JP3689879B2 - Digital signal transmission method by antenna coupling - Google Patents

Digital signal transmission method by antenna coupling Download PDF

Info

Publication number
JP3689879B2
JP3689879B2 JP32068496A JP32068496A JP3689879B2 JP 3689879 B2 JP3689879 B2 JP 3689879B2 JP 32068496 A JP32068496 A JP 32068496A JP 32068496 A JP32068496 A JP 32068496A JP 3689879 B2 JP3689879 B2 JP 3689879B2
Authority
JP
Japan
Prior art keywords
inclinometer
borehole
digital signal
long
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32068496A
Other languages
Japanese (ja)
Other versions
JPH10135885A (en
Inventor
常生 山内
Original Assignee
有限会社テクノ東郷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18124188&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3689879(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 有限会社テクノ東郷 filed Critical 有限会社テクノ東郷
Priority to JP32068496A priority Critical patent/JP3689879B2/en
Publication of JPH10135885A publication Critical patent/JPH10135885A/en
Application granted granted Critical
Publication of JP3689879B2 publication Critical patent/JP3689879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
この発明は,人が近づけない場所に設置した測定装置から受信装置にデジタル信号を伝送する方法に関わる.この方法は,特に,地中に埋設して長期間使用する測定装置のデータ伝送方法に関わり,測定装置を落雷から保護する構成であるし,測定装置のケーブルを少なくできる構成である.
【従来の技術】
地中に埋設したひずみ計や傾斜計の場合,測定装置の信号線や電源線は装置と一体となっており,これらのケーブルは埋設した測定装置と地表の測定装置との間で,直接接続されている.このため,測定装置のケーブルが長くなると重量が増加し測定装置を埋設しにくい.また,この信号線が長くなると誘導電圧の影響で測定結果が乱れるし,落雷によって生じる高い誘導電圧で,埋設した測定装置の電子回路が故障する.電子回路が故障した場合,経費をかけて測定装置を再設置せねばならない.
【発明が解決しようとする課題】
この発明では,測定装置に信号線を取り付けることなくデジタル信号を受信装置に伝送する方法を提供する.また,測定装置に電力を送る同軸ケーブルを介して信号を伝送し,ケーブルの重量を減らす方法を提供する.
【課題を解決するための手段】
人が近づけない場所に設置した測定装置のデジタル信号を受信装置に伝送する方式において,本発明で講じた手段は,図1で示したように測定装置近傍にカップリングさせたアンテナ100を設け,電波を介して同軸ケーブルで信号を伝送するようにしたことである.
【発明の実施の形態】
本発明の実施例を図2で示した.図2において,地中に埋設した測定装置200にデジタル値を電波に変換するユニット201を設け,その201にアンテナ202を設ける.この202より電波を送出し,カップリングさせたアンテナ203で受信する.203は地表の受信装置205に取り付けた同軸ケーブル204の先端に設ける.アンテナ202と203のカップリングは200の内部か近傍で行う.205では伝送された電波による信号をデジタル信号に変換する.201で微弱電波で信号を送出したとしても202と203を2から3cmの距離でカップリングさせれば電界強度は十分大きく,同軸ケーブルであれば1Km程度の距離まで信号の伝送ができる.カップリングの距離を短くすれば電界強度はより大きくなって,信号の伝送距離を長くできる.
図3は埋設した測定装置の電源線に同軸ケーブルを使用し,この同軸ケーブルと信号線を兼用する実施例である.図2と同様に,埋設した測定装置300にデジタル信号を電波に変換するユニット301を設け,その301にアンテナ302を設ける.この302とカップリングさせたアンテナ303を,コンデンサー306を介して地表の受信装置305に取り付けた同軸ケーブル304の先端に取り付ける.アンテナのカップリングは300の内部か近傍で行う.305の直流電源用の電源線としての304と303を,306を使用して接続しても,インピーダンスをマッチングさせればデータ伝送は可能である.必要であればマッチングに複数の306を使用する.
図4は,図2や図3とは信号の伝送方向が逆になった構成の実施例である.この実施例では,地表の送信装置405より埋設した測定装置の制御信号等のデジタル信号を電波に変換し,その変換された電波を同軸ケーブル404で送信し,カップリングされたアンテナ403,402を介してその電波を受信ユニット401で受信し,埋設した測定装置400でデジタル信号に変換する.405で微弱電波で信号を送出したとしても402と403を2から3cmの距離でカップリングさせれば電界強度は十分大きく,同軸ケーブルであれば1Km程度の距離まで信号の伝送ができる.前述の場合と同様に,カップリングの距離を短くすれば電界強度を大きくできるため,信号の伝送距離が長くなる.
図2から図4の実施例で記述した信号の伝送方法は,測定装置を地中に埋設して使用する場合についてである.測定装置を海底や水中に設置しても前述した方法で信号の伝送ができるし,人が近づくと危険である地滑り地帯や建造物内部に測定装置を設置した場合でも前記した方法で信号の伝送ができる.
【発明の効果】
この発明では,人が近づけない場所に設置した測定装置の信号線をなくする方法を提供した.この方法であれば,1)測定装置は信号線を介して進入する誘導電圧の影響を受けなくなり,測定結果が乱れない.また,2)故障の原因である落雷の影響による誘導電圧が,設置した測定装置の電子回路に加わらなくなる.電子回路が故障しなければ測定装置を再設置する経費を削減できる.一方,設置した測定装置の電源線と信号線を兼用すれば,測定装置に取り付けるケーブルの重量を減らすことができ,測定装置を設置しやすくする.
ファイバー線を用いて光によってデータの伝送を行えば,上記した1),2)の問題は解決できる.けれども,現時点では,ファイバー線をステンレスパイプに入れる必要がある.このため,ケーブルを簡単に曲げることができず,測定装置が設置しにくい.また,光を用いた信号の伝送方法は消費電流が多く,微弱電波により信号を伝送する場合の約10倍になる.したがって,測定装置を離れた地点に設置したり,深い地点に埋設するには,電源線による電圧降下が小さい微弱電波による方法が優れている.しかも,周波数の違う電波を使用すれば,同じ同軸ケーブルで複数の地点から,同時に,データ伝送することが可能である.
【図面の簡単な説明】
【図1】 カップリングさせたアンテナの概念図.
【図2】 本発明による実施例のブロック図.
【図3】 本発明による他の実施例のブロック図.
【図4】 本発明による他の実施例のブロック図.
【符号の説明】
100 ‥‥ カップリングさせたアンテナ,
200 ‥‥ 埋設した測定装置, 201 ‥‥ 電波の送信ユニット,
202 ‥‥ アンテナ, 203 ‥‥ アンテナ,
204 ‥‥ 同軸ケーブル, 205 ‥‥ 地表の受信装置,
300 ‥‥ 埋設した測定装置, 301 ‥‥ 電波の送信ユニット,
302 ‥‥ アンテナ, 303 ‥‥ アンテナ,
304 ‥‥ 同軸ケーブル, 305 ‥‥ 地表の受信装置,
306 ‥‥ コンデンサー,
400 ‥‥ 埋設した測定装置, 401 ‥‥ 電波の受信ユニット,
402 ‥‥ アンテナ, 403 ‥‥ アンテナ,
404 ‥‥ 同軸ケーブル, 405 ‥‥ 地表の受信装置,
BACKGROUND OF THE INVENTION
The present invention relates to a method of transmitting a digital signal from a measuring apparatus installed in a place where a person cannot approach to a receiving apparatus. This method is particularly concerned with the data transmission method of a measuring device that is buried in the ground and used for a long period of time, and is a configuration that protects the measuring device from lightning strikes and can reduce the number of cables of the measuring device.
[Prior art]
In the case of strain gauges and inclinometers buried in the ground, the signal lines and power lines of the measuring device are integrated with the equipment, and these cables are directly connected between the buried measuring device and the surface measuring device. It has been done. For this reason, when the cable of the measuring device becomes long, the weight increases and it is difficult to embed the measuring device. In addition, if this signal line becomes long, the measurement results are disturbed by the influence of the induced voltage, and the high induced voltage caused by lightning strikes the electronic circuit of the embedded measuring device. If an electronic circuit breaks down, the measuring device must be re-installed at a cost.
[Problems to be solved by the invention]
The present invention provides a method for transmitting a digital signal to a receiving device without attaching a signal line to the measuring device. It also provides a method to reduce the weight of the cable by transmitting the signal through a coaxial cable that sends power to the measuring device.
[Means for Solving the Problems]
In the method of transmitting a digital signal of a measuring device installed in a place where a person cannot approach to the receiving device, the means taken in the present invention is provided with an antenna 100 coupled in the vicinity of the measuring device as shown in FIG. It was to transmit the signal with the coaxial cable through the radio wave.
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. In FIG. 2, a unit 201 for converting a digital value into a radio wave is provided in a measuring apparatus 200 buried in the ground, and an antenna 202 is provided in the unit 201. Radio waves are transmitted from this 202 and received by the coupled antenna 203. 203 is provided at the tip of the coaxial cable 204 attached to the receiving device 205 on the ground surface. The coupling between the antennas 202 and 203 is performed inside or near the 200. In 205, the transmitted radio wave signal is converted into a digital signal. Even if a signal is transmitted with a weak radio wave in 201, if the 202 and 203 are coupled at a distance of 2 to 3 cm, the electric field strength is sufficiently large, and a coaxial cable can transmit a signal up to a distance of about 1 km. If the coupling distance is shortened, the electric field strength increases and the signal transmission distance can be increased.
Fig. 3 shows an example in which a coaxial cable is used for the power line of the embedded measuring device, and this coaxial cable is used as a signal line. As in FIG. 2, a unit 301 for converting a digital signal into a radio wave is provided in the embedded measuring apparatus 300, and an antenna 302 is provided in the unit 301. The antenna 303 coupled with this 302 is attached to the tip of the coaxial cable 304 attached to the ground receiving device 305 via the capacitor 306. Antenna coupling is performed inside or near 300. Even if 304 and 303 as DC power supply lines 305 are connected using 306, data transmission is possible if impedances are matched. Use multiple 306s for matching if necessary.
FIG. 4 shows an embodiment in which the signal transmission direction is reversed from that in FIGS. In this embodiment, a digital signal such as a control signal of a measuring device embedded from a transmission device 405 on the ground surface is converted into a radio wave, the converted radio wave is transmitted by a coaxial cable 404, and the coupled antennas 403 and 402 are connected. The radio wave is received by the receiving unit 401 and converted into a digital signal by the embedded measuring device 400. Even if a signal is transmitted by a weak radio wave at 405, the electric field strength is sufficiently large if the 402 and 403 are coupled at a distance of 2 to 3 cm, and the signal can be transmitted to a distance of about 1 km with a coaxial cable. As in the previous case, if the coupling distance is shortened, the electric field strength can be increased, and the signal transmission distance becomes longer.
The signal transmission method described in the embodiment of FIGS. 2 to 4 is for the case where the measuring device is buried in the ground. Even if the measuring device is installed on the sea floor or underwater, the signal can be transmitted by the method described above. Even if the measuring device is installed in a landslide area or building that is dangerous when people approach, the signal transmission is performed by the method described above. Is possible.
【The invention's effect】
In the present invention, a method for eliminating the signal line of a measuring device installed in a place where a person cannot approach is provided. With this method, 1) the measuring device is not affected by the induced voltage entering through the signal line, and the measurement results are not disturbed. In addition, 2) Induced voltage due to the effect of lightning, which is the cause of the failure, will not be applied to the electronic circuit of the installed measuring device. If the electronic circuit does not fail, the cost of re-installing the measuring device can be reduced. On the other hand, if the power line and signal line of the installed measuring device are combined, the weight of the cable attached to the measuring device can be reduced and the measuring device can be installed easily.
If data is transmitted by light using fiber, the problems 1) and 2) described above can be solved. However, at present, it is necessary to put the fiber wire into the stainless steel pipe. For this reason, the cable cannot be bent easily and the measuring device is difficult to install. In addition, the signal transmission method using light consumes a lot of current, which is about 10 times as much as the signal transmission using weak radio waves. Therefore, to install the measuring device at a remote location or embed it deeply, the method using a weak radio wave with a small voltage drop due to the power line is excellent. Moreover, if radio waves with different frequencies are used, data can be transmitted simultaneously from multiple points using the same coaxial cable.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a coupled antenna.
FIG. 2 is a block diagram of an embodiment according to the present invention.
FIG. 3 is a block diagram of another embodiment according to the present invention.
FIG. 4 is a block diagram of another embodiment according to the present invention.
[Explanation of symbols]
100 ... the coupled antenna,
200 ... buried measuring device, 201 ... radio wave transmission unit,
202 ... Antenna, 203 ... Antenna,
204 ... Coaxial cable, 205 ... Ground surface receiver,
300 ... buried measuring device, 301 ... radio wave transmission unit,
302 ... Antenna, 303 ... Antenna,
304 ... Coaxial cable, 305 ... Ground surface receiver,
306 ... condenser,
400 ... buried measuring device, 401 ... radio wave receiving unit,
402 ... Antenna, 403 ... Antenna,
404 ... coaxial cable, 405 ... ground surface receiver,

Claims (3)

ボーリング孔に埋設して長期間使用するボアホール用の歪計や傾斜計よりデジタルデータを地表の受信装置に伝送する方法において,長い信号線や電源線がボアホール用の歪計や傾斜計と一体となり地表の受信装置と接続されている構成のボアホール用の歪計や傾斜計で,
デジタル化した信号を電波に変換する手段と,
落雷によって歪計や傾斜計と一体となっている長い信号線や電源線に生じる誘導電圧から,歪計や傾斜計内部の電子回路を保護するために,前記手段により変換した電波を,
歪計や傾斜計内部において2〜3cmの距離でカップリングさせた同軸ケーブルの先端に付けたアンテナを介して同軸ケーブルで送出する手段と,
前記手段により送出された電波を,ボーリング孔に埋設した歪計や傾斜計と一体となっている長い信号線や電源線と接続されている受信装置で,
デジタル信号に変換する手段,
を有することを特徴とするアンテナカップリングによるデジタル信号伝送方法.
In a method of transmitting digital data from a borehole strain meter or inclinometer that is buried in a borehole and used for a long period of time, a long signal line or power line is integrated with the borehole strain meter or inclinometer. A strain gauge or inclinometer for boreholes configured to be connected to the ground receiver.
Means for converting digitized signals into radio waves;
In order to protect the electronic circuit inside the strain gauge and inclinometer from the induced voltage generated in the long signal line and power line integrated with the strain gauge and inclinometer by lightning strike,
Means for sending out with a coaxial cable via an antenna attached to the tip of the coaxial cable coupled at a distance of 2 to 3 cm inside the strain gauge or inclinometer;
A receiver connected to a long signal line or power line integrated with a strain gauge or inclinometer embedded in a borehole ,
Means for converting to a digital signal,
A digital signal transmission method by antenna coupling characterized by comprising:
ボーリング孔に埋設して長期間使用するボアホール用の歪計や傾斜計より,デジタルデータを地表に設置した受信装置に伝送する方法において,
長い同軸ケーブルが信号線と電源線を兼ねていること,
を特徴とする請求項1記載のアンテナカップリングによるデジタル信号伝送方法.
In a method of transmitting digital data from a strain meter or inclinometer for boreholes that are buried in a borehole and used for a long period of time to a receiver installed on the ground surface,
A long coaxial cable doubles as a signal line and a power line,
A digital signal transmission method by antenna coupling according to claim 1.
ボーリング孔に埋設して長期間使用するボアホール用の歪針や傾斜計より,デジタルデータを地表に設置した受信装置に伝送する方法において,請求項1記載の方法により,
地表に設置したデータ送信装置から,ボーリング孔に埋設して長期間使用するボアホール用の歪計や傾斜計にデジタル信号を送ること,
を特徴とするアンテナカップリングによるデジタル信号伝送方法.
In a method of transmitting digital data to a receiving device installed on the ground surface from a borehole strain needle or inclinometer that is buried in a borehole and used for a long period of time, the method according to claim 1,
From the data transmission apparatus installed on the ground, sending a digital signal to the distortion meter or inclinometer for borehole be used for a long time is embedded in the borehole,
A digital signal transmission method using antenna coupling.
JP32068496A 1996-10-25 1996-10-25 Digital signal transmission method by antenna coupling Expired - Fee Related JP3689879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32068496A JP3689879B2 (en) 1996-10-25 1996-10-25 Digital signal transmission method by antenna coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32068496A JP3689879B2 (en) 1996-10-25 1996-10-25 Digital signal transmission method by antenna coupling

Publications (2)

Publication Number Publication Date
JPH10135885A JPH10135885A (en) 1998-05-22
JP3689879B2 true JP3689879B2 (en) 2005-08-31

Family

ID=18124188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32068496A Expired - Fee Related JP3689879B2 (en) 1996-10-25 1996-10-25 Digital signal transmission method by antenna coupling

Country Status (1)

Country Link
JP (1) JP3689879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035789A1 (en) 2011-09-07 2013-03-14 Shimizu Shigejiro Connector for electric conduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035789A1 (en) 2011-09-07 2013-03-14 Shimizu Shigejiro Connector for electric conduction
US9130319B2 (en) 2011-09-07 2015-09-08 Shigejiro Shimizu Connector with spring controlled electrode and sealing

Also Published As

Publication number Publication date
JPH10135885A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP2790975B2 (en) Transmission equipment used for monitoring of human holes
US5999107A (en) Remote cathodic protection monitoring system
US9477008B2 (en) Method and system of transmitting acoustic signals from a wellbore
US5106175A (en) Locatable object suitable for underground use and methods of locating same
US6215314B1 (en) Wire break locator and method of use
EP0930518A3 (en) Downhole tool using electromagnetic waves
GB2355538A (en) Device and method for measurement of resistivity outside of a wellpipe
EP2629122A3 (en) Directional resistivity measurements for azimuthal proximity detection of bed boundaries
EP0913555B1 (en) Electromagnetic signal pickup device
US4276509A (en) Probe for testing conductor of an antenna windshield
CN106841861A (en) Cable recognition methods and system
JPH01502778A (en) Traction force measurement device using a traction force meter
JP3689879B2 (en) Digital signal transmission method by antenna coupling
KR100674745B1 (en) Sag monitoring apparatus for overhead transmission line
US6981425B2 (en) Dynamic force measuring instrument having a foil belt transducer
IL97193A0 (en) Device,system and method for measuring an interface between two fluids
GB2299915A (en) Communication along a drill string
CN207908708U (en) Conducting wire survey meter
CN109521098A (en) A kind of monitoring system and method for sound barrier
WO1994012895A1 (en) Method and device for the detection of structural changes in solid bodies
JPH01172714A (en) Temperature measuring apparatus of charged body
CN114017686A (en) Buried gas pipeline detection system based on Chirp signal and portable device
JP3197941B2 (en) Transmission line tower radio equipment
JP2005017101A (en) Underground radar device
CA2033304A1 (en) Locatable object suitable for underground use and methods of locating same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees