JP3689897B2 - Nucleic acid adsorbent - Google Patents

Nucleic acid adsorbent Download PDF

Info

Publication number
JP3689897B2
JP3689897B2 JP31546495A JP31546495A JP3689897B2 JP 3689897 B2 JP3689897 B2 JP 3689897B2 JP 31546495 A JP31546495 A JP 31546495A JP 31546495 A JP31546495 A JP 31546495A JP 3689897 B2 JP3689897 B2 JP 3689897B2
Authority
JP
Japan
Prior art keywords
nucleic acid
polymer
enzyme
weight
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31546495A
Other languages
Japanese (ja)
Other versions
JPH09154573A (en
Inventor
雅幸 服部
可君 范
健哉 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP31546495A priority Critical patent/JP3689897B2/en
Publication of JPH09154573A publication Critical patent/JPH09154573A/en
Application granted granted Critical
Publication of JP3689897B2 publication Critical patent/JP3689897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度応答性の核酸吸着剤に関する。さらに詳しくは、酵素製造時の酵素の精製工程における核酸の除去や核酸の抽出などに使用することができる核酸を吸着分離可能な温度応答性核酸吸着剤に関する。
【0002】
【従来の技術】
近年、酵素反応が洗浄剤、繊維、食品、種々の産業分野および診断薬のような医療分野にて利用されるようになっており、酵素を低コストで高活性を維持したまま回収する精製方法の開発が望まれている。目的とする酵素の抽出・精製は、まず酵素を生産させた細菌を破壊して無細胞化した後、酵素タンパクとしての変性を防ぐため、温度、pH、イオン強度、基質や補助因子の共存などに留意しつつ、また微生物の汚染も避けながら実施する必要がある。酵素の精製は存在する他の物質から酵素タンパクを分離する一連の分画法であるが、一般には除核酸、安定性による分画、溶解度による分画、分別吸着、カラムクロマトグラフィーによる分画、電気泳動による分画、密度勾配超遠心法による分画、二相分離法などによる分画法がある。
【0003】
酵素の精製においては、通常核酸が酵素と親和性を有し、複合体を形成しやすいため除核酸の工程が不可欠である。この除核酸を効率的に行なうことは、さらに他の精製方法を行う場合においても非常に重要である。従来、除核酸の方法としては、主に塩基性水溶性ポリマーなどからなる核酸吸着剤に核酸を吸着させる方法が使用されてきた。
【0004】
この塩基性水溶性ポリマーとしては、具体的にはポリエチレンイミンやポリアミノアルキルメタクリレート類、アミノアクリルメタクリレートとアクリルアミドの共重合体、ポリビニルイミダゾリンのようなカチオン性ポリマーが知られているが、核酸の吸着後の状態がハイドロゲルのような状態であるため酵素と核酸の分離が困難であり、遠心分離を十分おこなっても酵素の回収率は低かった。また、核酸吸着剤の分子量が高いため、酵素が核酸吸着剤のハイドロゲル状ポリマーに物理的に沈澱物として取り込まれる割合が高いことも収率の低い原因となっている。
【0005】
さらに、除核酸の方法としては、硫酸プロタミンまたは硫酸ストレプトマイシンなどの除核酸剤と核酸を結合させた後、沈澱させて分離する結合沈澱法が知られているが、いずれも沈澱が不十分なため、多量の除核酸剤を必要とし、コストが高くなるという問題があった。
また、その他の除核酸の方法として、水性2相分配法、硫酸アンモニウム分画、pH処理、熱処理などにより粗分画抽出液にすることもできるが、いずれも精製度合いの低いものしか得ることができず、さらに各種クロマトグラフィー処理工程が必須で、各工程での酵素濃縮、脱塩なども必要となり、最終的にコストが高くなる問題があった。
【0006】
一方、近年生体試料から核酸の抽出操作が工業的に広くに行われている。例えば遺伝子工学やDNAプローブの作製においては、目的とするタンパク質を生産する細胞からmRNAやDNAを抽出する操作が、またDNAプローブを用いて例えばウィルスDNA(RNA)を検出する臨床診断においては、生体試料から検出されるべきDNA(RNA)を抽出する操作が行われる。従来、核酸の抽出は、苛性試薬添加後、フェノールなどで抽出操作を数回繰り返し、実施後エタノール沈澱を行なう方法が知られているが、危険な溶剤を使用し、また操作も繁雑で時間がかかり、また、得られる核酸の収率も低いという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、前記従来の技術的課題を背景になされたもので、酵素活性を維持しつつ、効率的に核酸を選択的に吸着でき、危険な溶剤を使用することなく、しかも簡便なプロセスで目的とする核酸を抽出することができる吸着剤を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
前記の目的は、 , N−ジメチルアミノエチルアクリレート、N , N−ジメチルアミノエチルメタクリレート、N , N−ジメチルアミノプロピルアクリルアミド、4−ビニルピリジンおよび2−ビニルピリジンからなる群より選ばれる少なくとも一種の窒素含有塩基性ビニルモノマーを2〜60重量%およびN−イソプロピルアクリルアミドを40〜98重量%含有するモノマーを重合して得られた共重合ポリマーよりなることを特徴とする核酸吸着剤によって達成される。
【0009】
本発明の核酸吸着剤は、酵素を吸着せず、核酸のリン酸基部分に選択的に吸着し、且つ温度の変化により溶解状態から不溶化し析出するという特性を有している。この析出する状態としては、凝集融着状態であり、核酸が大きな塊状となるため酵素と核酸の分離操作も容易であり、しかも分離効率も高い。
本発明における吸着とは、物理的結合および化学的結合の両方を含むものである。
【0010】
以下本発明の核酸吸着剤(以下、単に「吸着剤」と略すことがある)について詳細に説明する。
本発明において吸着剤を形成する共重合ポリマーの製造に使用することのできる、窒素含有塩基性ビニルモノマーは、N , N−ジメチルアミノエチルアクリレート、N , N−ジメチルアミノエチルメタクリレート、N , N−ジメチルアミノプロピルアクリルアミド、4−ビニルピリジンおよび2−ビニルピリジンからなる群より選ばれる少なくとも一種のモノマーである。これらは1種または2種以上で用いられる。
【0011】
窒素含有塩基性ビニルモノマーの使用量としては、全モノマーの2〜60重量%、好ましくは5〜40重量%である。窒素含有塩基性ビニルモノマーが2重量%より少ない場合、核酸を吸着する能力が不足する問題があり、また60重量%を越える場合では、いかなる温度でも共重合ポリマーが水に不溶化しなくなるため、核酸を試料から分離することができなくなる。
【0012】
また、本発明の吸着剤を形成する共重合ポリマーは、温度に対する応答性を付与するためには、N−イソプロピルアクリルアミドを40〜98重量%共重合する必要がある。N−イソプロピルアクリルアミドが40重量%より少ないと、温度応答性がなくなり、核酸を分離することができなくなり、さらに、98重量%を越えると、核酸を吸着する能力が不足するようになる。
また、その他温度応答性を低下させない範囲で、親水性、疎水性などの他のビニルモノマーを使用することができる。その他のビニルモノマーとしては、例えばアクリル酸、メタクリル酸、マレイン酸、イタコン酸などのモノまたはジカルボン酸化合物;2−ヒドロキエチルメタクリレート、N−メチロールアクリルアミド、スチレンスルホン酸ナトリウム、イソプレンスルホン酸ナトリウム、無水マレイン酸、アクリルアミド、メタクリルアミド、N,N−ジメチルアクリルアミドなどのアミド化合物が挙げられる。これらその他のビニルモノマーの使用量は全モノマーの20重量%以下、好ましくは10重量%以下である。
【0013】
本発明において共重合ポリマーを得るための重合方法は、好ましくはラジカル重合であり、その形式は溶液重合、乳化重合または懸濁重合いずれでも良いが、最も好ましい方法は溶液重合である。溶液重合において重合溶媒の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、テトラヒドフラン、N,N−ジメチルホルムアミド、酢酸エチル、トルエンなどが挙げられる。また、重合溶媒には、重合中ポリマーが析出しない範囲で水を組み合わせることもできる。
【0014】
重合開始剤としては、通常のラジカル開始剤が使用でき、アゾイソブチロニトリルのようなアゾ系開始剤、ベンゾイルパーオキサイドなどの有機過酸化物を使用することができる。 重合後、硫酸や塩酸を滴下してpHを7以下にコントロールした後、減圧蒸留などの方法により脱溶剤することにより共重合ポリマー水溶液を得ることができる。
本発明で使用する共重合ポリマーの分子量は、通常1000〜50万、好ましくは2000〜20万である。分子量が1000未満では沈澱しにくくなり、一方50万を超えると粘度が高くなりすぎる。
【0015】
本発明の吸着剤は、水系媒体中において温度の変化により水溶性と不溶性の可逆形態を有する温度応答性のあるポリマーである。本発明の吸着剤の温度応答性は、低温側では溶解しており、高温領域では不溶性となり沈澱するものである。変化する温度は、重合時使用する窒素含有塩基性ビニルモノマーの種類と量、N−イソプロピルアクリルアミドの量、その他のビニルモノマーの種類と量によってコントロールすることができる。温度の調整により形成された沈澱は、遠心分離操作により沈降させることができ上清と沈降ポリマーと分離することができる。具体的には20℃以下では吸着剤の80重量%以上が水系媒体に溶解しており、50℃以上では吸着剤の80重量%以上が水系媒体に不溶化する温度応答性ポリマーが好ましい。20℃以下でポリマーが溶解しない場合は、ポリマーが溶解した状態で核酸を吸着することができず、一方50℃以上で析出しない場合は、核酸を吸着して後分離することができなくなるという問題がある。
【0016】
本発明の吸着剤を用いて除核酸することにより酵素を精製するための試料、および核酸抽出するための試料としては、微生物や組織、細胞、血液などの生体組織が例示できる。これらの試料について、含有されるタンパク質や核酸が吸着剤と接触できない状態、すなわち、試料が細胞壁や細胞膜を有しているか塊状になっている場合などには、必要に応じて例えばホモジナイズ処理あるいは超音波処理を実施すると良い。
【0017】
【実施例】
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
【0018】
実施例1
(1)500mlガラス製耐圧瓶中で、ジメチルアミノエチルアクリレート20gと、N−イソプロピルアクリルアミド80gを、メタノール200gに溶解し重合開始剤としてアゾビスイソブチロニトリル0.2gを加え70℃で5時間重合した。重合転化率は98%であった。0.5重量%硫酸水溶液400g添加した後減圧蒸留によりメタノールおよび残留モノマーを除去して水溶液とした。調整水およびpH調整剤を添加することにより固形分濃度10重量%、pH6.3のポリマー水溶液[ポリマー(1)]とした。
得られたポリマー(1)の温度応答性を測定したところ30℃以下では透明で溶解し、35℃以上では不溶化により析出した。この変化は可逆的であった。
(2)超音波破砕および遠心分離により得られたPseudmonas sp. F−126の無細胞抽出液(0.01Mリン酸カリウム緩衝液、pH6.2)にタンパク質10gあたり前記温度応答性ポリマー[ポリマー(1)]10重量%水溶液100gを20℃で攪拌しながら滴下しポリマーに核酸を吸着させた。30分後液温を40℃に昇温し、温度応答性共重合ポリマーを析出させ、遠心分離により上清を得た。この操作で上清に得られたγ−アミノ酪酸トランスアミナーゼの比活性は変化せず、酵素活性の回収率は87%であった。
【0019】
比較例1
実施例1(1)において、モノマーとしてジメチルアミノエチルアクリレート65gおよびN−イソプロピルアクリルアミド35gを使用した他は実施例1(1)と同様な操作でポリマー(2)を得た。ポリマー(2)の温度応答性を測定したところ、10℃から90℃まで溶解した状態であり温度応答性はなかった。実施例1(2)と同様にして核酸吸着剤としての使用を検討したが、すべての温度で析出しないため、核酸と酵素を分離することはできなかった。
【0020】
比較例2
実施例1(1)において、モノマーとしてジメチルアミノエチルアクリレート1gおよびN−イソプロピルアクリルアミドを99gを使用した他は実施例1(1)と同様な操作でポリマー(3)を得た。ポリマー(3)の温度応答性を測定したところ、31℃以下では透明で33℃以上では析出するという非常に優れた温度応答性を有していた。しかし、実施例1(2)と同様にして核酸吸着剤として使用したところ、ポリマーの核酸を吸着する能力が不十分なため、核酸と酵素を分離することはできなかった。
【0021】
実施例2
(1)1Lオートクレーブ中で、4−ビニルピリジン40gとN−イソプロピルアクリルアミド160gをエチルアルコール400gに溶解し重合開始剤としてベンゾイルパーオキサイド0.5gを加え80℃で4時間重合した。重合転化率は95%であった。1重量%硫酸水溶液800gを添加しロータリーエバポレーターでエチルアルコールおよび残留モノマーを除去した後、調製水およびpH調整剤を添加することによりpH5.0、固形分濃度10重量%のポリマー水溶液[ポリマー(4)]を得た。得られたポリマー(4)の温度応答性を測定したところ28℃以下で完全に溶解し透明となり、35℃以上で完全に不溶化し塊状に析出した。
(2)Pseudomonasu graveolens IFO 3460(2Kg)から超音波破砕により調製した無細胞抽出液(500mL)に前記ポリマー(4)の10重量%水溶液(pH5.0)を100g添加して20℃でポリマーに核酸を吸着した。その後40℃に昇温してポリマー(4)を析出させ、40℃に維持したまま遠心分離したところ、糖、脂質などの夾雑物と同時にポリマーが核酸に吸着した状態の沈澱物として核酸を除去できた。この操作で上清に得られたアルギニンラセマーゼの比活性はほとんど変化なく、酵素活性の回収率は82%で良好であった。
【0022】
実施例3
(1)500mlガラス製耐圧瓶中で、ジメチルアミノエチルアクリレート30gと、N−イソプロピルアクリルアミドを、メタノール150gに溶解し重合開始剤としてアゾビスイソブチロニトリル0.5gを加え70℃で12時間重合した。重合転化率は95%であった。1重量%硫酸水溶液400g添加した後減圧蒸留によりメタノールおよび残留モノマーを除去して水溶液とした。調整水およびpH調整剤を添加することにより固形分濃度10重量%、pH7.1のポリマー水溶液[ポリマー(5)]とした。
得られたポリマー(5)の温度応答性を測定したところ、40℃以下では透明で溶解して、48℃以上では不溶化により析出した。この変化は可逆的であった。
(2)ヒト白血球の癌細胞であるK562細胞を1%牛胎児血清を含むPRM1−1640培地で培養した。培養懸濁液1mLあたり50万の細胞となった時点で1mLの懸濁液をサンプリングチューブにとり、500rpmで5分間遠心分離し、沈澱に細胞を回収した。
細胞に対し1mLのリン酸カリウム緩衝液pH7.2を添加した後、超音波処理により、無細胞化した後、3000rpmで30分間遠心分離を行い上清を得た。この上清にポリマー(5)の10%水溶液を、100μL添加し30分間攪拌後pH8の緩衝液を10mL添加し、50℃に昇温することにより核酸を吸着した状態で沈澱させ、50℃に維持したまま遠心分離により上清と分離した。沈澱に5℃のpH7.2の緩衝液1mlを添加することにより核酸溶液を得た。以上のように抽出された核酸について制限酵素を作用させた結果、これらの酵素による反応は阻害されることはなかった。
【0023】
実施例4
実施例3で得たK562細胞溶解液を、それぞれ0.5mL、3本の2mL遠心チューブに取り、pH5の10mMリン酸緩衝液で2mLまで希釈した。この希釈液の中に、エイズウイルスDNAを組み込んで培養したヒト白血球(NY10株)から取ったHIV−1DNAを、チューブ1、2、3に、0分子、10分子、50分子をそれぞれ加えた。ボルテックス後、各チューブに実施例3で使用したポリマー(5)の固形分濃度10重量%ポリマー水溶液を2μL添加し、室温で5分間回転攪拌した(10rpm)。次いで、50℃に昇温してポリマーを析出させた後、50℃に維持したまま、3000rpmで3分間遠心した。上澄みをアスピレーターで吸引して除去し、得られた沈澱をpH7の10mM Tris−HCl緩衝液でリンスした後、25μLのポリメラーゼチェーンリアクション(PCR)反応溶液を加えて、PCR反応を行った。
PCR反応液の組成は下記のとおりであった。

Figure 0003689897
プライマー SK145Aの配列は、
【0024】
5’CCCACAAGATTTAAACACCA 3’
【0025】
プライマー SK451Aの配列は、
【0026】
5’TGAAGGGTACTAGTAGTTCC 3’
【0027】
であって、これらのアプライドバイオシステム社製DNA合成器381A型を用いて、メーカーマニュアルに従って合成し、HPLCにより精製品を得た。
なお、PCR反応はPERKIN ELMER CETUS社製のサーマルサイクラー モデルJP2000を用いて、次のプログラムで増幅反応を行った。
94℃ 0.5分
55℃ 1.0分
72℃ 1.5分
30サイクル
72℃ 7分
【0028】
上記1回目のPCR法による増幅反応の生成物を5μL取り、同様なプログラムでNested PCR法の反応を行った。その時のPCR法の反応液の組成はプライマーSK145の代わりにSK145(タカラ製)、SK451Aの代わりにSK451を使用した以外は同様に行った。
PCR法およびNested PCR法の反応増幅産物を2重量%のアガロースゲル(Agarose 1600、和光純薬製)を用いてTBE緩衝液(50mMホウ酸からなる緩衝液、pH8.2)中でMupid型電気泳動装置で泳動し、エチジウムブロマイド染色後に紫外線(254nm)照射下で検出した。その結果を下記表1にまとめて示す。この結果より、本発明の吸着剤を用いることによりDNAのみ回収することができるため、PCR法に利用できることがわかった。
【0029】
【表1】
Figure 0003689897
【0030】
【発明の効果】
本発明の核酸吸着剤を使用すると、酵素反応液の温度を変化させるという簡単な操作で核酸を容易に回収できるので、酵素の精製が容易に可能となり、目的とする酵素を効率良く回収できるとともに、酵素の活性が高いため酵素精製方法が著しく簡略化される効果がある。また本発明の核酸吸着剤の使用により、核酸を抽出するにあたり危険な溶剤を使用することなく、簡便なプロセスで短時間に目的とする核酸を抽出できる効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature-responsive nucleic acid adsorbent. More specifically, the present invention relates to a temperature-responsive nucleic acid adsorbent capable of adsorbing and separating nucleic acids that can be used for nucleic acid removal or nucleic acid extraction in an enzyme purification step during enzyme production.
[0002]
[Prior art]
In recent years, enzyme reactions have been used in medical fields such as detergents, fibers, foods, various industrial fields and diagnostic agents, and purification methods for recovering enzymes while maintaining high activity at low cost Development is desired. In order to extract and purify the target enzyme, the bacteria that produced the enzyme are first destroyed and made cell-free, and then the temperature, pH, ionic strength, coexistence of substrates and cofactors are prevented to prevent denaturation as an enzyme protein. However, it is necessary to carry out the process while avoiding the contamination of microorganisms. Enzyme purification is a series of fractionation methods that separate enzyme proteins from other substances present, but generally denucleic acid, fractionation by stability, fractionation by solubility, fractional adsorption, fractionation by column chromatography, There are fractionation methods such as fractionation by electrophoresis, fractionation by density gradient ultracentrifugation, and two-phase separation.
[0003]
In the purification of an enzyme, a nucleic acid removal step is indispensable because a nucleic acid usually has an affinity for an enzyme and easily forms a complex. Efficiently performing this denucleic acid is very important even when performing other purification methods. Conventionally, as a method for removing nucleic acid, a method in which a nucleic acid is adsorbed on a nucleic acid adsorbent mainly composed of a basic water-soluble polymer has been used.
[0004]
Specific examples of this basic water-soluble polymer include polyethyleneimine, polyaminoalkyl methacrylates, copolymers of aminoacryl methacrylate and acrylamide, and cationic polymers such as polyvinyl imidazoline. Since this state is like a hydrogel, it was difficult to separate the enzyme and the nucleic acid, and the enzyme recovery rate was low even after sufficient centrifugation. In addition, since the molecular weight of the nucleic acid adsorbent is high, a high ratio of the enzyme being physically incorporated as a precipitate in the hydrogel polymer of the nucleic acid adsorbent also causes a low yield.
[0005]
Furthermore, as a method of removing nucleic acid, a binding precipitation method is known in which a nucleic acid is bound to a nucleic acid-removing agent such as protamine sulfate or streptomycin sulfate, and then precipitated and separated. There is a problem that a large amount of a nucleic acid removing agent is required and the cost is increased.
In addition, as other methods for removing nucleic acid, a crude fraction extract can be obtained by an aqueous two-phase partition method, ammonium sulfate fractionation, pH treatment, heat treatment, etc., but all can be obtained only with a low degree of purification. Furthermore, various chromatographic treatment steps are essential, and enzyme concentration and desalting are also required in each step, resulting in a problem that costs are finally increased.
[0006]
On the other hand, in recent years, nucleic acid extraction operations from biological samples have been widely performed industrially. For example, in genetic engineering and preparation of DNA probes, the operation of extracting mRNA and DNA from cells that produce the target protein, and in clinical diagnosis in which, for example, viral DNA (RNA) is detected using a DNA probe, An operation of extracting DNA (RNA) to be detected from the sample is performed. Conventionally, for nucleic acid extraction, a method is known in which after adding a caustic reagent, the extraction operation is repeated several times with phenol or the like, followed by ethanol precipitation. However, using a dangerous solvent, the operation is complicated and time-consuming. In addition, there is a problem that the yield of the nucleic acid obtained is low.
[0007]
[Problems to be solved by the invention]
The present invention has been made against the background of the above-mentioned conventional technical problems, and can efficiently adsorb nucleic acids while maintaining enzyme activity, without using a dangerous solvent, and in a simple process. An object of the present invention is to provide an adsorbent capable of extracting a target nucleic acid.
[0008]
[Means for Solving the Problems]
The foregoing objects, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropyl acrylamide, at least one selected from the group consisting of 4-vinylpyridine and 2-vinylpyridine It is achieved by a nucleic acid adsorbent comprising a copolymer obtained by polymerizing a monomer containing 2 to 60% by weight of a nitrogen-containing basic vinyl monomer and 40 to 98% by weight of N-isopropylacrylamide. .
[0009]
The nucleic acid adsorbent of the present invention has characteristics that it does not adsorb an enzyme, selectively adsorbs on the phosphate group portion of the nucleic acid, and insolubilizes and precipitates from a dissolved state due to a change in temperature. The precipitated state is an agglomerated and fused state. Since the nucleic acid is in a large mass, the separation operation of the enzyme and the nucleic acid is easy, and the separation efficiency is high.
The adsorption in the present invention includes both physical bonds and chemical bonds.
[0010]
Hereinafter, the nucleic acid adsorbent of the present invention (hereinafter sometimes simply referred to as “adsorbent”) will be described in detail.
Nitrogen-containing basic vinyl monomers that can be used in the production of the copolymer forming the adsorbent in the present invention are N 1 , N-dimethylaminoethyl acrylate, N 2 , N-dimethylaminoethyl methacrylate, N 2 , N- It is at least one monomer selected from the group consisting of dimethylaminopropylacrylamide, 4-vinylpyridine and 2-vinylpyridine. These are used alone or in combination of two or more.
[0011]
The amount of the nitrogen-containing basic vinyl monomer used is 2 to 60% by weight, preferably 5 to 40% by weight, based on the total monomers. When the nitrogen-containing basic vinyl monomer is less than 2% by weight, there is a problem that the ability to adsorb nucleic acid is insufficient, and when it exceeds 60% by weight, the copolymer does not become insoluble in water at any temperature. Cannot be separated from the sample.
[0012]
In addition, the copolymer forming the adsorbent of the present invention needs to copolymerize 40 to 98% by weight of N-isopropylacrylamide in order to impart responsiveness to temperature. When the amount of N-isopropylacrylamide is less than 40% by weight, the temperature responsiveness is lost and the nucleic acid cannot be separated, and when it exceeds 98% by weight, the ability to adsorb the nucleic acid becomes insufficient.
In addition, other vinyl monomers such as hydrophilicity and hydrophobicity can be used as long as the temperature responsiveness is not lowered. Examples of other vinyl monomers include mono- or dicarboxylic acid compounds such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid; 2-hydroxyethyl methacrylate, N-methylolacrylamide, sodium styrenesulfonate, sodium isoprenesulfonate, and maleic anhydride. Examples thereof include amide compounds such as acid, acrylamide, methacrylamide, and N, N-dimethylacrylamide. The amount of these other vinyl monomers used is 20% by weight or less, preferably 10% by weight or less of the total monomers.
[0013]
In the present invention, the polymerization method for obtaining the copolymer is preferably radical polymerization, and the form thereof may be any of solution polymerization, emulsion polymerization or suspension polymerization, but the most preferable method is solution polymerization. Specific examples of the polymerization solvent in the solution polymerization include methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, tetrahydrofuran, N, N-dimethylformamide, ethyl acetate, toluene and the like. Moreover, water can also be combined with the polymerization solvent as long as the polymer does not precipitate during the polymerization.
[0014]
As the polymerization initiator, a normal radical initiator can be used, and an azo initiator such as azoisobutyronitrile and an organic peroxide such as benzoyl peroxide can be used. After the polymerization, sulfuric acid or hydrochloric acid is added dropwise to control the pH to 7 or less, and then the aqueous solution of the copolymer is obtained by removing the solvent by a method such as vacuum distillation.
The molecular weight of the copolymer used in the present invention is usually 1000 to 500,000, preferably 2000 to 200,000. If the molecular weight is less than 1000, precipitation is difficult, while if it exceeds 500,000, the viscosity becomes too high.
[0015]
The adsorbent of the present invention is a temperature-responsive polymer having a water-soluble and insoluble reversible form due to temperature change in an aqueous medium. The temperature responsiveness of the adsorbent of the present invention is such that it dissolves on the low temperature side and becomes insoluble and precipitates in the high temperature region. The changing temperature can be controlled by the type and amount of the nitrogen-containing basic vinyl monomer used during polymerization, the amount of N-isopropylacrylamide, and the type and amount of other vinyl monomers. The precipitate formed by adjusting the temperature can be precipitated by a centrifugal separation operation, and can be separated from the supernatant and the precipitated polymer. Specifically, a temperature-responsive polymer in which 80% by weight or more of the adsorbent is dissolved in the aqueous medium at 20 ° C. or less, and 80% by weight or more of the adsorbent is insoluble in the aqueous medium at 50 ° C. or more is preferable. If the polymer does not dissolve at 20 ° C. or lower, the nucleic acid cannot be adsorbed in the dissolved state. On the other hand, if the polymer does not precipitate at 50 ° C. or higher, the nucleic acid cannot be adsorbed and then separated. There is.
[0016]
Examples of the sample for purifying the enzyme by removing the nucleic acid using the adsorbent of the present invention and the sample for extracting the nucleic acid include biological tissues such as microorganisms, tissues, cells, and blood. For these samples, if the contained protein or nucleic acid cannot contact the adsorbent, that is, if the sample has a cell wall or cell membrane or is in the form of a lump, for example, homogenization treatment or super Sonication may be performed.
[0017]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
[0018]
Example 1
(1) In a 500 ml glass pressure bottle, 20 g of dimethylaminoethyl acrylate and 80 g of N-isopropylacrylamide were dissolved in 200 g of methanol, and 0.2 g of azobisisobutyronitrile was added as a polymerization initiator at 70 ° C. for 5 hours. Polymerized. The polymerization conversion rate was 98%. After adding 400 g of 0.5% by weight sulfuric acid aqueous solution, methanol and residual monomers were removed by distillation under reduced pressure to obtain an aqueous solution. By adding adjusted water and a pH adjuster, a polymer aqueous solution [polymer (1)] having a solid content of 10% by weight and a pH of 6.3 was obtained.
When the temperature responsiveness of the obtained polymer (1) was measured, it was transparent and dissolved at 30 ° C. or lower, and precipitated by insolubilization at 35 ° C. or higher. This change was reversible.
(2) The temperature-responsive polymer [polymer (10 g) per 10 g of protein was added to a cell-free extract of Pseudomonas sp. F-126 (0.01 M potassium phosphate buffer, pH 6.2) obtained by ultrasonic disruption and centrifugation. 1)] 100 g of a 10% by weight aqueous solution was added dropwise with stirring at 20 ° C. to adsorb the nucleic acid to the polymer. After 30 minutes, the liquid temperature was raised to 40 ° C. to precipitate a temperature-responsive copolymer, and a supernatant was obtained by centrifugation. The specific activity of γ-aminobutyric acid transaminase obtained in the supernatant by this operation did not change, and the recovery rate of the enzyme activity was 87%.
[0019]
Comparative Example 1
A polymer (2) was obtained in the same manner as in Example 1 (1) except that 65 g of dimethylaminoethyl acrylate and 35 g of N-isopropylacrylamide were used as monomers in Example 1 (1). When the temperature responsiveness of the polymer (2) was measured, it was in a dissolved state from 10 ° C. to 90 ° C., and there was no temperature responsiveness. Although the use as a nucleic acid adsorbent was examined in the same manner as in Example 1 (2), the nucleic acid and the enzyme could not be separated because they did not precipitate at all temperatures.
[0020]
Comparative Example 2
A polymer (3) was obtained in the same manner as in Example 1 (1) except that 1 g of dimethylaminoethyl acrylate and 99 g of N-isopropylacrylamide were used as monomers in Example 1 (1). When the temperature responsiveness of the polymer (3) was measured, it had a very excellent temperature responsiveness that it was transparent at 31 ° C. or lower and precipitated at 33 ° C. or higher. However, when it was used as a nucleic acid adsorbent in the same manner as in Example 1 (2), it was not possible to separate the nucleic acid and the enzyme due to insufficient ability to adsorb the nucleic acid of the polymer.
[0021]
Example 2
(1) In a 1 L autoclave, 40 g of 4-vinylpyridine and 160 g of N-isopropylacrylamide were dissolved in 400 g of ethyl alcohol, 0.5 g of benzoyl peroxide was added as a polymerization initiator, and polymerization was carried out at 80 ° C. for 4 hours. The polymerization conversion rate was 95%. After adding 800 g of a 1% by weight aqueous sulfuric acid solution and removing ethyl alcohol and residual monomers with a rotary evaporator, by adding prepared water and a pH adjuster, an aqueous polymer solution having a pH of 5.0 and a solid concentration of 10% by weight [polymer (4 )]. When the temperature responsiveness of the obtained polymer (4) was measured, it completely dissolved and became transparent at 28 ° C. or lower, completely insolubilized at 35 ° C. or higher and precipitated in a lump.
(2) 100 g of a 10 wt% aqueous solution (pH 5.0) of the polymer (4) was added to a cell-free extract (500 mL) prepared by ultrasonic disruption from Pseudomonas graveolens IFO 3460 (2 Kg), and the polymer was added at 20 ° C. Nucleic acid was adsorbed. Then, the temperature was raised to 40 ° C. to precipitate the polymer (4), and centrifugation was carried out while maintaining the temperature at 40 ° C. As a result, the nucleic acid was removed as a precipitate in which the polymer was adsorbed to the nucleic acid at the same time as sugars and lipids. did it. The specific activity of arginine racemase obtained in the supernatant by this operation hardly changed, and the recovery rate of enzyme activity was good at 82%.
[0022]
Example 3
(1) In a pressure bottle made of 500 ml glass, 30 g of dimethylaminoethyl acrylate and N-isopropylacrylamide were dissolved in 150 g of methanol, 0.5 g of azobisisobutyronitrile was added as a polymerization initiator, and polymerization was carried out at 70 ° C. for 12 hours. did. The polymerization conversion rate was 95%. After adding 400 g of a 1% by weight sulfuric acid aqueous solution, methanol and residual monomers were removed by distillation under reduced pressure to obtain an aqueous solution. By adding adjusted water and a pH adjuster, a polymer aqueous solution [polymer (5)] having a solid content of 10% by weight and a pH of 7.1 was obtained.
When the temperature responsiveness of the obtained polymer (5) was measured, it was transparent and dissolved at 40 ° C. or lower and precipitated by insolubility at 48 ° C. or higher. This change was reversible.
(2) K562 cells, which are human leukocyte cancer cells, were cultured in PRM1-1640 medium containing 1% fetal bovine serum. When 500,000 cells were obtained per 1 mL of the culture suspension, 1 mL of the suspension was placed in a sampling tube, centrifuged at 500 rpm for 5 minutes, and the cells were recovered in the precipitate.
After adding 1 mL of potassium phosphate buffer pH 7.2 to the cells, the cells were made non-cellular by sonication, and then centrifuged at 3000 rpm for 30 minutes to obtain a supernatant. To this supernatant, 100 μL of a 10% aqueous solution of polymer (5) was added, stirred for 30 minutes, 10 mL of a pH 8 buffer solution was added, and the mixture was heated to 50 ° C. to precipitate the nucleic acid adsorbed. While maintaining, it was separated from the supernatant by centrifugation. A nucleic acid solution was obtained by adding 1 ml of pH 7.2 buffer at 5 ° C. to the precipitate. As a result of the restriction enzymes acting on the nucleic acids extracted as described above, the reaction by these enzymes was not inhibited.
[0023]
Example 4
The K562 cell lysate obtained in Example 3 was taken into 0.5 mL and three 2 mL centrifuge tubes, respectively, and diluted to 2 mL with pH 5 10 mM phosphate buffer. Into this diluted solution, HIV-1 DNA taken from human leukocytes (NY10 strain) cultured by incorporating AIDS virus DNA was added to tubes 1, 2, and 3, respectively. After vortexing, 2 μL of a 10% by weight polymer aqueous solution of the polymer (5) used in Example 3 was added to each tube and stirred at room temperature for 5 minutes (10 rpm). Subsequently, after heating up to 50 degreeC and depositing a polymer, it centrifuged at 3000 rpm for 3 minutes, maintaining at 50 degreeC. The supernatant was removed by aspiration with an aspirator, and the resulting precipitate was rinsed with 10 mM Tris-HCl buffer at pH 7, and then 25 μL of a polymerase chain reaction (PCR) reaction solution was added to carry out a PCR reaction.
The composition of the PCR reaction solution was as follows.
Figure 0003689897
The sequence of primer SK145A is
[0024]
5'CCCACAAGATTTAAACACCA 3 '
[0025]
The sequence of primer SK451A is
[0026]
5 'TGAAGGGTACTAGTAGTTCC 3'
[0027]
Then, using these DNA synthesizers 381A manufactured by Applied Biosystems, synthesis was performed according to the manufacturer's manual, and purified products were obtained by HPLC.
In addition, PCR reaction performed amplification reaction with the following program using the thermal cycler model JP2000 made from PERKIN ELMER CETUS.
94 ° C 0.5 min 55 ° C 1.0 min 72 ° C 1.5 min 30 cycles 72 ° C 7 min
5 μL of the product of the amplification reaction by the first PCR method was taken, and the nested PCR method reaction was performed with the same program. The composition of the PCR reaction solution at that time was the same except that SK145 (manufactured by Takara) was used instead of primer SK145 and SK451 was used instead of SK451A.
PCR-type and nested PCR-type reaction amplification products using a 2% by weight agarose gel (Agarose 1600, manufactured by Wako Pure Chemical Industries, Ltd.) in TBE buffer (buffer solution consisting of 50 mM boric acid, pH 8.2), Mupid type electric Electrophoresis was performed using an electrophoresis apparatus, and after ethidium bromide staining, detection was performed under ultraviolet light (254 nm) irradiation. The results are summarized in Table 1 below. From this result, it was found that only the DNA can be recovered by using the adsorbent of the present invention, so that it can be used for the PCR method.
[0029]
[Table 1]
Figure 0003689897
[0030]
【The invention's effect】
When the nucleic acid adsorbent of the present invention is used, the nucleic acid can be easily recovered by a simple operation of changing the temperature of the enzyme reaction solution, so that the enzyme can be easily purified and the target enzyme can be recovered efficiently. Since the activity of the enzyme is high, the enzyme purification method is remarkably simplified. In addition, the use of the nucleic acid adsorbent of the present invention has an effect of extracting a target nucleic acid in a short time by a simple process without using a dangerous solvent in extracting the nucleic acid.

Claims (1)

, N−ジメチルアミノエチルアクリレート、N , N−ジメチルアミノエチルメタクリレート、N , N−ジメチルアミノプロピルアクリルアミド、4−ビニルピリジンおよび2−ビニルピリジンからなる群より選ばれる少なくとも一種の窒素含有塩基性ビニルモノマーを2〜60重量%およびN−イソプロピルアクリルアミドを40〜98重量%含有するモノマーを重合して得られた共重合ポリマーよりなることを特徴とする核酸吸着剤。 N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropyl acrylamide, 4-vinylpyridine and at least one nitrogen-containing basic vinyl selected from the group consisting of 2-vinylpyridine A nucleic acid adsorbent comprising a copolymer obtained by polymerizing a monomer containing 2 to 60% by weight of a monomer and 40 to 98% by weight of N-isopropylacrylamide.
JP31546495A 1995-12-04 1995-12-04 Nucleic acid adsorbent Expired - Fee Related JP3689897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31546495A JP3689897B2 (en) 1995-12-04 1995-12-04 Nucleic acid adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31546495A JP3689897B2 (en) 1995-12-04 1995-12-04 Nucleic acid adsorbent

Publications (2)

Publication Number Publication Date
JPH09154573A JPH09154573A (en) 1997-06-17
JP3689897B2 true JP3689897B2 (en) 2005-08-31

Family

ID=18065681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31546495A Expired - Fee Related JP3689897B2 (en) 1995-12-04 1995-12-04 Nucleic acid adsorbent

Country Status (1)

Country Link
JP (1) JP3689897B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE278035T1 (en) * 1999-05-04 2004-10-15 Ortho Clinical Diagnostics Inc FAST AND EFFECTIVE DNA IMMOBILIZATION FROM A SAMPLE WITHOUT THE USE OF CELL LYSIS REAGENTS
US6660247B1 (en) 2000-06-23 2003-12-09 Battelle Memorial Institute Multiple stimulus reversible hydrogels
KR100647306B1 (en) * 2004-12-23 2006-11-23 삼성전자주식회사 1 Method for isolating a nucleic acid using a material positively charged at the first pH and comprising an amino group and a carboxyl group
JP5490478B2 (en) * 2009-09-30 2014-05-14 ダイセン・メンブレン・システムズ株式会社 Acrylic polymer
EP3795242A1 (en) 2011-08-19 2021-03-24 Kyushu University, National University Corporation Membrane for recovering co2
WO2017104676A1 (en) * 2015-12-14 2017-06-22 Jsr株式会社 Polymer, antimicrobial agent, disinfectant, antimicrobial material, disinfectant material, antimicrobial method, and disinfecting method
CN111892689B (en) * 2020-08-14 2023-04-25 东南大学成贤学院 Nucleic acid hydrogel and preparation method thereof

Also Published As

Publication number Publication date
JPH09154573A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
AU706641B2 (en) Methods for capture and selective release of nucleic acids using weakly basic polymer and amplification of same
JP3905132B2 (en) Purification of plasmid DNA using column chromatography in the presence of PEG
JP2001204462A (en) Method for extraction of nucleic acid
EP0268946A2 (en) Method for separating long-chain nucleic acids
EP1312627B1 (en) Polymers
JP2013143946A (en) Composition and method for detecting viral specific nucleic acid in urine
WO2009020609A2 (en) Isolation of nucleic acids molecules using modified solid supports
EP1856295B1 (en) Compositions and methods for detecting viral specific nucleic acids in urine
JP2011015691A (en) Method for rapidly and efficiently capturing dna from sample without using cell lysing reagent
JP3689897B2 (en) Nucleic acid adsorbent
JP2004508002A5 (en)
JP3689896B2 (en) Nucleic acid adsorbent
CA2362979A1 (en) Method for isolating nucleic acids
EP0388171B1 (en) Methods for purification, amplification and detection of a nucleic acid
JP3800615B2 (en) Method for preparing nucleic acid diagnostic particle and method for detecting target nucleic acid in test sample using the nucleic acid diagnostic particle
JP4161167B2 (en) Virus concentration method, virus detection method, and virus concentration reagent
JP3448776B2 (en) Carrier for nucleic acid binding, method for preparing the same, and method for detecting target nucleic acid
JP3718840B2 (en) Enzyme separation method
JP3873316B2 (en) Enzyme modifier
KR20240028700A (en) Polymer thin film for capturing and releasing nucleic acid with high efficiency and method for extracting nucleic acid using the same
JP4380807B2 (en) Method for separating nucleic acids
KR20240113665A (en) Container with positively-charged polymer thin film for extracting nucleic acid and one-pot method utilizing charge-shifting polyplexes for detecting nuclecic acid
JP2001161356A (en) Virus-concentrating particle, method of concentrating virus by utilizing the same, and method of detecting virus
JPH0691824B2 (en) Novel recombinant containing reverse transcriptase gene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees