JP3689838B2 - Ferroelectric property evaluation system - Google Patents

Ferroelectric property evaluation system Download PDF

Info

Publication number
JP3689838B2
JP3689838B2 JP12001498A JP12001498A JP3689838B2 JP 3689838 B2 JP3689838 B2 JP 3689838B2 JP 12001498 A JP12001498 A JP 12001498A JP 12001498 A JP12001498 A JP 12001498A JP 3689838 B2 JP3689838 B2 JP 3689838B2
Authority
JP
Japan
Prior art keywords
ferroelectric
voltage waveform
series connection
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12001498A
Other languages
Japanese (ja)
Other versions
JPH11295370A (en
Inventor
俊之 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12001498A priority Critical patent/JP3689838B2/en
Publication of JPH11295370A publication Critical patent/JPH11295370A/en
Application granted granted Critical
Publication of JP3689838B2 publication Critical patent/JP3689838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電体の特性、特にP−Eヒステリシス特性を評価する誘電体特性評価装置に関する。
【0002】
【従来の技術】
近年、強誘電体材料のヒステリシス特性を利用して、不揮発性メモリを実現する研究が進んでおり、この観点から強誘電体材料の電気的特性を評価する強誘電体評価装置が注目されている。
【0003】
強誘電体の主要な電気特性である図6に示すP(分極)−E(電界)ヒステリシス曲線13は、図7に示すようなSawer−Tower回路を使用して計測作成することができる。
【0004】
このSawer−Tower回路は、同図に示すように、強誘電体キャパシタ2と基準誘電体キャパシタ3とが直列に接続され、この直列接続回路の端子間に、電圧波形発生回路1から入力電圧Vinが印加され、オシロスコープ4の横軸端子には、強誘電体キャパシタ2と基準誘電体キャパシタ3の直列接続回路に印加される入力電圧Vinが入力され、オシロスコープ4の縦軸端子には、入力電圧Vinの強誘電体キャパシタ2と基準誘電体キャパシタ3の接続点での分割電圧Vcが入力される。
【0005】
この場合、強誘電体キャパシタ2の電極面積をAとして、強誘電体キャパシタ2に蓄積される電荷(P+ε0・E)・A=D・Aと、基準誘電体キャパシタ3のキャバシタンスをCsとし、基準誘電体キャパシタ3に蓄積される電荷CsVcとは等しいので、オシロスコープ4の一方の縦軸端子には、Vc=D・A/Csが入力される。
【0006】
そして、強誘電体キャパシタ2に印加される電圧Vfは、Vcよりもかなり大きく、Vin≒Vfとすると、一般に強誘電体において分極Pは、ε0・Eに対して充分に大きいのでD=Pと見做し、Vc−Vin曲線を既知量である強誘電体Cfの膜厚t、分圧比、電極面積A、基準誘電体キャパシタ3のキャパシタンスCsを用いて、P−Eヒステリシス曲線が形成される。
【0007】
現在、強誘電体薄膜のP−Eヒステリシス特性測定回路として利用されているSawyer−Tower回路は、1920年代後半に0.5cm程度の厚い強誘電体の非線形性を観察する回路として、CB.Sawyer及びC.H.Towerにより提案された。図6に示した強誘電体のP−Eヒステリシス曲線13の横軸(電界E)は、強誘電体そのものに印加された電界で、Vin−Vcに比例した値であり、正確には強誘電体の厚みをtとして、E=(Vin−Vc)/tとなる。
【0008】
ここで、Vin≒Vfと見做せない領域では、Eは入力電圧Vinと比例関係にはないが、当初では被測定物である強誘電体が厚く、非線形性を示す電界とするには、強誘電体に数百V〜千数百Vの電圧を印加する必要があり、Vin−Vcを直接策定することが困難であり、電圧Vinの抵抗分圧を測定していた。
【0009】
また、電圧Vin、Vcの測定に使用されるオシロスコープは、抵抗Ry(1MΩ〜10MΩ)を通して流れ込む電流の測定により、電圧Vin、Vcを測定する方式を取っており、強誘電体キャパシタ2に蓄積される電荷Qを正確に測定するには、強誘電体キャパシタ2のキャバシタンスCsと抵抗Ryで与えられる時定数が無視できる周波数の入力電圧Vinを使用する必要があり、分極Pの周波数依存性を分離し考えることができない。
【0010】
この問題を解決するために、特開平6−249900号公報において、強誘電体と既知の誘電素子とを直列に接続し、その直列接続回路の両端に入力電圧を印加し、強誘電体と既知の誘電体の各々両端の電位差を静電的に測定する方法が開示されている。
しかし、この方法では、強誘電体と既知の誘電体の各々両端の電位差を静電的に測定する場合に、強誘電体に接続される電圧増幅器は入力端子の両端がアースから浮いており、回路構成が複雑になるという問題がある。
【0011】
この問題の解決のために、図8に示すような構成のバーチャルグランド回路が提案されている。
この回路は同図に示すように、一端がアースされた電圧波形発生回路1の他端に、強誘電体キャパシタ2の一端が接続され、強誘電体キャパシタ2の他端が、非反転入力端子がアースされた差動増幅器5の反転入力端子に接続され、差動増幅器5の反転入力端子と出力端子間に、基準誘電体キャパシタ3が接続され、電圧波形発生回路1と強誘電体キャパシタ2の接続点が、オシロスコープ4の横軸端子に接続され、差動増幅器5の出力端子が、オシロスコープ4の縦軸端子に接続されている。
【0012】
この回路では、入力電圧Vinがそのまま強誘電体キャパシタ2に印加され、Vf=VinからVinを計測することにより、強誘電体キャパシタ2に印加された電圧Vfに基づき、強誘電体キャパシタ2の内部の電界Eを求めることができる。
また、強誘電体キャパシタ2に蓄積される電荷D・Aと基準誘電体キャパシタ3に蓄積される電荷CsVcは等しく、Dに比例した電圧Vc(=DA/Cs)を測定することにより、Dを求めることができ、この場合には、Vin=Vfなので、Vf>>Vcという条件は必要ではない。
【0013】
ところで、図7のSawer−Tower回路では、オシロスコープ4の入力インピーダンスは、通常1MΩ〜10MΩであり、強誘電体キャパシタ2のキャパシタンスが100pF程度の場合、強誘電体キャパシタ2に蓄積された電荷が、測定中にオシロスコープ4を介して、100μs程度の時定数で外部に流出してしまう。このために、電圧波形発生回路1からの電圧の周波数が低いと測定精度が低下し、分極ヒステリシスの正確な測定は不可能となる。
また、基準誘電体キャパシタ3、オシロスコープ4の入力端子及びケーブルなどに寄生容量が存在し、この寄生容量の影響を無視できるのは、強誘電体キャパシタ2が100pF程度以上の場合である。
【0014】
しかし、半導体基板上に形成され、不揮発性メモリなどを構成する強誘電体キャパシタを評価対象とする場合には、電極面積は100μS程度以下で、その容量は10pF程度以下となり、測定系に存在する寄生容量の影響が無視できず、分極ヒステレシスのばらつきを正確に評価することができない。
【0015】
【発明が解決しようとする課題】
この問題を解決するために、特開平9−129694号公報では、低周波における正確な分極ヒステリシスを評価できる強誘電体キャパシタの分極キャパシタの評価方法と、不揮発性メモリ等に使用される強誘電体キャパシタの分極ヒステリシスのばらつきが評価できる分極ヒステリシス評価方法が開示されている。
【0016】
この特開平9−129694号公報では、分極ヒステリシス評価対象の強誘電体キャパシタの一方の電極に、交流電圧を印加した時の他方の電極の電位を、オシロスコープによって直接測定するのではなく、飽和領域において動作するMOS−FETを介して測定することにより、強誘電体キャパシタに蓄積される電荷がオシロスコープを介して外部に流出することを防止している。
【0017】
この方法は、すでに図8で説明したバーチャルグランド回路で、入力抵抗値が高抵抗の差動増幅器5を使用することと同等の方法であり、バーチャルグランド回路では、さらに、基準キャパシタの電圧Vcの検出回路をバーチャルグランドすることにより、強誘電体キャパシタ2に印加される電圧Vfを入力電圧Vinから算出できるのである。
【0018】
しかし、ここで最も問題となるのは、図9に示すように、強誘電体キャパシタ2に並列に存在する漏れ抵抗6であり、入力電圧Vinを印加した時に、強誘電体キャパシタ2でなく漏れ抵抗6に流れる漏れ電流Irは、基準誘電体キャパシタ3に流入し、電圧となって差動増幅器5の出力端子に現れ、強誘電体キャパシタ2の正確な分極量を測定することができない。特に、強誘電体メモリ材料の特性として重要な評価項目に、誘電劣化特性があるが、パルス印加によって劣化する特性は漏れ抵抗なのか、P−E履歴の劣化なのかを分離して評価する必要がある。
【0019】
本発明は、前述したようなこの種の強誘電体特性測定装置の動作の現状に鑑みてなされたものであり、その目的は、P−Eヒステリシス測定時に、強誘電体の漏れ抵抗によるP−Eヒステリシス曲線の形成誤差を防止し、電界Eと分極Pとを高精度で評価可能な強誘電体特性評価装置を提供することにある。
【0020】
【課題を解決するための手段】
前記目的を達成するために、請求項1記載の発明は、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、前記強誘電体と前記基準誘電体との接続点に接続され、前記強誘電体の漏れ抵抗に流れる漏れ電流の前記基準誘電体への流入を禁止する電流排除手段とを有することを特徴とするものである。
【0021】
同様に前記目的を達成するために、請求項2記載の発明は、請求項1記載の発明に対して、前記電圧波形発生手段及び前記強誘電体の接続点と前記電流排除手段間に、抵抗値が、前記電流排除手段によって、前記漏れ電流が完全に排除されるように調整される抵抗器が接続されていることを特徴とするものである。
【0022】
同様に前記目的を達成するために、請求項3記載の発明は、請求項1記載の発明に対して、前記電流排除手段が、前記電圧波形発生手段と極性が異なる相似電圧波形を発生するように構成され、該電流排除手段と前記強誘電体及び前記基準誘電体の接続点間に、抵抗値が、前記電流排除手段によって、前記漏れ電流が完全に排除されるように調整される抵抗器が接続されていることを特徴とするものである。
【0023】
同様に前記目的を達成するために、請求項4記載の発明は、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、前記電圧波形発生手段及び前記強誘電体の接続点と前記強誘電体及び前記基準誘電体の接続点間に接続され、利得kが負値で、前記電圧波形発生手段と極性が異なる相似電圧波形を発生する直流増幅器と、該直流増幅器によって、前記強誘電体の漏れ抵抗に流れる漏れ電流が完全に排除されるように抵抗値が調整される抵抗器との直列接続回路と、を有することを特徴とするものである。
【0024】
同様に前記目的を達成するために、請求項5記載の発明は、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、前記電圧波形発生手段に並列に接続され、相互の接続点がアースされた第1のインピーダンスと第2のインピーダンスを接続した第2の直列接続回路と、該第2の直列接続回路の一端と前記強誘電体及び前記基準誘電体の接続点間に接続され、前記第2の直列接続回路によって、前記強誘電体の漏れ抵抗に流れる漏れ電流が完全に排除されるように抵抗値が調整される抵抗器とを有することを特徴とするものである。
【0025】
【発明の実施の形態】
[第1の実施の形態]
本発明の第1の実施の形態を、図1を参照して説明する。
図1は本実施の形態の構成を示す回路図である。
【0026】
本実施の形態は、図1に示すように、一端がアースされた電圧波形発生回路1の他端に、強誘電体キャパシタ2と漏れ抵抗6が並列に接続構成される強誘電体10の一端が接続され、強誘電体10の他端には、非反転入力端子がアースされた差動増幅器5の反転入力端子と、漏れ電流が流入される電流排除回路7Aとが互いに並列に接続されている。
そして、差動増幅器5の反転入力端子と出力端子間に、基準誘電体キャパシタ3が接続され、電圧波形発生回路1と強誘電体10との接続点が、オシロスコープ4の横軸端子に接続され、差動増幅器5の出力端子が、オシロスコープ4の縦軸端子に接続されている。
【0027】
このような構成の本実施の形態では、電圧波形発生回路1からの入力電圧Vinが、強誘電体10に印加され、印加された電圧波形がオシロスコープ4によつて計測され、同時に、基準誘電体キャパシタ3に誘起する電圧も計測される。
この時、漏れ抵抗6に流れる漏れ電流Irと等しい電流が、電流排除回路7Aに流れ込み排除され、基準誘電体キャパシタ3に漏れ電流Irが流れることが防止され、強誘電体10の強誘電体キャパシタ2の電荷のみが、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度に検出される。
【0028】
本実施の形態のその他の動作は、すでに図8を参照して説明したバーチャルグランド回路の動作と同一なので、重複する説明は行なわない。
【0029】
このように本実施の形態によると、電流排除回路7Aによつて、漏れ抵抗6に流れる漏れ電流Irに等しい電流が、電流排除回路7Aによって排除され、基準誘電体キャパシタ3に漏れ電流Irが流れることが防止され、強誘電体キャパシタ2の電荷のみを、基準誘電体キャパシタ3のキャパシタンスCsに基づいて検出し、漏れ電流Irによる分極量の誤差なしに、強誘電体体キャパシタ2の分極を高精度に評価することが可能になる。
【0030】
[第2の実施の形態]
本発明の第2の実施の形態を、図2を参照して説明する。
図2は本実施の形態の構成を示す回路図である。
【0031】
本実施の形態では、図2に示すように、すでに図1を参照して説明した第1の実施の形態に対して、電流排除回路7Aに代えて、カレントミラー回路7Bが設けられ、電圧波形発生回路1と強誘電体10との接続点と、カレントミラー回路7B間に抵抗器8Aが接続されており、カレントミラー回路7Bは、抵抗器8Aに流れる電流Isに比例する漏れ電流Irを、強誘電体10からカレントミラー回路7Bに流入する機能を備えている。
【0032】
本実施の形態のその他の部分の構成は、すでに説明した第1の実施の形態と同一なので、重複する説明は行なわない。
【0033】
このような構成の本実施の形態では、強誘電体10の漏れ抵抗6の抵抗値を予め計測しておき、漏れ抵抗6に流れる漏れ電流Irに等しい電流を排除できるように、抵抗器8Aの抵抗値が調整設定される。この場合、漏れ電流Irが比較的小さい時には、電流Isが大きくなるように調整される。
本実施の形態では、抵抗値が調整された抵抗器8Aに流れる電流Isに比例する漏れ電流Irが、カレントミラー回路7Bに流入し、漏れ電流Irが基準誘電体キャパシタ3に流れことが防止され、強誘電体10の強誘電体キャパシタ2の電荷のみが、基準誘電体キャパシタ3のキャパシタンスCsに基づいて、高精度で検出される。
【0034】
本実施の形態のその他の動作は、すでに説明した第1の実施の形態と同一なりで、重複する説明は行なわない。
【0035】
このように、本実施の形態によると、抵抗値が調整された抵抗器8Aに流れる電流Isに比例する漏れ電流Irが、カレントミラー回路7Bに流入し、漏れ電流Irが基準誘電体キャパシタ3に流れることが防止されるので、強誘電体キャパシタ2の電荷のみを、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出し、漏れ電流Irによる分極量の誤差なしに、強誘電体キャパシタ2の分極を高精度に評価することが可能になり、さらに、強誘電体10の漏れ電流Irが比較的小さい場合には、電流Isを大きくして測定誤差を低減することも可能になる。
【0036】
[第3の実施の形態]
本発明の第3の実施の形態を、図3を参照して説明する。
図3は本実施の形態の構成を示す回路図である。
【0037】
本実施の形態では、図3に示すように、すでに図1を参照して説明した第1の実施の形態から、電流排除回路7Aを取り除き、強誘電体10と基準誘電体キャパシタ3との接続点とアース間に、抵抗器8Bと相似波形発生回路7Cが直列に接続されている。
この相似波形発生回路7Cは、電圧波形発生回路1と極性が異なる相似波形を発生する機能を備えている。
【0038】
本実施の形態のその他の部分の構成は、すでに説明した実施の形態と同一なので重複する説明は行なわない。
【0039】
本実施の形態では、相似波形発生回路7Cが、電圧波形発生回路1と連動して作動し、同時に強誘電体10に入力電圧Vinが印加され、電圧波形発生回路1からの入力電圧がVinの時に、相似波形発生回路7Cの出力電圧がkVin(kは負値)とすると、抵抗器8Bの抵抗値を、漏れ抵抗6の抵抗値をRfとして、−kRfに設定することにより、漏れ電流Irを高精度で排除して、基準誘電体キャパシタ3に漏れ電流Irが流れることが防止され、強誘電体10の強誘電体キャパシタ2の電荷のみが、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出される。
【0040】
本実施の形態のその他の動作は、すでに説明した第1の実施の形態と同一なので、重複する説明は行なわない。
【0041】
このように、本実施の形態によると、電圧波形発生回路1からの入力電圧がVinの時に、相似波形発生回路7Cの出力電圧がkVin(kは負値)とすると、抵抗器8Bの抵抗値を、漏れ抵抗6の抵抗値をRfとして、−kRfに設定することにより、漏れ電流Irを高精度で排除して、漏れ電流Irが基準誘電体キャパシタ3に流れことが防止されるので、強誘電体キャパシタ2の電荷のみを、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出し、漏れ電流Irによる分極量の誤差なしに、強誘電体体キャパシタ2の分極を高精度に評価することが可能になる。
【0042】
[第4の実施の形態]
本発明の第4の実施の形態を、図4を参照して説明する。
図4は本実施の形態の構成を示す回路図である。
【0043】
本実施の形態では、図4に示すように、すでに図3を参照して説明した第3の実施の形態から、抵抗器8Bと相似波形発生回路7Cとを除去し、電圧波形発生回路1と強誘電体10との接続点と、強誘電体10と基準誘電体キャパシタ3の接続点間に、直流増幅器11と抵抗器8Cが直列に接続されている。
【0044】
本実施の形態のその他の部分の構成は、すでに説明した第3の実施の形態と同一なので、重複する説明は行なわない。
【0045】
本実施の形態では、直流増幅器11の利得kが負値に設定されており、抵抗器8Cの抵抗値Rsが、漏れ抵抗6の抵抗値をRfとして、−kRfに設定され、漏れ電流Irを高精度で排除して、基準誘電体キャパシタ3に漏れ電流Irが流れることが防止され、強誘電体10の強誘電体キャパシタ2の電荷のみが、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出される。
【0046】
本実施の形態のその他の動作は、すでに説明した第3の実施の形態と同一なので、重複する説明は行なわない。
【0047】
このように、本実施の形態によると、抵抗器8Cの抵抗値Rsを、直流増幅器11の利得をk(負値)とし、漏れ抵抗6の抵抗値をRfとして、−kRfに設定することにより、漏れ電流Irを高精度で排除して、漏れ電流Irが基準誘電体キャパシタ3に流れことが防止されるので、強誘電体キャパシタ2の電荷のみを、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出し、漏れ電流Irによる分極量の誤差なしに、強誘電体体キャパシタ2の分極を高精度に評価することが可能になる。
【0048】
[第5の実施の形態]
本発明の第5の実施の形態を、図5を参照して説明する。
図5は本実施の形態の構成を示す回路図である。
【0049】
本実施の形態では、図5に示すように、電圧波形発生回路1の両端子間に、インピーダンス12aとインピーダンス12bとが直列に接続されて第2の直列接続回路を構成し、インピーダンス12aとインピーダンス12bとの接続点がアースされている。さらに、電圧波形発生回路1の両端間に、強誘電体キャパシタ2と漏れ抵抗6とが並列に接続構成された強誘電体10と、抵抗器8Dとが直列に接続されている。そして、強誘電体10と抵抗器8Dの接続点が、非反転入力端子がアースされた差動増幅器5の非反転入力端子に接続され、差動増幅器5の非反転入力端子と出力端子間に、基準誘電体キャパシタ3が接続され、強誘電体10とインピーダンス12aとの接続点が、オシロスコープ4の横軸端子に接続され、差動増幅器5の出力端子が、オシロスコープ4の縦軸端子に接続されている。
【0050】
本実施の形態では、インピーダンス11a、11bの抵抗値に対応して、抵抗器8Dの抵抗値Rsを調整することにより、漏れ電流Irと等しい電流が、強誘電体10から流出され、この漏れ電流Irが基準誘電体キャパシタ3に流れることが防止され、強誘電体10の強誘電体キャパシタ2の電荷のみが、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出される。
【0051】
本実施の形態のその他の動作は、すでに説明した第1の実施の形態と同一なので、重複する説明は行なわない。
【0052】
このように、本実施の形態によると、インピーダンス11a、11bの抵抗値に対応して、抵抗器8Dの抵抗値Rsを調整することにより、漏れ電流Irと等しい電流が、強誘電体10から流出され、この漏れ電流Irが基準誘電体キャパシタ3に流れことが防止されるので、強誘電体キャパシタ2の電荷のみを、基準誘電体キャパシタ3のキャパシタンスCsに基づいて高精度で検出し、漏れ電流Irによる分極量の誤差なしに、強誘電体体キャパシタ2の分極を高精度に評価することが可能になる。
【0053】
【発明の効果】
請求項1記載の発明によると、電圧波形発生手段の電圧波形が、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路の強誘電体に供給され、測定手段によってこの直列接続回路の接続点からの、直列接続回路の両端それぞれの電位が測定されて、強誘電体の分極特性が評価されるが、強誘電体と基準誘電体との接続点に接続された電流排除手段によって、強誘電体の漏れ抵抗に流れる漏れ電流の基準誘電体への流入が禁止されるので、強誘電体の強誘電キャパシタの電荷のみを、基準誘電体の基準キャパシタにより、漏れ電流による分極量の誤差なしに精度よく測定し、強誘電体の分極特性の高精度の評価が可能になる。
【0054】
請求項2記載の発明によると、電圧波形発生手段の電圧波形が、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路の強誘電体に供給され、測定手段によってこの直列接続回路の接続点からの、直列接続回路の両端それぞれの電位が測定されて、強誘電体の分極特性が評価されるが、強誘電体と基準誘電体との接続点に接続された電流排除手段によって、強誘電体の漏れ抵抗に流れる漏れ電流の基準誘電体への流入が禁止され、この際に、電圧波形発生手段及び強誘電体の接続点と電流排除手段間に接続された抵抗器の抵抗値が、電流排除手段の排除する漏れ電流値を高精度で設定するように調整されるので、強誘電体の漏れ電流が小さくとも、前記抵抗器に流れる電流値を大きくして、測定誤差を小さくすることもでき、強誘電体の強誘電キャパシタの電荷のみを、基準誘電体の基準キャパシタにより、漏れ電流による分極量の誤差なしに精度よく測定し、強誘電体の分極特性のより高精度の評価が可能になる。
【0055】
請求項3記載の発明によると、電圧波形発生手段の電圧波形が、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路の強誘電体に供給され、測定手段によってこの直列接続回路の接続点からの、直列接続回路の両端それぞれの電位が測定されて、強誘電体の分極特性が評価されるが、強誘電体と基準誘電体との接続点に接続され、電圧波形発生手段と極性が異なる相似電圧波形を発生する電流排除手段によって、強誘電体の漏れ抵抗に流れる漏れ電流の基準誘電体への流入が禁止され、この際に、電流排除手段と強誘電体及び基準誘電体の接続点間に接続された抵抗器の抵抗値が、漏れ電流を完全に排除するように調整されるので、強誘電体の強誘電キャパシタの電荷のみを、基準誘電体の基準キャパシタにより、漏れ電流による分極量の誤差なしに精度よく測定し、強誘電体の分極特性のより高精度の評価が可能になる。
【0056】
請求項4記載の発明によると、電圧波形発生手段の電圧波形が、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路の強誘電体に供給され、測定手段によってこの直列接続回路の接続点からの、直列接続回路の両端それぞれの電位が測定されて、強誘電体の分極特性が評価されるが、電圧波形発生手段及び強誘電体の接続点と強誘電体及び基準誘電体の接続点間に、利得kが負値で電圧波形発生手段と極性が異なる相似相似電圧波形を発生する直流増幅器と抵抗器の直列接続回路が接続され、この直流接続回路によって、強誘電体の漏れ抵抗に流れる漏れ電流の基準誘電体への流入が禁止され、この際に、抵抗器の抵抗値が、漏れ電流を完全に排除するように調整されるので、強誘電体の強誘電キャパシタの電荷のみを、基準誘電体の基準キャパシタにより、漏れ電流による分極量の誤差なしに精度よく測定し、強誘電体の分極特性のより高精度の評価が可能になる。
【0057】
請求項5記載の発明によると、電圧波形発生手段の電圧波形が、特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路の強誘電体に供給され、測定手段によってこの直列接続回路の接続点からの、直列接続回路の両端それぞれの電位が測定されて、強誘電体の分極特性が評価されるが、電圧波形発生手段に並列に接続され、相互の接続点がアースされた第1のインピーダンスと第2のインピーダンスを接続した第2の直列接続回路によって、強誘電体の漏れ抵抗に流れる漏れ電流の基準誘電体への流入が禁止され、この際に、(第2の)直列接続回路の一端と強誘電体及び基準誘電体の接続点間に接続された抵抗器の抵抗値が、漏れ電流を完全に排除するように調整されるので、強誘電体の強誘電キャパシタの電荷のみを、基準誘電体の基準キャパシタにより、漏れ電流による分極量の誤差なしに精度よく測定し、強誘電体の分極特性のより高精度の評価が可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す回路図である。
【図2】本発明の第2の実施の形態の構成を示す回路図である。
【図3】本発明の第3の実施の形態の構成を示す回路図である。
【図4】本発明の第4の実施の形態の構成を示す回路図である。
【図5】本発明の第5の実施の形態の構成を示す回路図である。
【図6】P(分極)−E(電界)ヒステリシス曲線の特性図である。
【図7】Sawyer−Tower回路の構成を示す回路図である。
【図8】バーチャルグランド回路の構成を示す回路図である。
【図9】バーチャルグランド回路での漏れ抵抗の影響の説明図である。
【符号の説明】
1 電圧波形発生回路
2 強誘電体キャパシタ
3 基準誘電体キャパシタ
4 オシロスコープ
5 差動増幅器
6 漏れ抵抗
7A 電流排除回路
7B カレントミラー回路
7C 相似波形発生回路
8A〜8D 抵抗器
10 強誘電体
11 直流増幅器
12a、12b インピーダンス
13 P−Eシステリヒス曲線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric property evaluation apparatus for evaluating characteristics of a ferroelectric material, in particular, PE hysteresis characteristics.
[0002]
[Prior art]
In recent years, research has been progressing to realize a nonvolatile memory using the hysteresis characteristics of ferroelectric materials, and from this point of view, ferroelectric evaluation devices that evaluate the electrical characteristics of ferroelectric materials are attracting attention. .
[0003]
A P (polarization) -E (electric field) hysteresis curve 13 shown in FIG. 6, which is a main electrical characteristic of the ferroelectric, can be measured and created using a Sawer-Power circuit as shown in FIG.
[0004]
In the Sawer-Power circuit, as shown in the figure, a ferroelectric capacitor 2 and a reference dielectric capacitor 3 are connected in series, and an input voltage Vin from the voltage waveform generation circuit 1 is connected between terminals of the series connection circuit. Is applied to the horizontal axis terminal of the oscilloscope 4, and the input voltage Vin applied to the series connection circuit of the ferroelectric capacitor 2 and the reference dielectric capacitor 3 is input to the horizontal axis terminal of the oscilloscope 4. The divided voltage Vc at the connection point between the Vin ferroelectric capacitor 2 and the reference dielectric capacitor 3 is input.
[0005]
In this case, the electrode area of the ferroelectric capacitor 2 is A, the charge (P + ε0 · E) · A = D · A stored in the ferroelectric capacitor 2 and the capacitance of the reference dielectric capacitor 3 is Cs, Since the charge CsVc stored in the dielectric capacitor 3 is equal, Vc = D · A / Cs is input to one vertical axis terminal of the oscilloscope 4.
[0006]
The voltage Vf applied to the ferroelectric capacitor 2 is considerably larger than Vc, and if Vin≈Vf, generally the polarization P in the ferroelectric is sufficiently large with respect to ε0 · E, so that D = P. By taking the Vc-Vin curve into consideration, a PE hysteresis curve is formed using the known film thickness t of the ferroelectric Cf, the voltage division ratio, the electrode area A, and the capacitance Cs of the reference dielectric capacitor 3. .
[0007]
A Sawyer-Tower circuit currently used as a PE thin film characteristic measurement circuit for a ferroelectric thin film is a circuit for observing the nonlinearity of a thick ferroelectric of about 0.5 cm in the late 1920s. Sawyer and C.I. H. Proposed by Tower. The horizontal axis (electric field E) of the ferroelectric PE hysteresis curve 13 shown in FIG. 6 is an electric field applied to the ferroelectric itself and is a value proportional to Vin-Vc. E = (Vin−Vc) / t, where t is the thickness of the body.
[0008]
Here, in the region where Vin≈Vf cannot be considered, E is not proportional to the input voltage Vin, but at first, the ferroelectric to be measured is thick and the electric field showing nonlinearity is It is necessary to apply a voltage of several hundred volts to several hundreds of volts to the ferroelectric, and it is difficult to directly define Vin-Vc, and the resistance partial pressure of the voltage Vin has been measured.
[0009]
The oscilloscope used for measuring the voltages Vin and Vc measures the voltages Vin and Vc by measuring the current flowing through the resistor Ry (1 MΩ to 10 MΩ), and is stored in the ferroelectric capacitor 2. In order to accurately measure the charge Q, it is necessary to use the input voltage Vin having a frequency at which the time constant given by the capacitance Cs of the ferroelectric capacitor 2 and the resistor Ry can be ignored, and the frequency dependence of the polarization P is separated. I can't think about it.
[0010]
In order to solve this problem, in Japanese Patent Application Laid-Open No. 6-249900, a ferroelectric and a known dielectric element are connected in series, an input voltage is applied to both ends of the series connection circuit, and the ferroelectric is known. A method of electrostatically measuring a potential difference between both ends of each of the dielectrics is disclosed.
However, in this method, when the potential difference between both ends of the ferroelectric and the known dielectric is measured electrostatically, the voltage amplifier connected to the ferroelectric has both ends of the input terminal floating from the ground, There is a problem that the circuit configuration becomes complicated.
[0011]
In order to solve this problem, a virtual ground circuit configured as shown in FIG. 8 has been proposed.
In this circuit, as shown in the figure, one end of a ferroelectric capacitor 2 is connected to the other end of the voltage waveform generating circuit 1 whose one end is grounded, and the other end of the ferroelectric capacitor 2 is connected to a non-inverting input terminal. Is connected to the inverting input terminal of the differential amplifier 5 which is grounded, the reference dielectric capacitor 3 is connected between the inverting input terminal and the output terminal of the differential amplifier 5, and the voltage waveform generating circuit 1 and the ferroelectric capacitor 2 are connected. Are connected to the horizontal axis terminal of the oscilloscope 4, and the output terminal of the differential amplifier 5 is connected to the vertical axis terminal of the oscilloscope 4.
[0012]
In this circuit, the input voltage Vin is applied to the ferroelectric capacitor 2 as it is, and the internal voltage of the ferroelectric capacitor 2 is determined based on the voltage Vf applied to the ferroelectric capacitor 2 by measuring Vin from Vf = Vin. The electric field E can be obtained.
Further, the charge D · A stored in the ferroelectric capacitor 2 and the charge CsVc stored in the reference dielectric capacitor 3 are equal, and by measuring the voltage Vc (= DA / Cs) proportional to D, D is obtained. In this case, since Vin = Vf, the condition of Vf >> Vc is not necessary.
[0013]
In the Sawer-Tower circuit of FIG. 7, the input impedance of the oscilloscope 4 is usually 1 MΩ to 10 MΩ, and when the capacitance of the ferroelectric capacitor 2 is about 100 pF, the charge accumulated in the ferroelectric capacitor 2 is During measurement, it flows out through the oscilloscope 4 with a time constant of about 100 μs. For this reason, when the frequency of the voltage from the voltage waveform generation circuit 1 is low, the measurement accuracy is lowered, and accurate measurement of the polarization hysteresis becomes impossible.
In addition, parasitic capacitance exists in the reference dielectric capacitor 3, the input terminal of the oscilloscope 4 and the cable, and the influence of this parasitic capacitance can be ignored when the ferroelectric capacitor 2 is about 100 pF or more.
[0014]
However, when a ferroelectric capacitor formed on a semiconductor substrate and constituting a non-volatile memory or the like is to be evaluated, the electrode area is about 100 μS or less and the capacitance is about 10 pF or less, and exists in the measurement system. The influence of parasitic capacitance cannot be ignored, and the variation in polarization hysteresis cannot be accurately evaluated.
[0015]
[Problems to be solved by the invention]
In order to solve this problem, Japanese Patent Laid-Open No. 9-129694 discloses a method for evaluating a polarization capacitor of a ferroelectric capacitor capable of evaluating accurate polarization hysteresis at a low frequency, and a ferroelectric used in a nonvolatile memory or the like. A polarization hysteresis evaluation method capable of evaluating variations in polarization hysteresis of a capacitor is disclosed.
[0016]
In Japanese Patent Laid-Open No. 9-129694, the potential of the other electrode when an alternating voltage is applied to one electrode of a ferroelectric capacitor to be evaluated for polarization hysteresis is not directly measured by an oscilloscope, but is saturated. By measuring through the MOS-FET operating in step, the charge accumulated in the ferroelectric capacitor is prevented from flowing out through the oscilloscope.
[0017]
This method is equivalent to using the differential amplifier 5 whose input resistance value is high resistance in the virtual ground circuit already described with reference to FIG. 8. In the virtual ground circuit, the voltage Vc of the reference capacitor is further reduced. By virtual grounding the detection circuit, the voltage Vf applied to the ferroelectric capacitor 2 can be calculated from the input voltage Vin.
[0018]
However, the most serious problem here is the leakage resistance 6 existing in parallel with the ferroelectric capacitor 2 as shown in FIG. 9, and when the input voltage Vin is applied, the leakage does not occur in the ferroelectric capacitor 2. The leakage current Ir flowing through the resistor 6 flows into the reference dielectric capacitor 3 and appears as a voltage at the output terminal of the differential amplifier 5, so that the accurate polarization amount of the ferroelectric capacitor 2 cannot be measured. In particular, there is a dielectric degradation characteristic as an important evaluation item as a characteristic of the ferroelectric memory material. However, it is necessary to separately evaluate whether the characteristic deteriorated by applying a pulse is leakage resistance or deterioration of PE history. There is.
[0019]
The present invention has been made in view of the current state of operation of this type of ferroelectric characteristic measuring apparatus as described above, and its object is to obtain a P− due to the leakage resistance of the ferroelectric during PE hysteresis measurement. An object of the present invention is to provide a ferroelectric characteristic evaluation apparatus capable of preventing the formation error of an E hysteresis curve and evaluating the electric field E and the polarization P with high accuracy.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known, and a predetermined voltage waveform are supplied to the ferroelectric. Voltage waveform generating means and the series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Measuring means for measuring, and current exclusion means connected to a connection point between the ferroelectric and the reference dielectric, and prohibiting leakage current flowing in a leakage resistance of the ferroelectric from flowing into the reference dielectric It is characterized by having.
[0021]
Similarly, in order to achieve the above object, the invention according to claim 2 is different from the invention according to claim 1 in that a resistance is provided between the voltage waveform generating means and the connection point of the ferroelectric substance and the current exclusion means. A resistor is connected whose value is adjusted so that the leakage current is completely eliminated by the current exclusion means.
[0022]
Similarly, in order to achieve the above object, according to a third aspect of the present invention, in the invention according to the first aspect, the current eliminator generates a similar voltage waveform having a polarity different from that of the voltage waveform generator. A resistor having a resistance value adjusted between the connection points of the current exclusion means and the ferroelectric and reference dielectric so that the leakage current is completely eliminated by the current exclusion means Are connected to each other.
[0023]
Similarly, in order to achieve the object, the invention according to claim 4 is a series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known, and a predetermined voltage waveform applied to the ferroelectric. Voltage waveform generating means to be supplied and the series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Measuring means for measuring the voltage waveform generating means and the connection point of the ferroelectric material and the connection point of the ferroelectric material and the reference dielectric material, and the gain k is a negative value, and the voltage waveform generating means A DC amplifier that generates a similar voltage waveform having a polarity different from that of the DC amplifier, Flow through ferroelectric leakage resistance And a series connection circuit with a resistor whose resistance value is adjusted so that the leakage current is completely eliminated.
[0024]
Similarly, in order to achieve the object, the invention according to claim 5 is a series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known, and a predetermined voltage waveform applied to the ferroelectric. Voltage waveform generating means to be supplied and the series connection circuit Of the series connection circuit from the connection point of Both ends Each potential And a first impedance and a second impedance that are connected in parallel to the voltage waveform generating means and whose connection point is grounded Connected second A series connection circuit; Second Connected between one end of a series connection circuit and a connection point of the ferroelectric and the reference dielectric, Second By means of a series connection circuit, said Flow through ferroelectric leakage resistance And a resistor whose resistance value is adjusted so that the leakage current is completely eliminated.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a circuit diagram showing a configuration of the present embodiment.
[0026]
In the present embodiment, as shown in FIG. 1, one end of a ferroelectric body 10 in which a ferroelectric capacitor 2 and a leakage resistor 6 are connected in parallel to the other end of the voltage waveform generating circuit 1 whose one end is grounded. The other end of the ferroelectric 10 is connected in parallel with the inverting input terminal of the differential amplifier 5 whose non-inverting input terminal is grounded and the current elimination circuit 7A into which leakage current flows. Yes.
The reference dielectric capacitor 3 is connected between the inverting input terminal and the output terminal of the differential amplifier 5, and the connection point between the voltage waveform generation circuit 1 and the ferroelectric 10 is connected to the horizontal axis terminal of the oscilloscope 4. The output terminal of the differential amplifier 5 is connected to the vertical axis terminal of the oscilloscope 4.
[0027]
In the present embodiment having such a configuration, the input voltage Vin from the voltage waveform generation circuit 1 is applied to the ferroelectric 10, and the applied voltage waveform is measured by the oscilloscope 4, and at the same time, the reference dielectric The voltage induced in the capacitor 3 is also measured.
At this time, a current equal to the leakage current Ir flowing through the leakage resistor 6 flows into the current elimination circuit 7A and is eliminated, and the leakage current Ir is prevented from flowing into the reference dielectric capacitor 3, and the ferroelectric capacitor of the ferroelectric 10 Only two charges are detected with high accuracy based on the capacitance Cs of the reference dielectric capacitor 3.
[0028]
The other operations of the present embodiment are the same as the operations of the virtual ground circuit already described with reference to FIG.
[0029]
As described above, according to the present embodiment, a current equal to the leakage current Ir flowing through the leakage resistance 6 is eliminated by the current elimination circuit 7A by the current elimination circuit 7A, and the leakage current Ir flows through the reference dielectric capacitor 3. And only the electric charge of the ferroelectric capacitor 2 is detected based on the capacitance Cs of the reference dielectric capacitor 3, and the polarization of the ferroelectric capacitor 2 is increased without an error in the polarization amount due to the leakage current Ir. It becomes possible to evaluate to accuracy.
[0030]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG.
FIG. 2 is a circuit diagram showing a configuration of the present embodiment.
[0031]
In the present embodiment, as shown in FIG. 2, a current mirror circuit 7B is provided in place of the current exclusion circuit 7A as compared with the first embodiment already described with reference to FIG. A resistor 8A is connected between the connection point between the generation circuit 1 and the ferroelectric 10 and the current mirror circuit 7B. The current mirror circuit 7B generates a leakage current Ir proportional to the current Is flowing through the resistor 8A. A function of flowing from the ferroelectric 10 into the current mirror circuit 7B is provided.
[0032]
Since the configuration of the other parts of the present embodiment is the same as that of the first embodiment already described, duplicate description will not be given.
[0033]
In the present embodiment having such a configuration, the resistance value of the leakage resistor 6 of the ferroelectric substance 10 is measured in advance, so that the current equal to the leakage current Ir flowing through the leakage resistor 6 can be eliminated. The resistance value is adjusted and set. In this case, when the leakage current Ir is relatively small, the current Is is adjusted to be large.
In the present embodiment, the leakage current Ir proportional to the current Is flowing through the resistor 8A having the adjusted resistance value flows into the current mirror circuit 7B, and the leakage current Ir is prevented from flowing into the reference dielectric capacitor 3. Only the electric charge of the ferroelectric capacitor 2 of the ferroelectric 10 is detected with high accuracy based on the capacitance Cs of the reference dielectric capacitor 3.
[0034]
Other operations of the present embodiment are the same as those of the first embodiment already described, and redundant description will not be given.
[0035]
Thus, according to the present embodiment, the leakage current Ir proportional to the current Is flowing through the resistor 8A having the adjusted resistance value flows into the current mirror circuit 7B, and the leakage current Ir enters the reference dielectric capacitor 3. Since it is prevented from flowing, only the electric charge of the ferroelectric capacitor 2 is detected with high accuracy on the basis of the capacitance Cs of the reference dielectric capacitor 3, and there is no error in the polarization amount due to the leakage current Ir. 2 can be evaluated with high accuracy, and when the leakage current Ir of the ferroelectric 10 is relatively small, the current Is can be increased to reduce the measurement error.
[0036]
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a circuit diagram showing the configuration of the present embodiment.
[0037]
In the present embodiment, as shown in FIG. 3, the current exclusion circuit 7A is removed from the first embodiment already described with reference to FIG. 1, and the connection between the ferroelectric 10 and the reference dielectric capacitor 3 is performed. A resistor 8B and a similar waveform generating circuit 7C are connected in series between the point and the ground.
The similar waveform generation circuit 7C has a function of generating a similar waveform having a polarity different from that of the voltage waveform generation circuit 1.
[0038]
Since the configuration of the other parts of the present embodiment is the same as that of the above-described embodiment, redundant description will not be given.
[0039]
In the present embodiment, the similar waveform generation circuit 7C operates in conjunction with the voltage waveform generation circuit 1, and at the same time, the input voltage Vin is applied to the ferroelectric 10, and the input voltage from the voltage waveform generation circuit 1 is Vin. When the output voltage of the similar waveform generation circuit 7C is kVin (k is a negative value), the leakage current Ir is set by setting the resistance value of the resistor 8B to -kRf with the resistance value of the leakage resistance 6 as Rf. And the leakage current Ir is prevented from flowing through the reference dielectric capacitor 3, and only the charge of the ferroelectric capacitor 2 of the ferroelectric 10 is based on the capacitance Cs of the reference dielectric capacitor 3. It is detected with high accuracy.
[0040]
Since other operations of the present embodiment are the same as those of the first embodiment already described, duplicate description will not be given.
[0041]
Thus, according to the present embodiment, when the input voltage from the voltage waveform generation circuit 1 is Vin and the output voltage of the similar waveform generation circuit 7C is kVin (k is a negative value), the resistance value of the resistor 8B. Is set to −kRf with the resistance value of the leakage resistor 6 as Rf, the leakage current Ir is eliminated with high accuracy and the leakage current Ir is prevented from flowing into the reference dielectric capacitor 3. Only the electric charge of the dielectric capacitor 2 is detected with high accuracy based on the capacitance Cs of the reference dielectric capacitor 3, and the polarization of the ferroelectric capacitor 2 is evaluated with high accuracy without any error in the polarization amount due to the leakage current Ir. It becomes possible to do.
[0042]
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a circuit diagram showing the configuration of the present embodiment.
[0043]
In this embodiment, as shown in FIG. 4, the resistor 8B and the similar waveform generation circuit 7C are removed from the third embodiment already described with reference to FIG. A DC amplifier 11 and a resistor 8 </ b> C are connected in series between a connection point between the ferroelectric substance 10 and a connection point between the ferroelectric substance 10 and the reference dielectric capacitor 3.
[0044]
Since the configuration of the other parts of the present embodiment is the same as that of the third embodiment already described, duplicate description will not be given.
[0045]
In the present embodiment, the gain k of the DC amplifier 11 is set to a negative value, the resistance value Rs of the resistor 8C is set to −kRf, where the resistance value of the leakage resistor 6 is Rf, and the leakage current Ir is Excluded with high accuracy, the leakage current Ir is prevented from flowing through the reference dielectric capacitor 3, and only the charge of the ferroelectric capacitor 2 of the ferroelectric 10 is high based on the capacitance Cs of the reference dielectric capacitor 3. Detected with accuracy.
[0046]
The other operations of the present embodiment are the same as those of the third embodiment already described, and therefore will not be described repeatedly.
[0047]
Thus, according to the present embodiment, the resistance value Rs of the resistor 8C is set to -kRf, where the gain of the DC amplifier 11 is k (negative value) and the resistance value of the leakage resistor 6 is Rf. Since the leakage current Ir is eliminated with high accuracy and the leakage current Ir is prevented from flowing into the reference dielectric capacitor 3, only the charge of the ferroelectric capacitor 2 is based on the capacitance Cs of the reference dielectric capacitor 3. Therefore, the polarization of the ferroelectric capacitor 2 can be evaluated with high accuracy without error in the polarization amount due to the leakage current Ir.
[0048]
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a circuit diagram showing the configuration of the present embodiment.
[0049]
In the present embodiment, as shown in FIG. 5, an impedance 12a and an impedance 12b are connected in series between both terminals of the voltage waveform generation circuit 1. To configure the second series connection circuit The connection point between the impedance 12a and the impedance 12b is grounded. Further, a ferroelectric 10 in which a ferroelectric capacitor 2 and a leakage resistor 6 are connected in parallel and a resistor 8D are connected in series between both ends of the voltage waveform generating circuit 1. The connection point between the ferroelectric 10 and the resistor 8D is connected to the non-inverting input terminal of the differential amplifier 5 whose non-inverting input terminal is grounded, and between the non-inverting input terminal and the output terminal of the differential amplifier 5. The reference dielectric capacitor 3 is connected, the connection point between the ferroelectric 10 and the impedance 12 a is connected to the horizontal axis terminal of the oscilloscope 4, and the output terminal of the differential amplifier 5 is connected to the vertical axis terminal of the oscilloscope 4. Has been.
[0050]
In the present embodiment, by adjusting the resistance value Rs of the resistor 8D corresponding to the resistance values of the impedances 11a and 11b, a current equal to the leakage current Ir flows out of the ferroelectric 10, and this leakage current Ir is prevented from flowing to the reference dielectric capacitor 3, and only the charge of the ferroelectric capacitor 2 of the ferroelectric 10 is detected with high accuracy based on the capacitance Cs of the reference dielectric capacitor 3.
[0051]
Since other operations of the present embodiment are the same as those of the first embodiment already described, duplicate description will not be given.
[0052]
As described above, according to the present embodiment, by adjusting the resistance value Rs of the resistor 8D corresponding to the resistance values of the impedances 11a and 11b, a current equal to the leakage current Ir flows out of the ferroelectric body 10. Since the leakage current Ir is prevented from flowing into the reference dielectric capacitor 3, only the electric charge of the ferroelectric capacitor 2 is detected with high accuracy based on the capacitance Cs of the reference dielectric capacitor 3, and the leakage current is detected. It is possible to evaluate the polarization of the ferroelectric capacitor 2 with high accuracy without an error in the polarization amount due to Ir.
[0053]
【The invention's effect】
According to the first aspect of the present invention, the voltage waveform of the voltage waveform generating means is supplied to the ferroelectric whose characteristics are evaluated and the ferroelectric of the series connection circuit of the reference dielectric whose characteristics are known. Series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Is measured, and the polarization characteristics of the ferroelectric are evaluated. The reference dielectric of the leakage current flowing in the leakage resistance of the ferroelectric by the current exclusion means connected to the connection point between the ferroelectric and the reference dielectric is measured. Since the inflow to the body is prohibited, only the charge of the ferroelectric capacitor is measured accurately by the reference capacitor of the reference dielectric without any error in polarization due to the leakage current. Can be evaluated with high accuracy.
[0054]
According to the second aspect of the present invention, the voltage waveform of the voltage waveform generating means is supplied to the ferroelectric substance whose characteristics are evaluated and the ferroelectric substance of the series connection circuit of the reference dielectric whose characteristics are known. Series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Is measured, and the polarization characteristics of the ferroelectric are evaluated. The reference dielectric of the leakage current flowing in the leakage resistance of the ferroelectric by the current exclusion means connected to the connection point between the ferroelectric and the reference dielectric is measured. Inflow to the body is prohibited. At this time, the resistance value of the resistor connected between the voltage waveform generating means and the connecting point of the ferroelectric substance and the current exclusion means increases the leakage current value excluded by the current exclusion means. Since it is adjusted to be set with accuracy, even if the leakage current of the ferroelectric substance is small, the value of the current flowing through the resistor can be increased to reduce the measurement error, and the ferroelectric capacitor of the ferroelectric substance can be reduced. Only the electric charge is accurately measured by the reference capacitor of the reference dielectric without an error in the polarization amount due to the leakage current, and the polarization characteristic of the ferroelectric can be evaluated with higher accuracy.
[0055]
According to the third aspect of the present invention, the voltage waveform of the voltage waveform generating means is supplied to the ferroelectric substance whose characteristics are evaluated and the ferroelectric substance of the series connection circuit of the reference dielectric whose characteristics are known. Series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Is measured to evaluate the polarization characteristics of the ferroelectric, but is connected to the connection point between the ferroelectric and the reference dielectric, and the current exclusion means generates a similar voltage waveform having a polarity different from that of the voltage waveform generation means. The leakage current flowing through the ferroelectric leakage resistance is prohibited from flowing into the reference dielectric. At this time, the resistance value of the resistor connected between the current exclusion means and the connection point of the ferroelectric and the reference dielectric However, since it is adjusted to completely eliminate the leakage current, only the charge of the ferroelectric capacitor of the ferroelectric is accurately measured by the reference capacitor of the reference dielectric without an error in the polarization amount due to the leakage current, This makes it possible to evaluate the polarization characteristics of the ferroelectric material with higher accuracy.
[0056]
According to the invention of claim 4, the voltage waveform of the voltage waveform generating means is supplied to the ferroelectric whose characteristics are evaluated and to the ferroelectric of the series connection circuit of the reference dielectric whose characteristics are known. Series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Is measured, and the polarization characteristics of the ferroelectric are evaluated. The voltage waveform with a negative gain k between the voltage waveform generating means and the connecting point of the ferroelectric and the connecting point of the ferroelectric and the reference dielectric is measured. A series connection circuit of a DC amplifier and a resistor that generates a similar voltage waveform having a polarity different from that of the generating means is connected. By this DC connection circuit, an inflow of a leakage current flowing through the ferroelectric leakage resistance into the reference dielectric is prevented. In this case, since the resistance value of the resistor is adjusted so as to completely eliminate the leakage current, only the charge of the ferroelectric capacitor of the ferroelectric is reduced by the reference capacitor of the reference dielectric. Therefore, it is possible to accurately measure the polarization characteristics of the ferroelectric material without making an error in the amount of polarization due to.
[0057]
According to the fifth aspect of the present invention, the voltage waveform of the voltage waveform generating means is supplied to the ferroelectric whose characteristics are evaluated and the ferroelectric of the series connection circuit of the reference dielectric whose characteristics are known. Series connection circuit Of the series connection circuit from the connection point of Both ends Each potential Is measured, and the polarization characteristics of the ferroelectric are evaluated. The first impedance and the second impedance, which are connected in parallel to the voltage waveform generating means and whose connection point is grounded, are measured. Connected second The series connection circuit prohibits inflow of the leakage current flowing through the ferroelectric leakage resistance into the reference dielectric. (Second) Since the resistance value of the resistor connected between one end of the series connection circuit and the connection point of the ferroelectric and reference dielectric is adjusted so as to completely eliminate the leakage current, the ferroelectric capacitor of the ferroelectric capacitor Only the electric charge is accurately measured by the reference capacitor of the reference dielectric without an error in the polarization amount due to the leakage current, and the polarization characteristic of the ferroelectric can be evaluated with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of a first exemplary embodiment of the present invention.
FIG. 2 is a circuit diagram showing a configuration of a second exemplary embodiment of the present invention.
FIG. 3 is a circuit diagram showing a configuration of a third exemplary embodiment of the present invention.
FIG. 4 is a circuit diagram showing a configuration of a fourth embodiment of the present invention.
FIG. 5 is a circuit diagram showing a configuration of a fifth exemplary embodiment of the present invention.
FIG. 6 is a characteristic diagram of a P (polarization) -E (electric field) hysteresis curve.
FIG. 7 is a circuit diagram showing a configuration of a Sawyer-Tower circuit.
FIG. 8 is a circuit diagram showing a configuration of a virtual ground circuit.
FIG. 9 is an explanatory diagram of the influence of leakage resistance in the virtual ground circuit.
[Explanation of symbols]
1 Voltage waveform generator
2 Ferroelectric capacitors
3 Reference dielectric capacitor
4 Oscilloscope
5 Differential amplifier
6 Leakage resistance
7A current exclusion circuit
7B Current mirror circuit
7C Similar waveform generator
8A-8D resistors
10 Ferroelectric material
11 DC amplifier
12a, 12b Impedance
13 PE system histories curve

Claims (5)

特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、
前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、
前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、
前記強誘電体と前記基準誘電体との接続点に接続され、前記強誘電体の漏れ抵抗に流れる漏れ電流の前記基準誘電体への流入を禁止する電流排除手段とを有することを特徴とする強誘電体特性評価装置。
A series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known;
Voltage waveform generating means for supplying a predetermined voltage waveform to the ferroelectric;
Measuring means for measuring the potential of each end of the series connection circuit from the connection point of the series connection circuit ;
Current exclusion means connected to a connection point between the ferroelectric and the reference dielectric, and for inhibiting leakage current flowing through a leakage resistance of the ferroelectric from flowing into the reference dielectric; Ferroelectric property evaluation equipment.
請求項1記載の強誘電体特性評価装置に対して、前記電圧波形発生手段及び前記強誘電体の接続点と前記電流排除手段間に、抵抗値が、前記電流排除手段によって、前記漏れ電流が完全に排除されるように調整される抵抗器が接続されていることを特徴とする強誘電体特性評価装置。  The ferroelectric characteristic evaluation apparatus according to claim 1, wherein a resistance value is set between the voltage waveform generating unit and the connection point of the ferroelectric and the current eliminating unit, and the leakage current is reduced by the current eliminating unit. A ferroelectric characteristic evaluation apparatus, wherein a resistor adjusted so as to be completely eliminated is connected. 請求項1記載の強誘電体特性評価装置に対して、前記電流排除手段が、前記電圧波形発生手段と極性が異なる相似電圧波形を発生するように構成され、該電流排除手段と前記強誘電体及び前記基準誘電体の接続点間に、抵抗値が、前記電流排除手段によって、前記漏れ電流が完全に排除されるように調整される抵抗器が接続されていることを特徴とする強誘電体特性評価装置。  2. The ferroelectric characteristic evaluation apparatus according to claim 1, wherein the current exclusion means is configured to generate a similar voltage waveform having a polarity different from that of the voltage waveform generation means, and the current exclusion means and the ferroelectric substance. And a resistor whose resistance value is adjusted by the current eliminator so that the leakage current is completely eliminated is connected between the connection points of the reference dielectric and the ferroelectric. Characteristic evaluation device. 特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、
前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、
前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、
前記電圧波形発生手段及び前記強誘電体の接続点と前記強誘電体及び前記基準誘電体の接続点間に接続され、利得kが負値で、前記電圧波形発生手段と極性が異なる相似電圧波形を発生する直流増幅器と、
該直流増幅器によって、前記強誘電体の漏れ抵抗に流れる漏れ電流が完全に排除されるように抵抗値が調整される抵抗器との直列接続回路と、
を有することを特徴とする強誘電体特性評価装置。
A series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known;
Voltage waveform generating means for supplying a predetermined voltage waveform to the ferroelectric;
Measuring means for measuring the potential of each end of the series connection circuit from the connection point of the series connection circuit ;
A similar voltage waveform connected between the connection point of the voltage waveform generating means and the ferroelectric and the connection point of the ferroelectric and the reference dielectric, having a negative gain k and having a polarity different from that of the voltage waveform generating means. A direct current amplifier that generates
A series connection circuit with a resistor whose resistance value is adjusted so that a leakage current flowing through the leakage resistance of the ferroelectric substance is completely eliminated by the DC amplifier;
A ferroelectric characteristic evaluation apparatus comprising:
特性が評価される強誘電体及び特性が既知の基準誘電体の直列接続回路と、
前記強誘電体に所定の電圧波形を供給する電圧波形発生手段と、
前記直列接続回路の接続点からの、直列接続回路の両端それぞれの電位を測定する測定手段と、
前記電圧波形発生手段に並列に接続され、相互の接続点がアースされた第1のインピーダンスと第2のインピーダンスを接続した第2の直列接続回路と、
第2の直列接続回路の一端と前記強誘電体及び前記基準誘電体の接続点間に接続され、前記第2の直列接続回路によって、前記強誘電体の漏れ抵抗に流れる漏れ電流が完全に排除されるように抵抗値が調整される抵抗器とを有することを特徴とする強誘電体特性評価装置。
A series connection circuit of a ferroelectric whose characteristics are evaluated and a reference dielectric whose characteristics are known;
Voltage waveform generating means for supplying a predetermined voltage waveform to the ferroelectric;
Measuring means for measuring the potential of each end of the series connection circuit from the connection point of the series connection circuit ;
A second series connection circuit which is connected in parallel to the voltage waveform generating means and which connects a first impedance and a second impedance whose mutual connection point is grounded;
It is connected between the connection point of one end and the ferroelectric and the reference dielectric of the second series connection circuit, by the second series circuit, the ferroelectric leakage current flowing through the leakage resistance of the fully A ferroelectric characteristic evaluation device comprising: a resistor whose resistance value is adjusted so as to be excluded.
JP12001498A 1998-04-13 1998-04-13 Ferroelectric property evaluation system Expired - Fee Related JP3689838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001498A JP3689838B2 (en) 1998-04-13 1998-04-13 Ferroelectric property evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001498A JP3689838B2 (en) 1998-04-13 1998-04-13 Ferroelectric property evaluation system

Publications (2)

Publication Number Publication Date
JPH11295370A JPH11295370A (en) 1999-10-29
JP3689838B2 true JP3689838B2 (en) 2005-08-31

Family

ID=14775775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001498A Expired - Fee Related JP3689838B2 (en) 1998-04-13 1998-04-13 Ferroelectric property evaluation system

Country Status (1)

Country Link
JP (1) JP3689838B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116789B (en) * 2011-01-05 2014-04-02 复旦大学 Ferroelectric domain movement speed-adjustable pulse voltage measurement method

Also Published As

Publication number Publication date
JPH11295370A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
EP1500940B1 (en) Method for evaluating a capacitor
JP3216955B2 (en) Capacitive sensor device
US8188755B2 (en) Electrostatic MEMS driver with on-chip capacitance measurement for autofocus applications
JPH06501316A (en) Integrable conductivity measuring device
US7439746B2 (en) Electrostatic voltmeter
Lange et al. Separated analysis of bulk and contact resistance of conducting polymers: comparison of simultaneous two-and four-point measurements with impedance measurements
US5406137A (en) Circuit arrangement for evaluating the signal of a capacitive measuring sensor
US6639410B2 (en) Insulation resistance measuring apparatus for capacitive electronic parts
JP3689838B2 (en) Ferroelectric property evaluation system
JPH10510367A (en) Improved charge velocity electrometer
JP4251961B2 (en) Non-contact voltage measuring device
Scandurra et al. A new approach to DC removal in high gain, low noise voltage amplifiers
WO2014155680A1 (en) Voltage measurement device
Dietz et al. How to analyse relaxation and leakage currents of dielectric thin films: Simulation of voltage-step and voltage-ramp techniques
DE4340472C1 (en) Method and circuit arrangement for measuring a capacitance
US20220404437A1 (en) Detection circuit and integrated circuit
JPH10300571A (en) Current-to-voltage conversion circuit in pyroelectric infrared detecting apparatus
JP2000055746A (en) Apparatus and system for detecting temperature
EP3502718B1 (en) Capacitance detection device and optical wavelength-selective filter device
JP3391310B2 (en) Insulation resistance measuring device for capacitive electronic components
US6188226B1 (en) Electric potential sensor
DE102019117673A1 (en) Voltage measurement through reference circuit-based impedance detection
US7046016B2 (en) Potential fixing device, potential fixing method, and capacitance measuring instrument
RU2240571C1 (en) Device for controlling technical condition of transformer windings
DE19833454A1 (en) Method for reducing drift behavior in resistive high-temperature gas sensors and device for carrying out the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees