JP3688789B2 - Water treatment material - Google Patents

Water treatment material Download PDF

Info

Publication number
JP3688789B2
JP3688789B2 JP02601696A JP2601696A JP3688789B2 JP 3688789 B2 JP3688789 B2 JP 3688789B2 JP 02601696 A JP02601696 A JP 02601696A JP 2601696 A JP2601696 A JP 2601696A JP 3688789 B2 JP3688789 B2 JP 3688789B2
Authority
JP
Japan
Prior art keywords
magnesium
water treatment
volume
treatment material
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02601696A
Other languages
Japanese (ja)
Other versions
JPH09192656A (en
Inventor
彰則 南
美香 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP02601696A priority Critical patent/JP3688789B2/en
Publication of JPH09192656A publication Critical patent/JPH09192656A/en
Application granted granted Critical
Publication of JP3688789B2 publication Critical patent/JP3688789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は河川、池、湖沼、海、排水などの水中に含まれるリン成分の除去に適した水処理材に関する。
【0002】
【従来の技術】
従来、富栄養化の原因となるリン酸イオンなどのリン成分を除去するために、水酸化アルミニウム、水酸化鉄、アロフェンなどのリン吸着能がある物質をポリビニルアルコールの水溶液に分散して和紙などのシート状部材に担持せしめたものが知られている。これら従来の水処理材は、シート状部材に担持した物質の作用により実質的にシート状部材にリン酸イオンを固定することができるが、従来の水処理材のリン成分の吸着能力は高いとは言えなかった。とくに、使用初期のリン成分の吸着能力は低く、吸着に長い時間を要するという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は上記の従来技術の問題点を解消するべくなされたものであり、水中に含まれるリン成分を短時間で効率よく吸着できる、リン吸着能力に優れた水処理材を提供することを課題とする。
【0004】
【課題を解決するための手段】
上記の課題は、本発明による、菊花状断面を有する棒状の立体状不織布からなる多孔質材料に、粒径が0.1〜100μmである酸化マグネシウムを主成分とするマグネシウム系無機粒子を接着剤により付着した水処理材であって、マグネシウム系無機粒子の量は基材体積に対して0.5〜60容量%であり、接着剤の固形分付着量は、マグネシウム系無機粒子の量に対して15〜100容量%であるリン成分除去用の水処理材によって達成できる。
【0005】
【発明の実施の形態】
本発明の水処理材に用いるマグネシウム系無機粒子は、初期のリン吸着能力が高い酸化マグネシウムを主成分とする無機粒子である。
【0006】
マグネシウム系無機粒子の粒径は0.05〜200μmであることが望ましいが、本発明では0.1〜100μmであることが必要である。粒径が200μmより大きくなると相対的に単位体積当たりの粒子の表面積が小さくなるため、リン成分の吸着力が低下することがあり、一方、0.05μmより小さくなると多孔質材料に付着する際に表面の大部分が接着剤によって被覆されてしまうため、やはりリン成分の吸着力が低下することがある。
【0007】
また、マグネシウム系無機粒子の量は基材体積に対して0.5〜60容量%であり、より好ましくは1.0〜50容量%である。0.5容量%より少ないと十分なリン成分の吸着力が得られないことがあり、一方、60容量%より多くてもリン成分の吸着力はそれ以上あがらず、むしろマグネシウム系無機粒子が凝集して吸着に働かない部分が生じることがある。
【0008】
上記のマグネシウム系無機粒子は、接着剤により多孔質材料に付着される。マグネシウム系無機粒子はリン酸イオンなどと出会うと凝集する性質があるため、マグネシウム系無機粒子が多く存在すると、粒子の凝集体の外側だけがリン酸イオンなどと反応し、内部は未反応のままで作用しないことがある。このため、マグネシウム系無機粒子は、水酸化アルミニウム、水酸化鉄、アロフェンなどと比較するとリン吸着力が低いと考えられていた。しかし、マグネシウム系無機粒子を多孔質材料に一様に分散するように接着剤などにより付着させると、水酸化アルミニウム、水酸化鉄、アロフェンなどを付着したものと比較しても、はるかに高いリン吸着力が得られる。この理由は明らかではないが、接着剤により多孔質材料にマグネシウム系無機粒子を付着させることにより、上述のような凝集による未反応部分を作らずに効率よくリン吸着が行えるためと考えられる。
【0009】
マグネシウム系無機粒子を付着させる多孔質材料としては、菊花状断面を有する棒状の立体状不織布が使用できるが、とくに3次元的な多孔構造を持つ繊維接着不織布、ニードルパンチ不織布、樹脂含浸不織布、水流絡合不織布などの不織布が望ましい。上記多孔質材料の目付けは20〜1000g/m2 、より好ましくは50〜500g/m2 であることが望ましく、20g/m2 より少ないと強度が低くなりすぎて形状が維持できなくなることがあり、一方、1000g/m2 より多いと通液抵抗が大きくなることがある。また、多孔質材料の厚みは0.1〜30mm、より好ましくは0.5〜15mmであることが望ましく、0.1mmより薄いと相対的に付着できるマグネシウム系無機粒子が少なくなってリン吸着力が低下することがあり、30mmより厚いと通液抵抗が大きくなることがある。
【0010】
なお、上記多孔質材料は菊花状断面を有する棒状の立体状不織布である。更には、熱接着、接着剤による接着、縫製などを利用して多孔質材を結合してもよく、例えば、複数枚の不織布を積層し、中心線に沿って熱接着すると、菊花状断面の棒状の立体不織布が得られ、非常に表面積の大きな多孔質材として利用できる。
【0011】
上記の多孔質材料にマグネシウム系無機粒子を付着する接着剤としては、アクリル系樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂などが使用できる。これらの樹脂は、例えば界面活性剤を含むエマルジョン溶液にして用いられ、この溶液にマグネシウム系無機粒子を混合分散し、これを多孔質材料に含浸、コーティングなどした後に乾燥することで、マグネシウム系無機粒子は多孔質材料に一様に接着剤によって付着する。
【0012】
接着剤の量(固形分付着量)は、マグネシウム系無機粒子の量に対して、15〜100容量%であり、より好ましくは30〜50容量%である。15容量%よりも少ないと使用中に無機粒子が脱離してしまうことがあり、100容量%よりも多いと無機粒子の表面を被覆してしまってリン吸着機能を阻害することがある。
【0013】
上記の本発明の水処理材は、河川、湖沼、水処理用バイパス路、排水路などに適当に配置すればよいが、とくに流れのある水域では、流れとほぼ平行となるような流れを阻害しない位置関係で配置されていることが望ましい。また、水処理材が菊花状断面を有する立体状不織布などの多孔質材料を使用した立体形状である場合には、流れと略直交する方向に間隔をあけて複数配置されていることが望ましい。このような配置にすると水の流れを阻害せず、しかも水と水処理材の表面との接触機会が増えるため、効率よくリンの除去が行える。
【0014】
本発明の水処理材は、水底に直接固定されるか、または鋼材、枠材などの固定部材に取り付けて水中に沈めることにより間接的に水底に固定されるか、またはフロート、外部支持体、枠材などにつり下げられるか、あるいは枠材などの他の構造材に適宜の三次元的な配置で取り付けて水中に沈めることなどにより、水中に配置される。また、とくに水処理材を直接、または間接的に水底に固定する場合には、フロートを取り付けたり、水処理材の構成部材の一部または全部に、微小中空体を保持させた発泡不織布や発泡体などの浮力手段を用いたりして浮力を与え、水処理材が水底から直立するように配置することが望ましい。このようにすると、とくに河川などで、通常は直立してリン除去を行い、洪水時などの流速が速くなった場合には、流速に押されて水処理材が倒れ、水の流れを阻害しないのでよい。菊花状断面を有する立体状不織布を多孔質材料に用いる立体形状の水処理材などの場合には、とくに浮力手段を用いて水底に固定する方法が有効である。
【0015】
【実施例】
実施例1
繊度30デニールのポリエチレンテレフタレート繊維50重量%と、繊度15デニールの熱接着性ポリエステル繊維(融点120℃)50重量%とからなる繊維ウェブを熱接着して、目付240g/m2 、厚み7mmの不織布を得た。一方、平均粒径3.5μmの酸化マグネシウムを、アクリル系樹脂エマルジョン(住友化学工業株式会社製 商品名:スミカフレックス)に分散した溶液を、上記の不織布に含浸し、乾燥して、水処理材を得た。なお、酸化マグネシウムの付着量は約140g/m2 (基材体積に対して4.2容量%)であり、アクリル系樹脂エマルジョン中の固形分の付着量は酸化マグネシウムに対して30容量%であった。
【0016】
(リン酸イオン吸着試験)ビーカー内にリン酸イオンに含まれるリンの濃度が2ppmとなるように調整した第一リン酸カリウム(KH2PO4)水溶液を2リットル準備し、この水溶液中に酸化マグネシウム量が3gとなるように水処理材を裁断したもの(214cm2 )を入れ、スターラーで攪拌を行い水処理材にリン酸イオンを吸着させた。水処理材を投入後5分経過した時点で溶液30mlをサンプリングし、孔径1μmの濾紙を用いて濾過した。この濾液を用いて、JIS−K−0102「モリブデン青(アスコルビン酸)吸光光度法」に準じてリン酸イオン濃度として定量を行い、この値から下記の式によりリン酸イオンの除去率を求め、結果を表1に示した。
【0017】
【数1】

Figure 0003688789
【0018】
参考例1
実施例1で用いたのと同様の不織布に、平均粒径3.5μmの水酸化マグネシウムを、アクリル系樹脂エマルジョン(住友化学工業株式会社製 商品名:スミカフレックス)に分散した溶液を含浸し、乾燥して、水処理材を得た。なお、水酸化マグネシウムの付着量は約180g/m2 (基材体積に対して4.3容量%)であり、アクリル系樹脂エマルジョン中の固形分の付着量は水酸化マグネシウムに対して30容量%であった。この水処理材を用いて、実施例1と同様にしてリン酸イオン吸着試験を行い、結果を表1に示した。ただし、水処理材は水酸化マグネシウム量が3gとなるように167cm2 に裁断したものを使用した。
【0019】
比較例1
実施例1で用いたのと同様の不織布に、平均粒径5μmの水酸化アルミニウムを、アクリル系樹脂エマルジョン(住友化学工業株式会社製 商品名:スミカフレックス)に分散した溶液を含浸し、乾燥して、水処理材を得た。なお、水酸化アルミニウムの付着量は約200g/m2 (基材体積に対して5.7容量%)であり、アクリル系樹脂エマルジョン中の固形分の付着量は水酸化アルミニウムに対して30容量%であった。この水処理材を用いて、実施例1と同様にしてリン酸イオン吸着試験を行い、結果を表1に示した。ただし、水処理材は水酸化アルミニウム量が3gとなるように150cm2 に裁断したものを使用した。
【0020】
比較例2
実施例1で用いたのと同様の不織布に、平均粒径5μmの黒ボク土を、アクリル系樹脂エマルジョン(住友化学工業株式会社製 商品名:スミカフレックス)に分散した溶液を含浸し、乾燥して、水処理材を得た。なお、黒ボク土の付着量は約225g/m2 (基材体積に対して10.7容量%)であり、アクリル樹脂エマルジョン中の固形分の付着量は黒ボク土に対して30容量%であった。この水処理材を用いて、実施例1と同様にしてリン酸イオン吸着試験を行い、結果を表1に示した。ただし、処理材は黒ボク土量が3gとなるように133cm2 に裁断したものを使用した。
【0021】
比較例3
実施例1で用いたのと同様の不織布に、平均粒径5μmのアロフェンを、アクリル系樹脂エマルジョン(住友化学工業株式会社製 商品名:スミカフレックス)に分散した溶液を含浸し、乾燥して、水処理材を得た。なお、アロフェンの付着量は約235g/m2 (基材体積に対して11.2容量%)であり、アクリル系樹脂エマルジョンの固形分の付着量はアロフェンに対して30容量%であった。この処理材を用いて、実施例1と同様にしてリン酸イオン吸着試験を行い、結果を表1に示した。ただし、処理材はアロフェン量が3gとなるように128cm2 に裁断したものを使用した。
【0022】
【表1】
Figure 0003688789
【0023】
表1から明らかなように、実際の排水などのリン濃度に近い水を処理した場合、比較例1〜3の水処理材では投入後5分経過した時点で30%未満のリン酸イオンの除去率しか示さないが、実施例1の水処理材では、2倍以上の78%と高いリン酸イオンの除去率を示し、非常にリンの吸着力に優れていることがわかる。
【0024】
【発明の効果】
本発明の水処理材は、菊花状断面を有する棒状の立体状不織布からなる多孔質材料に、粒径が0.1〜100μmである酸化マグネシウムを主成分とするマグネシウム系無機粒子が接着剤によって一様に分布した状態で付着しており、マグネシウム系無機粒子の量は基材体積に対して0.5〜60容量%であり、接着剤の固形分付着量は、マグネシウム系無機粒子の量に対して15〜100容量%であるリン成分除去用の水処理材であるので、水中に含まれるリンを短時間で効率よく吸着でき、リン吸着能力が非常に優れている。とくに、酸化マグネシウムを主成分とするマグネシウム系無機粒子を使用しているので高いリン吸着力が期待でき、効果的に湖沼や河川や排水に含まれるリンを除去することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment material suitable for removing phosphorus components contained in water such as rivers, ponds, lakes, seas, and wastewater.
[0002]
[Prior art]
Conventionally, in order to remove phosphorus components such as phosphate ions that cause eutrophication, a substance capable of adsorbing phosphorus such as aluminum hydroxide, iron hydroxide, and allophane is dispersed in an aqueous solution of polyvinyl alcohol and the like. What is supported on the sheet-like member is known. These conventional water treatment materials can substantially fix phosphate ions to the sheet-like member by the action of the substance carried on the sheet-like member, but the conventional water treatment material has a high adsorption capacity for phosphorus components. I could not say. In particular, there is a problem that the adsorption capacity of the phosphorus component at the initial stage of use is low and it takes a long time for the adsorption.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems of the prior art, and it is an object to provide a water treatment material excellent in phosphorus adsorption capacity that can efficiently adsorb phosphorus components contained in water in a short time. And
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide an adhesive containing magnesium-based inorganic particles mainly composed of magnesium oxide having a particle size of 0.1 to 100 μm on a porous material made of a rod-shaped three-dimensional nonwoven fabric having a chrysanthemum-like cross section according to the present invention The amount of the magnesium-based inorganic particles is 0.5 to 60% by volume with respect to the substrate volume, and the solid content of the adhesive is based on the amount of the magnesium-based inorganic particles. This can be achieved by a water treatment material for removing phosphorus components that is 15 to 100% by volume.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Magnesium-based inorganic particles used in the water treatment material of the present invention are inorganic particles mainly composed of magnesium oxide having a high initial phosphorus adsorption capacity.
[0006]
The particle size of the magnesium-based inorganic particles is desirably 0.05 to 200 μm, but in the present invention, it is necessary to be 0.1 to 100 μm. When the particle size is larger than 200 μm, the surface area of the particles per unit volume becomes relatively small, so that the adsorption power of the phosphorus component may be reduced. On the other hand, when the particle size is smaller than 0.05 μm, it adheres to the porous material. Since most of the surface is covered with the adhesive, the adsorption power of the phosphorus component may also decrease.
[0007]
Further, the amount of the magnesium-based inorganic particles is 0.5 to 60% by volume, more preferably 1.0 to 50% by volume with respect to the base material volume. If the amount is less than 0.5% by volume, sufficient adsorption capacity of the phosphorus component may not be obtained. On the other hand, if it exceeds 60% by volume, the adsorption capacity of the phosphorus component does not increase any more. As a result, there may be a portion that does not work for adsorption.
[0008]
The magnesium-based inorganic particles are attached to the porous material with an adhesive. Magnesium-based inorganic particles have the property of agglomerating when they encounter phosphate ions, etc. If there are many magnesium-based inorganic particles, only the outside of the aggregate of particles reacts with phosphate ions, etc., and the inside remains unreacted May not work. For this reason, it was thought that magnesium system inorganic particles had low phosphorus adsorption power compared with aluminum hydroxide, iron hydroxide, allophane, etc. However, if magnesium-based inorganic particles are adhered with an adhesive so as to be uniformly dispersed in the porous material, the phosphorus content is much higher than that with aluminum hydroxide, iron hydroxide, or allophane. Adsorption power is obtained. The reason for this is not clear, but it is considered that by adhering the magnesium-based inorganic particles to the porous material with an adhesive, phosphorus adsorption can be performed efficiently without forming unreacted portions due to aggregation as described above.
[0009]
As the porous material to which the magnesium-based inorganic particles are attached , a rod-shaped three-dimensional nonwoven fabric having a chrysanthemum-shaped cross section can be used. Nonwoven fabrics such as entangled nonwoven fabrics are desirable. The porous mass per unit area of the material is 20~1000g / m 2, more preferably is preferably a 50 to 500 g / m 2, may less strength than 20 g / m 2 can not be maintained in shape too low On the other hand, if it is more than 1000 g / m 2 , the liquid flow resistance may increase. Further, the thickness of the porous material is preferably 0.1 to 30 mm, more preferably 0.5 to 15 mm. When the thickness is less than 0.1 mm, the number of magnesium-based inorganic particles that can be relatively attached decreases, and the phosphorus adsorption power When the thickness is larger than 30 mm, the liquid flow resistance may increase.
[0010]
The porous material is a rod-shaped three-dimensional nonwoven fabric having a chrysanthemum cross section. Furthermore, the porous material may be bonded using thermal bonding, bonding with an adhesive, sewing, etc. For example, when a plurality of non-woven fabrics are laminated and thermally bonded along the center line, a chrysanthemum-shaped cross section is obtained. A rod-shaped three-dimensional nonwoven fabric is obtained, and can be used as a porous material having a very large surface area.
[0011]
An acrylic resin, vinyl chloride resin, vinylidene chloride resin, or the like can be used as an adhesive for adhering magnesium-based inorganic particles to the porous material. These resins are used, for example, as an emulsion solution containing a surfactant. Magnesium-based inorganic particles are mixed and dispersed in this solution, impregnated and coated with a porous material, and then dried to form a magnesium-based inorganic. The particles adhere uniformly to the porous material with an adhesive.
[0012]
The amount of the adhesive (solid content adhesion amount) is 15 to 100% by volume, more preferably 30 to 50% by volume with respect to the amount of the magnesium-based inorganic particles. If the amount is less than 15% by volume, the inorganic particles may be detached during use. If the amount is more than 100% by volume, the surface of the inorganic particles may be covered and the phosphorus adsorption function may be hindered.
[0013]
The above-described water treatment material of the present invention may be appropriately arranged in rivers, lakes, water treatment bypasses, drainage channels, etc., but particularly in water areas where there is a flow, the flow is substantially parallel to the flow. It is desirable that they are arranged in a positional relationship that does not. In addition, when the water treatment material has a three-dimensional shape using a porous material such as a three-dimensional nonwoven fabric having a chrysanthemum-like cross section, it is desirable that a plurality of water treatment materials be arranged at intervals in a direction substantially perpendicular to the flow. With such an arrangement, the flow of water is not hindered, and the chance of contact between the water and the surface of the water treatment material increases, so that phosphorus can be removed efficiently.
[0014]
The water treatment material of the present invention is directly fixed to the bottom of the water, or is fixed to the bottom of the water indirectly by being attached to a fixing member such as a steel material or a frame material, or submerged in water, or a float, an external support, It is suspended in a frame material or the like, or attached to another structural material such as a frame material in an appropriate three-dimensional arrangement and submerged in water. In particular, when fixing the water treatment material directly or indirectly to the bottom of the water, it is possible to attach a float or foam foamed non-woven fabric or foam that holds a micro hollow body in some or all of the components of the water treatment material. It is desirable to provide buoyancy by using buoyancy means such as a body so that the water treatment material stands upright from the bottom of the water. In this way, especially in rivers, phosphorus removal is usually performed upright, and when the flow velocity increases during floods, it is pushed by the flow velocity and the water treatment material falls down and does not impede the flow of water. So good. In the case of a three-dimensional water treatment material using a three-dimensional nonwoven fabric having a chrysanthemum cross section as a porous material, a method of fixing to the bottom of the water using buoyancy means is particularly effective.
[0015]
【Example】
Example 1
A fiber web composed of 50% by weight of polyethylene terephthalate fiber having a fineness of 30 denier and 50% by weight of heat-adhesive polyester fiber having a fineness of 15 denier (melting point: 120 ° C.) is thermally bonded to a nonwoven fabric having a basis weight of 240 g / m 2 and a thickness of 7 mm. Got. On the other hand, a solution obtained by dispersing magnesium oxide having an average particle size of 3.5 μm in an acrylic resin emulsion (trade name: Sumikaflex, manufactured by Sumitomo Chemical Co., Ltd.) is impregnated into the above nonwoven fabric, dried, and then treated with water. Got. The adhesion amount of magnesium oxide is about 140 g / m 2 (4.2% by volume with respect to the base material volume), and the adhesion amount of solid content in the acrylic resin emulsion is 30% by volume with respect to magnesium oxide. there were.
[0016]
(Phosphate ion adsorption test) Prepare 2 liters of an aqueous solution of primary potassium phosphate (KH 2 PO 4 ) adjusted so that the concentration of phosphorus contained in phosphate ions is 2 ppm in a beaker, and oxidize in this aqueous solution. A material (214 cm 2 ) obtained by cutting the water treatment material so that the amount of magnesium was 3 g was added, and stirred with a stirrer to adsorb phosphate ions to the water treatment material. When 5 minutes had passed since the water treatment material was added, 30 ml of the solution was sampled and filtered using a filter paper having a pore size of 1 μm. Using this filtrate, quantification was carried out as phosphate ion concentration according to JIS-K-0102 “molybdenum blue (ascorbic acid) absorptiometry”, and from this value, the removal rate of phosphate ions was determined by the following formula, The results are shown in Table 1.
[0017]
[Expression 1]
Figure 0003688789
[0018]
Reference example 1
A nonwoven fabric similar to that used in Example 1 was impregnated with a solution in which magnesium hydroxide having an average particle size of 3.5 μm was dispersed in an acrylic resin emulsion (trade name: Sumikaflex, manufactured by Sumitomo Chemical Co., Ltd.) It dried and obtained the water treatment material. The adhesion amount of magnesium hydroxide is about 180 g / m 2 (4.3% by volume with respect to the base material volume), and the adhesion amount of solid content in the acrylic resin emulsion is 30 volumes with respect to magnesium hydroxide. %Met. Using this water treatment material, a phosphate ion adsorption test was conducted in the same manner as in Example 1, and the results are shown in Table 1. However, the water treatment material used was cut to 167 cm 2 so that the amount of magnesium hydroxide was 3 g.
[0019]
Comparative Example 1
A non-woven fabric similar to that used in Example 1 was impregnated with a solution obtained by dispersing aluminum hydroxide having an average particle diameter of 5 μm in an acrylic resin emulsion (trade name: Sumikaflex, manufactured by Sumitomo Chemical Co., Ltd.) and dried. Thus, a water treatment material was obtained. In addition, the adhesion amount of aluminum hydroxide is about 200 g / m 2 (5.7% by volume with respect to the base material volume), and the adhesion amount of solid content in the acrylic resin emulsion is 30 volumes with respect to aluminum hydroxide. %Met. Using this water treatment material, a phosphate ion adsorption test was conducted in the same manner as in Example 1, and the results are shown in Table 1. However, the water treatment material used was cut to 150 cm 2 so that the amount of aluminum hydroxide was 3 g.
[0020]
Comparative Example 2
A non-woven fabric similar to that used in Example 1 was impregnated with a solution obtained by dispersing black clay having an average particle size of 5 μm in an acrylic resin emulsion (trade name: Sumikaflex, manufactured by Sumitomo Chemical Co., Ltd.) and dried. Thus, a water treatment material was obtained. In addition, the adhesion amount of the black Iodine is about 225 g / m 2 (10.7% by volume with respect to the base material volume), and the adhesion amount of the solid content in the acrylic resin emulsion is 30% by volume with respect to the black Iodine. Met. Using this water treatment material, a phosphate ion adsorption test was conducted in the same manner as in Example 1, and the results are shown in Table 1. However, the treatment material used was cut to 133 cm 2 so that the amount of black soil was 3 g.
[0021]
Comparative Example 3
A nonwoven fabric similar to that used in Example 1 was impregnated with a solution in which allophane having an average particle diameter of 5 μm was dispersed in an acrylic resin emulsion (trade name: Sumikaflex, manufactured by Sumitomo Chemical Co., Ltd.), and dried. A water treatment material was obtained. In addition, the adhesion amount of allophane was about 235 g / m 2 (11.2% by volume with respect to the base material volume), and the adhesion amount of the solid content of the acrylic resin emulsion was 30% by volume with respect to allophane. Using this treated material, a phosphate ion adsorption test was conducted in the same manner as in Example 1, and the results are shown in Table 1. However, the treatment material used was cut to 128 cm 2 so that the amount of allophane was 3 g.
[0022]
[Table 1]
Figure 0003688789
[0023]
As is apparent from Table 1, when water close to phosphorus concentration such as actual wastewater is treated, the water treatment materials of Comparative Examples 1 to 3 remove phosphate ions of less than 30% when 5 minutes have passed after the addition. Although only the rate is shown, the water treatment material of Example 1 shows a phosphate ion removal rate as high as 78%, which is twice or more, and it can be seen that it is very excellent in phosphorus adsorption power.
[0024]
【The invention's effect】
The water treatment material of the present invention is made of a porous material composed of a rod-shaped three-dimensional nonwoven fabric having a chrysanthemum-shaped cross section, and magnesium-based inorganic particles whose main component is magnesium oxide having a particle size of 0.1 to 100 μm by an adhesive. It adheres in a uniformly distributed state, the amount of magnesium-based inorganic particles is 0.5 to 60% by volume with respect to the base material volume, and the solid content adhesion amount of the adhesive is the amount of magnesium-based inorganic particles Therefore, the phosphorus component removal water treatment material is 15 to 100% by volume, so that phosphorus contained in water can be efficiently adsorbed in a short time, and the phosphorus adsorption ability is very excellent. In particular, since magnesium-based inorganic particles mainly composed of magnesium oxide are used, high phosphorus adsorption power can be expected, and phosphorus contained in lakes, rivers, and wastewater can be effectively removed.

Claims (2)

菊花状断面を有する棒状の立体状不織布からなる多孔質材料に、粒径が0.1〜100μmである酸化マグネシウムを主成分とするマグネシウム系無機粒子を接着剤により付着した水処理材であって、マグネシウム系無機粒子の量は基材体積に対して0.5〜60容量%であり、接着剤の固形分付着量は、マグネシウム系無機粒子の量に対して15〜100容量%であるリン成分除去用の水処理材。A water treatment material in which magnesium-based inorganic particles mainly composed of magnesium oxide having a particle size of 0.1 to 100 μm are attached to a porous material made of a rod-shaped three-dimensional nonwoven fabric having a chrysanthemum-like cross section by an adhesive. The amount of the magnesium-based inorganic particles is 0.5 to 60% by volume with respect to the base material volume, and the solid content adhesion amount of the adhesive is 15 to 100% by volume with respect to the amount of the magnesium-based inorganic particles. Water treatment material for component removal. マグネシウム系無機粒子が酸化マグネシウムである請求項1に記載の水処理材。  The water treatment material according to claim 1, wherein the magnesium-based inorganic particles are magnesium oxide.
JP02601696A 1996-01-18 1996-01-18 Water treatment material Expired - Fee Related JP3688789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02601696A JP3688789B2 (en) 1996-01-18 1996-01-18 Water treatment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02601696A JP3688789B2 (en) 1996-01-18 1996-01-18 Water treatment material

Publications (2)

Publication Number Publication Date
JPH09192656A JPH09192656A (en) 1997-07-29
JP3688789B2 true JP3688789B2 (en) 2005-08-31

Family

ID=12181908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02601696A Expired - Fee Related JP3688789B2 (en) 1996-01-18 1996-01-18 Water treatment material

Country Status (1)

Country Link
JP (1) JP3688789B2 (en)

Also Published As

Publication number Publication date
JPH09192656A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JPS6315012B2 (en)
JP2015161667A (en) Cesium adsorption sheet and filtration filter for muddy water using the same
JP3688789B2 (en) Water treatment material
JP6501186B2 (en) Strontium adsorption sheet
JP5967435B2 (en) Ferrocyanide composite vinyl polymer, preparation of the polymer, and cesium ion adsorbent containing the polymer
GB2035114A (en) Filtering used water soluble cutting agents
WO1996029146A1 (en) Solid phase extraction membrane
JP2020185501A (en) Adsorbent for water purification, manufacturing method of adsorbent for water purification, radioactive substance concentration detector, and land-based aquaculture system
JPH09187646A (en) Ion adsorbent
JP7144917B2 (en) Anion adsorption sheet
US4627920A (en) Process for the retention of a substance dissolved in a solution
JPH11262790A (en) Purifying treatment method purifying treatment material and regeneration of purifying treatment material
JP7163978B2 (en) Anion adsorption sheet
JP3229116B2 (en) Cartridge filter and manufacturing method thereof
CN110314666A (en) Aminopolycanboxylic acid's large pore material and its preparation method and application
DE60210481T2 (en) METHOD OF TREATING A CLOTHING PIECE USING A FILTER WITH INTEGRATED FLUID DISPENSER
JP2001096149A (en) Porous adsorbent and filter
RU2000117902A (en) DEVICE REGENERATED AND INSTALLATION FOR CLEANING LIQUID MEDIA
JP2019005731A (en) Porous body for decontaminating radioactive substance and manufacturing method therefor
JP3150063B2 (en) Oil-containing wastewater treatment material and oil-containing wastewater treatment method
CN215049260U (en) Soft water treatment system
JP3229115B2 (en) Filter media for liquid
JP2002292385A (en) Microorganism immobilizing carrier
JPH04247234A (en) Molded adsorbent
JP2881275B2 (en) Microorganism-adsorbing resin dispersion, method for producing the same, and method for producing microbial adsorbent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees