 18 g of a polymer. 8 g of this polymer was dissolved in 100 mL of dimethylformamide, 2 g of potassium iodide and 16 mL of stearyl bromide were added thereto, and the mixture was stirred at room temperature for 24 hours. The reaction mixture was put in a large excess of methanol to precipitate the polymer. The precipitate was washed well with ethanol and water and then dried to obtain 8.3 g of the polymer of the present invention. This polymer showed absorption of amide groups at 1668 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylene diamino group and stearyl group) at 2968 cm −1 , 2926 cm −1 and 2853 cm −1 . In particular, the absorption of 2926cm -1 is compared with the absorption of 2966cm -1 and 2854cm -1, greater. This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 0.9 mmol / g.
[0043]
A dimethylacetamide solution of this polymer was applied onto glass and placed in water to form a film. As a result, a semipermeable membrane having mechanical properties unchanged from that of polysulfone was obtained.
[0044]
Example 7
After cooling a mixed solution of 16 mL of nitrobenzene and 31 mL of sulfuric acid to 0 ° C., 4.2 g (0.034 mol) of N-methylol-α-chloroacetamide was added and dissolved, and 300 g (0.68 mol) of this solution was dissolved. ) Udelpolysulfone P3500 in 360 mL of nitrobenzene was added with good stirring. Furthermore, it stirred at room temperature for 3 hours. The reaction mixture was then placed in a large excess of cold methanol to precipitate the polymer. The precipitate was washed well with methanol and dried to obtain 308 g of α-chloroacetamidomethylated polysulfone (Polymer-II). This product showed absorption of an amide group at 1676 cm −1 in an infrared absorption spectrum.
[0045]
20 g of the polymer-II obtained above was dissolved in 200 mL of dimethylformamide, and 11 g of lauryl bromide was added to a solution of 20 g of polyethyleneimine (average molecular weight 25000: Aldrich Company) in 100 mL of dimethylformamide. A lauryl polyethyleneimine solution was prepared by stirring. Separately, 10 g of the polymer-II obtained above was dissolved in 100 mL of dimethylformamide, mixed with the laurylpolyethyleneimine solution, and stirred at room temperature for 3 days. The reaction mixture was poured into a large excess of saturated brine to precipitate the polymer. The precipitate was washed well with water and methanol, then dried and dried to obtain 11 g of the polymer of the present invention.
[0046]
This polymer showed absorption of amide groups at 1670 cm −1 in the infrared absorption spectrum, and absorption of methylene groups (ethylenediamino group and lauryl group) at 2966 cm −1 , 2923 cm −1 and 2853 cm −1 . In particular, the absorption of 2926cm -1 is compared with the absorption of 2966cm-1 and 2854cm -1, greater. This dissolved well in tetrahydrofuran, chloroform and dimethylformamide. The nitrogen content by elemental analysis was 2.9 mmol / g. As a result of coating a dimethylacetamide solution of this polymer on glass and putting it in water to form a film, a semipermeable membrane having high hydrophilicity was obtained, although the mechanical properties were not changed as compared with polysulfone.
[0047]
【The invention's effect】
As described in detail above, the present invention obtains a soluble novel aromatic polysulfone polymer having excellent characteristics by introducing a specific polyalkylamine graft group as a side chain into the aromatic polysulfone of the main chain. It is useful as a treatment material for adsorption, separation, fixation, etc. of ionic substances and physiologically active substances.
[0048]
In addition, the aromatic polysulfone polymer is used in the form of molded articles such as petri dishes, bottles, membranes, fibers, hollow fibers, granules, or assemblies using these, and is used as an adsorbent for affinity chromatography and a blood treatment agent for treatment. It can be suitably used as a raw material such as an antibacterial material.

Claims (9)

側鎖官能基として、下記一般式(I)で示される基{但し、式中、Eはポリ(アルキルアミノアルキレン)基を示し、R1 は炭素数1〜20のアルキル基を示し、R2 は水素原子、または、炭素数1〜5のアルキル基を示し、R1とR2 は同一でも異なっていても良い。}が導入されてなることを特徴とする芳香族ポリスルホン重合体。
E−CH(R1)−CO−NR2 −CH2 − (I)
As the side chain functional group, a group represented by the following general formula (I) (wherein E represents a poly (alkylaminoalkylene) group, R 1 represents an alkyl group having 1 to 20 carbon atoms, R 2 Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 1 and R 2 may be the same or different. } Is introduced into the aromatic polysulfone polymer.
E—CH (R 1 ) —CO—NR 2 —CH 2 — (I)
一般式(I)中のEが、下記一般式(II)で示される基 (但し、式中、A1 、A2 は炭素数2〜12のアルキレン基、または、メチル基が分岐した炭素数3〜12のアルキレン基、エチル基が分岐した炭素数4〜12のアルキレン基、または、キシリレン基を示す。A1とA2 は同一でも異なっていても良い。R3 、R4 、R5 、R6は水素原子、または、炭素数1〜24のアルキル基を示し、R3 、R4 、R5 、R6は同一でも異なっていても良いが、水素原子の数は窒素原子の数の99%以下である。また、nは2以上の整数を示す。)であることを特徴とする請求項1記載の芳香族ポリスルホン重合体。
34 N(A1 −NR5−A2 −NR6n− (II)
E in the general formula (I) is a group represented by the following general formula (II) (wherein A 1 and A 2 are an alkylene group having 2 to 12 carbon atoms or a carbon number in which a methyl group is branched) Represents an alkylene group having 3 to 12 carbon atoms, an alkylene group having 4 to 12 carbon atoms branched from an ethyl group, or a xylylene group, and A 1 and A 2 may be the same or different from each other, R 3 , R 4 , R 5 , R 6 represents a hydrogen atom or an alkyl group having 1 to 24 carbon atoms, and R 3 , R 4 , R 5 and R 6 may be the same or different, but the number of hydrogen atoms is the number of nitrogen atoms The aromatic polysulfone polymer according to claim 1, wherein n is an integer of 2 or more.
R 3 R 4 N (A 1 -NR 5 -A 2 -NR 6) n - (II)
一般式(I)中のポリ(アルキルアミノアルキレン)基が重合度4以上10000以下のN−アルキルエチレンイミンの重合体であることを特徴とする請求項1記載の芳香族ポリスルホン重合体。2. The aromatic polysulfone polymer according to claim 1, wherein the poly (alkylaminoalkylene) group in the general formula (I) is a polymer of N-alkylethyleneimine having a polymerization degree of 4 or more and 10,000 or less. 芳香族ポリスルホン重合体の主鎖がポリ(p−フェニレンエーテルスルホン)であることを特徴とする請求項1記載の芳香族ポリスルホン重合体。2. The aromatic polysulfone polymer according to claim 1, wherein the main chain of the aromatic polysulfone polymer is poly (p-phenylene ether sulfone). 芳香族ポリスルホン重合体の主鎖が化学式−{(p−C64 )−SO2 −(p−C64 )−O−(p−C64 )−C(CH32−(p−C64 )−O}n−で表されることを特徴とする請求項1記載の芳香族ポリスルホン重合体。The main chain of the aromatic polysulfone polymer has the chemical formula-{(p-C 6 H 4 ) -SO 2- (p-C 6 H 4 ) -O- (p-C 6 H 4 ) -C (CH 3 ) 2. - (p-C 6 H 4 ) -O} n - it is characterized by being represented by claim 1 the aromatic polysulfone polymer according. 側鎖官能基の密度が主鎖の繰り返し単位当たり0.0001〜0.3であることを特徴とする請求項1記載の芳香族ポリスルホン重合体。The aromatic polysulfone polymer according to claim 1, wherein the density of the side chain functional group is 0.0001 to 0.3 per repeating unit of the main chain. 一般式(II)中のnが2〜5000であることを特徴とする請求項2記載の芳香族ポリスルホン重合体。3. The aromatic polysulfone polymer according to claim 2, wherein n in the general formula (II) is 2 to 5000. テトラヒドロフラン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンおよびクロロホルムのいずれかに可溶であることを特徴とする請求項1記載の重合体。The polymer according to claim 1, which is soluble in any of tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and chloroform . 下記一般式(III)で示されるハロゲン置換基(但し、式中、Xはハロゲン原子を示す。)を有する芳香族ポリスルホン重合体を、ポリアミン化合物と反応させることを特徴とする請求項1記載の芳香族ポリスルホン重合体の製造方法。
X−CH(R1 )−CO−N(R2 )−CH2 − (III)
The aromatic polysulfone polymer having a halogen substituent represented by the following general formula (III) (wherein X represents a halogen atom) is reacted with a polyamine compound. A method for producing an aromatic polysulfone polymer.
X—CH (R 1 ) —CO—N (R 2 ) —CH 2 — (III)
JP33671496A 1996-12-17 1996-12-17 Aromatic polysulfone polymer and process for producing the same Expired - Fee Related JP3690019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33671496A JP3690019B2 (en) 1996-12-17 1996-12-17 Aromatic polysulfone polymer and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33671496A JP3690019B2 (en) 1996-12-17 1996-12-17 Aromatic polysulfone polymer and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10168193A JPH10168193A (en) 1998-06-23
JP3690019B2 true JP3690019B2 (en) 2005-08-31

Family

ID=18302039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33671496A Expired - Fee Related JP3690019B2 (en) 1996-12-17 1996-12-17 Aromatic polysulfone polymer and process for producing the same

Country Status (1)

Country Link
JP (1) JP3690019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503631B2 (en) 2001-04-27 2004-03-08 セイコーエプソン株式会社 Projection zoom lens and projector having the same
JP4534486B2 (en) 2001-10-04 2010-09-01 東レ株式会社 Hydrophilic material and method for producing the same

Also Published As

Publication number Publication date
JPH10168193A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP3851358B2 (en) POLYMER ELECTROLYTE AND METHOD FOR PREPARING THE SAME
AU2004200396A1 (en) Modification of engineering-polymers with basic N groups and ion-exchange groups in the side chain
JP5674395B2 (en) Novel amphiphilic block copolymer, process for producing the same, polymer electrolyte containing the same, and polymer electrolyte membrane using the same
JPH06254158A (en) Diaphragm and its preparation
KR101637267B1 (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
KR20120006764A (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
CN101338033A (en) Naphthaline type sulfonated polyimides, method for synthesizing same and method for preparing proton exchanging film
JP3690019B2 (en) Aromatic polysulfone polymer and process for producing the same
CN114230831A (en) Preparation method of cross-linked anion exchange membrane with high oxidation stability and high ionic conductivity
US4983717A (en) Membrane filter material having excellent organic solvent resistance, method for formation of membrane filter and process for preparation of bismaleimide polymer to be used for membrane filter
CN1226329C (en) Soluble sulphonated polybenzimidazole and process for preparing the same
US4997892A (en) Sulfalkylation of hydroxyethylated polybenzimidazole polymers
JP3584597B2 (en) Polysulfone polymer and method for producing the same
EP1301559B1 (en) Modified sulfonamide polymers
Srividhya et al. Synthesis of novel soluble poly (imide-siloxane) s via hydrosilylation: characterization and structure property behaviour
CN114835826A (en) Zwitterionic cellulose and preparation method and application thereof
JP2542560B2 (en) 2-Isothiocyanatoacylamide methylated aromatic polysulfone and method for producing the same
KR101651093B1 (en) Multi-sulfonated multi-phenyl units contained proton exchange membrane
JP3644117B2 (en) Modified polysulfone semipermeable membrane and method for producing the same
JP3911815B2 (en) Polysulfone polymer, its production method and its use
Chan et al. Synthesis, characterization and reverse osmosis performance of poly (amide-sulfonamide) s
JP2005154742A (en) Film-like material, its manufacturing method and its use
CN110305319B (en) Process for preparing microporous polymers
EP0621301B1 (en) Acylamidomethylated polysulfone and process for producing the same
JPH11140189A (en) Polysulfone polymer and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees