JP3688036B2 - Surface light source device using non-light diffusing light guide plate and lens film - Google Patents

Surface light source device using non-light diffusing light guide plate and lens film Download PDF

Info

Publication number
JP3688036B2
JP3688036B2 JP33770595A JP33770595A JP3688036B2 JP 3688036 B2 JP3688036 B2 JP 3688036B2 JP 33770595 A JP33770595 A JP 33770595A JP 33770595 A JP33770595 A JP 33770595A JP 3688036 B2 JP3688036 B2 JP 3688036B2
Authority
JP
Japan
Prior art keywords
light
guide plate
light source
light guide
lens film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33770595A
Other languages
Japanese (ja)
Other versions
JPH09160507A (en
Inventor
忠宏 真崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP33770595A priority Critical patent/JP3688036B2/en
Publication of JPH09160507A publication Critical patent/JPH09160507A/en
Application granted granted Critical
Publication of JP3688036B2 publication Critical patent/JP3688036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透過型の液晶表示装置や広告板等のバックライトとして使われるエッジ方式の面光源装置と、その構成部品であるレンズフィルムに関する。特に、出光分布が鋭くて光量ロスも少なく、部品点数も少ない面光源装置に関する。
【0002】
【従来の技術】
従来、液晶表示装置等の透過型表示体に用いられるバックライトは、その光源位置によって、エッジ方式と直下方式とがあるが、液晶表示装置では小スペース且つ薄型が可能な点でエッジ方式が主流である。従来のエッジ方式の面光源装置は、例えば図8の断面図に示す様な構造である。同図で1は導光板、2は線光源、3は反射フィルム、4は光拡散フィルム、5はレンズフィルム、8は光拡散反射部である。導光板1には、アクリル樹脂等の透明樹脂基材を切り出して表面を研磨するか、或いは射出成形で所定形状にしたものが用いられる。線光源2には冷陰極管が用いられ、反射フィルム3には金属蒸着した樹脂フィルムが用いられ、光拡散フィルム4には乳白色の樹脂フィルムが用いられ、レンズフィルム5には三角柱プリズムを多数設けた樹脂フィルムが用いられる。そして、光拡散反射部8としては、導光板裏面に白色インキで印刷形成した多数の微細なドットが用いられる。なお、ドットを点在させる密度は、光源から離れる程(図面右側)高くして、遠方側での出光量不足が起きない様にしてある。また、光拡散フィルム4で、導光板から出射する光を散乱光とし、光源やドットが直接光で見えるのを防止するとともに光を広げて表示装置の視野角を向上させている。
【0003】
【発明が解決しようとする課題】
しかしながら、表示装置の用途によっては、或る特定の狭い方向(例えば、法線方向)からのみ見る装置もあり、この様な用途に使用する面光源装置としては、上記の従来の構造の装置では出射する光が拡がりすぎて無駄になる光が多く、適切なるものとは言えなかった。
また、上記の様な従来の面光源装置は、導光板裏面の光拡散反射部がスクリーン印刷された多数の微細なドットから構成されているため、スクリーン印刷時に印刷版のスクリーンメッシュの目詰まりが生じて所望のドット形状、ドット面積のものが得らなくなり、歩留りが悪いという問題もあった。また、この様なドット印刷や、光拡散フィルムの組み込みが必要なので製造工程が複雑となり、高価なものとなることは避けられなかった。
【0004】
【課題を解決するための手段】
そこで本発明の、非光拡散性導光板を用いた面光源装置は、導光板は裏面のドット印刷を省き、その出光面は平滑面のままの非光拡散性導光板を用い、さらに光拡散フィルムも省き、これらを省いたことによって起こる導光板出光面から斜め方向へ出光する広がりの少ない光の方向を、レンズフィルムに三角柱プリズムを特定の形状にし且つ下向きに配置したものを用いることで、面光源の出光面に対して望ましい方向である法線方向に光の向きを変えて、法線方向に鋭い輝度分布を持った面光源装置としたものである。また、上記面光源装置で用いるレンズフィルムが本発明のレンズフィルムであるが、導光板から出光した光を法線方向に変える為の特定の三角プリズム形状として、レンズフィルムの出光面の水平方向(導光板の出光面がレンズフィルムの出光面と水平な関係ならば、導光板の出光面の水平方向と同じになる)を基準とした導光板からの光の出光ピーク角度をx〔°〕とした場合に、三角柱プリズムの頂角を(90−x)÷2+x〔°〕とし、且つこの頂角をレンズフィルムの出光面に対する法線で分割した場合の光源側の角度(光源側頂角)をx〔°〕、反光源側の角度(反光源側頂角)を(90−x)÷2〔°〕とした。これによって、導光板から出光してレンズフィルムの三角プリズムに入光する光を、三角プリズムの一つの側面に垂直に入光させて、入光後の光を他の側面で全反射させ、レンズシートの出光面から垂直に法線方向に向かって出光させる様にした。
【0005】
【発明の実施の形態】
以下、本発明の、非光拡散性導光板を用いた面光源装置、そしてこれに最適な本発明のレンズフィルムの実施形態を説明する。
【0006】
本発明の面光源装置は、導光板として非光拡散性の導光板を用いる点に第1の特徴があり、レンズフィルムとして特定形状のレンズを持つものを特定の配置で組付ける点に第2の特徴がある。
先ず、本発明で用いる非光拡散性導光板とは、アクリル樹脂等の透光性物質からなる通常は内部が密の平板状の物体であり、しかもその出光面及び裏面、及び側端面、さらに物体内部或いは物体自身に光を散乱させる要素を備えないことで非光拡散性とした導光板である。従来より良く用いられる導光板は(元々は非光拡散性の透明性基材に対して)裏面にドット印刷を光拡散反射部として形成してあるので、光拡散性の導光板である。また、導光板の出光面を梨地等の粗面として出光面で光を散乱させるものもあるが、これも光拡散性の導光板である。
従来、導光板に光拡散性の機能を備えるのは、ドット印刷で言えば疑似的な二次光源を形成し、導光板の出光面から垂直な法線方向に光を出光させようとするからであり、出光面を粗面するのはドット印刷を見えなくする等の為であった。しかし、本発明ではこのような光拡散機能は持たない、非光拡散性導光板を用いることで、無駄な方向に散乱される光を減少し、所望の法線方向の輝度成分に最大限に寄与する光線を出光する導光板とすることができる。
このような光線を出光させ得る導光板基材の形状は、光源側から離れるにつれて厚みがなだらかに薄くなる楔形状である。反光源側の導光板厚みがより薄くなる程、入光した光が臨界角を越える機会が増え、出光量が増すが、これに限定する必要はない。この形状によって、導光板にドット印刷等を施さなくても、所望の光線を出光させることができし、また射出成形等により容易に導光板を得られる。
【0007】
次に、レンズフィルムについて説明する。図2は、レンズフィルム5の三角柱プリズム6の断面形状を示す要部断面図である。同図では図面左側を光源側で、右側が反光源側である。レンズフィルム5の出光面p1が、面光源装置とした時の出光面となる。三角プリズム6の頂角先端7は図面下側(図示はしない導光板の方向)に向ける。頂角7は、レンズフィルムの出光面p1の法線Vで2分割して考えることができ、光源側頂角bと反光源側頂角cとに分割できる。同図で光源側頂角bは8°、反光源側頂角cは41°で、都合頂角aは49°である。また、この光源側頂角は、レンズフィルム5の出光面p1の水平方向を基準とした導光板からの光の出光ピーク角度x(レンズフィルムの出光面p1を基準にしたレンズフィルムに入光する光の入光ピーク角度でもある)に等しいが、レンズフィルムの出光面p1に導光板の出光面p2が平行となる配置関係の時において、図3の様に、導光板の出光面p2を基準とした導光板からの光の出光ピーク角度yに等しい。通常は、導光板出光面p2、及びレンズフィルムの出光面p1は、面光源装置の出光面にそれぞれ平行に配置するから、以降は説明を簡略化するためにこの平行関係が有るとして、特別の断らない限り出光ピーク角度yも出光ピーク角度xとして扱う。
【0008】
次に、図4を用いて、レンズフィルムの頂角の形状を、出光ピーク角度xとの関係で特定の形状とすると良いことを説明する。同図では、導光板の出光面p2から出光ピーク角度xで出光した光L1が、レンズフィルムの出光面p1から垂直にL2として出光する様子を示す。三角柱プリズムの頂角aは、法線v1で光源側頂角bと反光源側頂角cとに2分される。先ず、光源側頂角b=出光ピーク角度xとする。これは、三角柱プリズムの光源側の斜面HDに入光する際に、該斜面に垂直に入光させると反射光による光損失が少なくなるためである。A点から出た光L1は斜面HDで垂直に入光し、反光源側の斜面FDの点Bで全反射して出光面p1の点Eから垂直な光L2となって出光する。レンズフィルムの出光面p1から垂直な法線方向に光L2を出光させる為に必要な反光源側頂角cの値は、次の様にして得られる。先ず、三角プリズムの反光源側の斜面FDの点Bでの全反射の関係より、∠ABD=∠EBFとなる。次に、斜面FDと、斜面FDの点Bを通る法線v2との対角関係より、∠EBF=∠DBC である。ここで、法線v1の出光面p1及び出光面p2との交点をそれぞれG及びDとし、法線v2の出光面p1及び出光面p2との交点をそれぞれE及びCとすれば、線分GDと線分CEは平行であるから、反光源側頂角cである∠GDBは、∠DBC=∠GDB である。従って、∠ABD=∠DBC=∠GDB である。ここで三角形ABCは ∠ACB=90°の直角三角形であるから、∠ABC=90°−∠BAC=90°−x で、且つ、∠ABC=∠DBC+∠ABD でもあるので、結局、∠GDB=(90−x)÷2〔°〕となる。従って、三角プリズムの頂角a=光源側頂角b+反光源側頂角cであるから、(90−x)÷2+x〔°〕となる。
【0009】
なお、上記において、出光ピーク角度xが取り得る値は理論的には0〜90°までであるが、実用的には0 °<x≦30°の範囲である。
【0010】
なお、レンズフィルムが有する三角柱プリズムの特定の頂角を有する形状は、面光源装置の全面にわたって通常は全て同一で設計するが、全て同一にすることは必ずしも必要ない。また、本発明はこの頂角形状をレンズフィルム内において同一に限定するものでもない。ここで、本発明による頂角形状の定義を再確認すれば、レンズフィルムの出光面の水平方向を基準とした導光板からの光の出光ピーク角度をx〔°〕とした場合に、三角柱プリズムの頂角を(90−x)÷2+x〔°〕とし、且つこの頂角をレンズフィルムの出光面に対する法線で分割した場合の光源側の角度(光源側頂角)をx〔°〕、反光源側の角度(反光源側頂角)を(90−x)÷2〔°〕とするものであった。すなわち、出光ピーク角度x〔°〕と、前記頂角形状との関係のみを定義するものであって、出光ピーク角度が導光板の出光面の場所によって異なれば、それに合わせて頂角形状も変えれば(より)良いことを指示するものでもある。但し、導光板出光面の場所で出光ピーク角度xに多少の相違があっても、或る出光ピーク角度xで代表させて、この代表値に対する頂角形状として面光源装置を組み立てても良く、また本発明の趣旨はこの様な仕様を阻害するものでもない。
【0011】
【実施例】
次に、実施例により本発明を具体的に説明する。
【0012】
導光板
導光板は、出光面寸法が横220mm×縦168mmで、断面寸法として厚みが光源側の入光部で3mm、光源側から離れるにつれて直線的に厚みが減少し光源から遠方の反光源側で1mmとなる楔形状のものを、透明なアクリル樹脂(旭化成工業(株)製 デルペット80NH)を用い通常の射出成形で作製した。
【0013】
レンズフィルム
先ず、厚み125μmの易接着ポリエチレンテレフタレートフィルム(東洋紡(株)製 A−4300)に、ケミカルマット用メジウム(ザ・インクテック(株)製)とイソシアネート硬化剤(ザ・インクテック(株)製 XEL硬化剤)を重量比で100:10とした塗工液を塗工して2μmのアンダーコート層を形成して透明な基材フィルムとした。次いで、この基材フィルムを用い、本出願人が特開平5−169015号公報で開示した製造方法(三角柱プリズムと逆凹凸の凹部を持つロール凹版の凹部に樹脂液を充填し、その上から基材フィルムを接触させた状態で紫外線を照射して樹脂液を硬化させた後、剥がす。)により、基材フィルム上に紫外線硬化型樹脂(日本合成ゴム(株)製 Z−9002A)からなる三角柱プリズムを形成して、本発明のレンズフィルムを作製した。プリズム形状は図2に示す様な頂角a=49°、光源側頂角b=8°、反光源側頂角c=41°で、高さ約40μm、底辺約50μmの形状とした。
【0014】
面光源装置
上記で得た導光板の一側端面に線光源を配置し、裏面側には、反射体である反射フィルムとして白色のポリエチレンテレフタレートフィルムを配置し、出光面側には上記レンズフィルムを三角柱プリズムを導光板側に向けて光源側頂角、反光源側頂角が設置する光源と上述の所定の関係となる様に一枚配置して、図1に示す様な本発明の非光拡散性導光板を用いた面光源装置とした。
【0015】
比較例
上記で得た導光板の一側端面に線光源を配置し、裏面側には従来方法にて白色インキをスクリーン印刷して多数のドットを形成して光拡散反射部とし、さらにその裏面側に反射体である反射フィルムとして白色のポリエチレンテレフタレートフィルムを配置した。導光板の出光面側には、乳白色ポリエチレンテレフタレートフィルムからなる拡散フィルムを配置し、さらにこの上に、レンズ形状が二等辺三角形のレンズフィルムをレンズ側を上側に向けて2枚配置して、比較例の面光源装置とした。
【0016】
性能評価
実施例及び比較例の面光源装置を次の項目について評価した。
【0017】
▲1▼輝度の面均一性:
図5に示す9点で法線方向の輝度について輝度測定装置((株)トプコン製BM−8)で測定した。測定箇所5を中央とし、他の8箇所は周囲から15mm内側の線分上である。結果は表1に示す。表中のムラは、(最小輝度値/最大輝度値)×100〔%〕で、輝度の面均一性を示す。
【0018】
▲2▼輝度角度分布:
▲1▼図xで示す中央の5番の測定箇所で、図6に示す如く輝度の法線方向に対する角度分布を、導光板の光源側の辺に垂直な方向で測定した。結果は、図7に示す。
【0019】
【表1】

Figure 0003688036
【0020】
【発明の効果】
本発明のレンズフィルムによれば、その三角柱プリズムを導光板側に向けて配置して使用することで、レンズフィルムの出光面に平行な面に対してx〔°〕の角度でレンズフィルムに入光した光を、法線方向に向けて出光することができる。
そして、このレンズフィルムを光拡散機能を持たない導光板とともに用い、且つ光拡散フィルムを用いずに組み立てた本発明の面光源装置は、出光面の法線方向に対して鋭い輝度分布を持った、光の利用効率に優れたものとなる。
【図面の簡単な説明】
【図1】本発明の非光拡散性導光板を用いた面光源装置の一実施例を示す断面図。
【図2】図1の面光源装置に用い得る、本発明のレンズフィルムの一実施例の要部断面図。
【図3】導光板の出光面から光の出光ピーク角度を説明する図。
【図4】レンズフィルムの三角柱プリズムの特定形状を説明する説明図。
【図5】導光板の輝度測定箇所を示す平面図。
【図6】導光板の輝度角度分布の測定方向を示す説明図。
【図7】本発明と従来の面光源装置と輝度角度分布の比較図。
【図8】従来のエッジ方式の面光源装置の構成例を示す断面図。
【符号の説明】
1 導光板
2 光源
3 反射体、反射フィルム
4 光拡散フィルム
5 レンズフィルム
6 三角柱プリズム
7 頂角先端
8 光拡散反射部
a 頂角
b 光源側頂角(頂角を法線で分割した時の光源側の成す角度)
c 反光源側頂角(頂角を法線で分割した時の反光源側の成す角度)
p1 レンズフィルムの出光面、面光源装置の出光面
p2 導光板の出光面
v1 法線
v2 法線
x 導光板からの出光ピークのレンズフィルム出光面に対する角度(導光板出光面がレンズフィルム出光面に平行な時は、導光板出光面に対する角度)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an edge-type surface light source device used as a backlight of a transmissive liquid crystal display device, an advertising board, and the like, and a lens film as a component thereof. In particular, the present invention relates to a surface light source device having a sharp light emission distribution, little light loss, and a small number of parts.
[0002]
[Prior art]
Conventionally, backlights used in transmissive display bodies such as liquid crystal display devices have an edge method and a direct method depending on the position of the light source, but the edge method is the mainstream in liquid crystal display devices because it can be made small and thin. It is. A conventional edge-type surface light source device has a structure as shown in the cross-sectional view of FIG. In the figure, 1 is a light guide plate, 2 is a line light source, 3 is a reflection film, 4 is a light diffusion film, 5 is a lens film, and 8 is a light diffusion reflection part. For the light guide plate 1, a transparent resin base material such as an acrylic resin is cut out and the surface thereof is polished, or a predetermined shape is formed by injection molding. The line light source 2 is a cold cathode tube, the reflective film 3 is a metal-deposited resin film, the light diffusion film 4 is a milky white resin film, and the lens film 5 is provided with many triangular prisms. Resin film is used. And as the light-diffusion reflection part 8, many fine dots printed and formed with the white ink on the back surface of the light-guide plate are used. It should be noted that the density at which dots are scattered is increased as the distance from the light source increases (the right side of the drawing) so that a shortage of emitted light quantity does not occur on the far side. In addition, the light diffusing film 4 uses scattered light as light emitted from the light guide plate to prevent the light source and dots from being directly seen by the light and to broaden the light to improve the viewing angle of the display device.
[0003]
[Problems to be solved by the invention]
However, depending on the application of the display device, there is a device for viewing only from a specific narrow direction (for example, the normal direction). As a surface light source device used for such an application, the above-described conventional structure device is used. Since the emitted light spreads too much, there is much light that is wasted, and it was not appropriate.
Further, in the conventional surface light source device as described above, the light diffuse reflection part on the back surface of the light guide plate is composed of a large number of fine dots printed on the screen, so that the screen mesh of the printing plate is clogged during screen printing. As a result, a desired dot shape and dot area cannot be obtained, resulting in a poor yield. In addition, since it is necessary to incorporate such dot printing and light diffusion film, it is inevitable that the manufacturing process becomes complicated and expensive.
[0004]
[Means for Solving the Problems]
Therefore, in the surface light source device using the non-light diffusable light guide plate of the present invention, the light guide plate omits dot printing on the back surface, and the light exit surface uses a non-light diffusable light guide plate with a smooth surface. By omitting the film, using the direction of the light that spreads in the oblique direction from the light guide plate exit surface caused by omitting these, using a triangular prism prism in a specific shape and arranged downward on the lens film, This is a surface light source device having a sharp luminance distribution in the normal direction by changing the direction of light in the normal direction which is a desirable direction with respect to the light output surface of the surface light source. Also, the lens film used in the above Symbol surface light source device is a lens film of the present invention, as a particular triangular prism shape for changing the light exiting from the light guide plate in the normal direction, the horizontal light emitting surface of the lens film The light output peak angle of the light from the light guide plate with respect to the direction (if the light output surface of the light guide plate is horizontal with the light output surface of the lens film is the same as the horizontal direction of the light output surface of the light guide plate) is x [° ], The apex angle of the triangular prism is (90−x) ÷ 2 + x [°], and the apex angle is divided by the normal to the light exit surface of the lens film (the light source side apex). The angle (angle) was x [°], and the angle on the opposite light source side (vertical angle on the opposite light source side) was (90−x) / 2 [°]. As a result, the light emitted from the light guide plate and incident on the triangular prism of the lens film is vertically incident on one side surface of the triangular prism, and the incident light is totally reflected on the other side surface. Light was emitted vertically from the light exit surface of the sheet in the normal direction.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a surface light source device using a non-light diffusing light guide plate of the present invention and an embodiment of a lens film of the present invention that is optimal for the surface light source device will be described.
[0006]
The surface light source device of the present invention has a first feature in that a non-light diffusing light guide plate is used as the light guide plate, and a second feature is that a lens film having a lens having a specific shape is assembled in a specific arrangement. There are features.
First, the non-light diffusive light guide plate used in the present invention is a normally flat plate-like object made of a translucent material such as acrylic resin, and its light exit surface, back surface, and side end surface, and It is a light guide plate that is non-light diffusing by not including an element that scatters light inside the object or in the object itself. A light guide plate that is used more frequently than before is originally a light diffusible light guide plate because dot printing is formed as a light diffusive reflecting portion on the back surface (originally with respect to a non-light diffusable transparent base material). In addition, there is a light diffusing light guide plate that has a light output surface of the light guide plate as a rough surface such as a satin surface and scatters light on the light output surface.
Conventionally, the light diffusing function is provided in the light guide plate because, in dot printing, a pseudo secondary light source is formed and light is emitted in the normal direction perpendicular to the light exit surface of the light guide plate. The reason for roughening the light-emitting surface was to make dot printing invisible. However, in the present invention, by using a non-light diffusing light guide plate that does not have such a light diffusing function, light scattered in a useless direction is reduced, and a luminance component in a desired normal direction is maximized. It can be set as the light-guide plate which emits the light ray which contributes.
The shape of the light guide plate base material that can emit such a light beam is a wedge shape whose thickness gradually decreases as the distance from the light source side increases. As the thickness of the light guide plate on the side opposite to the light source becomes thinner, the chance that incident light exceeds the critical angle increases and the amount of emitted light increases, but it is not necessary to limit to this. With this shape, a desired light beam can be emitted without performing dot printing or the like on the light guide plate, and the light guide plate can be easily obtained by injection molding or the like.
[0007]
Next, the lens film will be described. FIG. 2 is a cross-sectional view of the main part showing the cross-sectional shape of the triangular prism 6 of the lens film 5. In the figure, the left side of the drawing is the light source side, and the right side is the counter light source side. The light exit surface p1 of the lens film 5 is the light exit surface when the surface light source device is used. The apex angle tip 7 of the triangular prism 6 faces the lower side of the drawing (the direction of the light guide plate not shown). The apex angle 7 can be divided into two by the normal V of the light exit surface p1 of the lens film, and can be divided into a light source side apex angle b and an anti-light source side apex angle c. In the figure, the light source side apex angle b is 8 °, the counter light source side apex angle c is 41 °, and the convenient apex angle a is 49 °. The light source side apex angle b is the light output peak angle x from the light guide plate with respect to the horizontal direction of the light exit surface p1 of the lens film 5 (the light incident on the lens film based on the light exit surface p1 of the lens film). In the arrangement relationship in which the light exit surface p2 of the light guide plate is parallel to the light exit surface p1 of the lens film, the light exit surface p2 of the light guide plate is set as shown in FIG. It is equal to the light output peak angle y of light from the light guide plate as a reference. Normally, the light guide plate light exit surface p2 and the light exit surface p1 of the lens film are arranged in parallel with the light exit surface of the surface light source device, respectively. Unless otherwise indicated, the light emission peak angle y is also treated as the light emission peak angle x.
[0008]
Next, it will be described with reference to FIG. 4 that the shape of the apex angle of the lens film may be a specific shape in relation to the light emission peak angle x. In the drawing, the light L1 emitted from the light exit surface p2 of the light guide plate at the light exit peak angle x is emitted as L2 perpendicularly from the light exit surface p1 of the lens film. The apex angle a of the triangular prism is bisected into a light source side apex angle b and an anti-light source side apex angle c by the normal line v1. First, the light source side apex angle b = the light emission peak angle x. This is because when light is incident on the slope HD on the light source side of the triangular prism, light loss due to reflected light is reduced if light is incident perpendicular to the slope. The light L1 emitted from the point A enters vertically at the slope HD, is totally reflected at the point B on the slope FD on the side opposite to the light source, and emerges as light L2 perpendicular from the point E on the light exit surface p1. The anti-light source side apex angle c required to emit light L2 in the normal direction perpendicular to the light exit surface p1 of the lens film is obtained as follows. First, ∠ABD = ∠EBF from the relation of total reflection at point B of the slope FD on the side opposite to the light source of the triangular prism. Next, from the diagonal relationship between the slope FD and the normal line v2 passing through the point B of the slope FD, ∠EBF = ∠DBC. Here, if the intersection points of the normal line v1 with the light exit surface p1 and the light exit surface p2 are G and D, respectively, and the intersection points of the normal line v2 with the light exit surface p1 and the light exit surface p2 are E and C, respectively, the line segment GD Since the line CE is parallel, ∠GDB which is the opposite light source side apex angle c is ∠DBC = ∠GDB. Therefore, ∠ABD = ∠DBC = ∠GDB. Here, since the triangle ABC is a right triangle with ∠ACB = 90 °, ∠ABC = 90 ° −∠BAC = 90 ° −x and ∠ABC = ∠DBC + ∠ABD, so that ∠GDB = (90−x) ÷ 2 [°]. Accordingly, since it is the apex angle a = source-side apex angle b + side opposite to the light source apex angle c of the triangular pillar prisms, and (90-x) ÷ 2 + x [°].
[0009]
In addition, in the above, although the light emission peak angle x can theoretically range from 0 to 90 °, it is practically in the range of 0 ° <x ≦ 30 °.
[0010]
In addition, although the shape which has the specific apex angle of the triangular prism which a lens film has is normally designed all the same over the whole surface light source device, it is not necessarily required to make all the same. Further, the present invention does not limit the apex shape to the same in the lens film. Here, if the definition of the apex angle shape according to the present invention is reconfirmed, when the light output peak angle of the light from the light guide plate with respect to the horizontal direction of the light output surface of the lens film is x [°], a triangular prism The angle on the light source side (light source side apex angle) when the apex angle is divided by the normal to the light exit surface of the lens film is x [°], where (90−x) ÷ 2 + x [°] The angle on the side opposite to the light source (vertical angle on the side opposite to the light source) was set to (90−x) ÷ 2 [°]. That is, only the relationship between the light emission peak angle x [°] and the apex angle shape is defined. If the light emission peak angle varies depending on the location of the light exit surface of the light guide plate, the apex angle shape can be changed accordingly. It is also an indication of what is better. However, even if there is a slight difference in the light output peak angle x at the location of the light output surface of the light guide plate, it may be represented by a certain light output peak angle x, and the surface light source device may be assembled as an apex angle shape for this representative value, Further, the gist of the present invention is not to hinder such specifications.
[0011]
【Example】
Next, the present invention will be described specifically by way of examples.
[0012]
Light guide plate The light guide plate has a light exit surface dimension of 220 mm wide x 168 mm long, with a cross-sectional dimension of 3 mm at the light incident part on the light source side, and the thickness decreases linearly with increasing distance from the light source side, and is farther from the light source. A wedge-shaped product having a diameter of 1 mm on the side opposite to the light source was prepared by ordinary injection molding using a transparent acrylic resin (Delpet 80NH manufactured by Asahi Kasei Kogyo Co., Ltd.).
[0013]
Lens film First, a 125 μm-thick adhesive polyethylene terephthalate film (A-4300 manufactured by Toyobo Co., Ltd.), a medium for chemical mats (produced by The Inktec Co., Ltd.) and an isocyanate curing agent (The Ink, Inc.). XEL curing agent manufactured by Tech Co., Ltd.) was applied at a weight ratio of 100: 10 to form a 2 μm undercoat layer to obtain a transparent base film. Then, using this base film, the manufacturing method disclosed by the present applicant in Japanese Patent Laid-Open No. Hei 5-169015 (filling a resin liquid into a concave part of a roll intaglio having a triangular prism and a concave part having a reverse concave-convex part, The resin film is cured by irradiating with ultraviolet rays in the state of contact with the material film, and then peeled off.), A triangular prism made of ultraviolet curable resin (Z-9002A manufactured by Nippon Synthetic Rubber Co., Ltd.) on the base film. A prism film was formed to produce the lens film of the present invention. The prism shape was such that the apex angle a = 49 °, the light source side apex angle b = 8 °, the non-light source side apex angle c = 41 ° as shown in FIG. 2, and the height was about 40 μm and the base was about 50 μm.
[0014]
Surface light source device A linear light source is disposed on one side end surface of the light guide plate obtained above, a white polyethylene terephthalate film is disposed on the back surface side as a reflective film as a reflector, and on the light exit surface side. One of the lens films is arranged so that the triangular prism is directed to the light guide plate side so that the light source side apex angle and the non-light source side apex angle are in the predetermined relationship as described above, and a book as shown in FIG. A surface light source device using the non-light diffusing light guide plate of the invention was obtained.
[0015]
Comparative example A light source is arranged on one side end face of the light guide plate obtained above, and a white dot is screen-printed on the back side by a conventional method to form a large number of dots to form a light diffusing reflection part. Further, a white polyethylene terephthalate film was disposed as a reflective film as a reflector on the back side. A light-diffusing film made of milky white polyethylene terephthalate film is placed on the light exit surface side of the light guide plate, and two lens films with an isosceles triangle shape are placed on this side with the lens side facing up. An example surface light source device was obtained.
[0016]
Performance evaluation The surface light source devices of Examples and Comparative Examples were evaluated for the following items.
[0017]
(1) Surface uniformity of luminance:
The luminance in the normal direction at 9 points shown in FIG. 5 was measured with a luminance measuring device (BM-8 manufactured by Topcon Corporation). The measurement location 5 is the center, and the other 8 locations are on a line segment 15 mm inside from the periphery. The results are shown in Table 1. The unevenness in the table is (minimum luminance value / maximum luminance value) × 100 [%], and indicates surface uniformity of luminance.
[0018]
(2) Luminance angle distribution:
{Circle around (1)} The angular distribution with respect to the normal direction of the luminance was measured in the direction perpendicular to the side of the light guide plate on the light source side as shown in FIG. The results are shown in FIG.
[0019]
[Table 1]
Figure 0003688036
[0020]
【The invention's effect】
According to the lens film of the present invention, when the triangular prism is disposed facing the light guide plate side, the lens film enters the lens film at an angle of x [°] with respect to a plane parallel to the light exit surface of the lens film. The emitted light can be emitted in the normal direction.
The surface light source device of the present invention assembled using this lens film with a light guide plate having no light diffusion function and without using the light diffusion film has a sharp luminance distribution with respect to the normal direction of the light exit surface. The light utilization efficiency is excellent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a surface light source device using a non-light diffusing light guide plate of the present invention.
2 is a cross-sectional view of an essential part of an embodiment of a lens film of the present invention that can be used in the surface light source device of FIG. 1;
FIG. 3 is a diagram for explaining a light output peak angle from a light output surface of a light guide plate.
FIG. 4 is an explanatory diagram illustrating a specific shape of a triangular prism of a lens film.
FIG. 5 is a plan view showing luminance measurement points of the light guide plate.
FIG. 6 is an explanatory diagram showing the measurement direction of the luminance angle distribution of the light guide plate.
FIG. 7 is a comparison diagram of luminance angle distribution between the present invention and a conventional surface light source device.
FIG. 8 is a cross-sectional view showing a configuration example of a conventional edge-type surface light source device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light guide plate 2 Light source 3 Reflector, reflection film 4 Light diffusion film 5 Lens film 6 Triangular prism 7 Apex angle tip 8 Light diffuse reflection part a apex angle b Light source side apex angle (light source when apex angle is divided by normal line) Side angle)
c Anti-light source side apex angle (angle formed on the anti-light source side when the apex angle is divided by the normal)
p1 Light exit surface of lens film, light exit surface of surface light source device p2 Light exit surface of light guide plate v1 Normal line v2 Normal line x Angle of light output peak from light guide plate with respect to lens film light exit surface (light guide plate light exit surface on lens film light exit surface) When parallel, angle with respect to light exit surface of light guide plate)

Claims (3)

少なくとも、光拡散機能を持たない非光拡散性導光板と、該導光板の側端面に隣接して配置された光源と、裏面側に配置された光反射体と、出光面側に配置されたレンズフィルムと、からなる面光源装置であって、
レンズフィルムは、断面が三角形の三角柱プリズムが多数二次元配列したレンズを有し、また、三角柱プリズムの頂角先端を導光板側にして配置され、且つ三角柱プリズムの形状を、レンズフィルムの出光面の水平方向を基準とした導光板からの光の出光ピーク角度をx〔°〕とした場合に、三角柱プリズムの頂角を(90−x)÷2+x〔°〕とし、且つこの頂角をレンズフィルムの出光面に対する法線で分割した場合の光源側の角度をx〔°〕、反光源側の角度を(90−x)÷2〔°〕とした、非光拡散性導光板を用いた面光源装置。
At least a non-light diffusing light guide plate having no light diffusion function, a light source arranged adjacent to the side end surface of the light guide plate, a light reflector arranged on the back surface side, and a light emitting surface side A surface light source device comprising a lens film,
The lens film has a lens in which a large number of triangular prisms each having a triangular cross section are arranged two-dimensionally, and is arranged with the apex tip of the triangular prism prism on the light guide plate side. When the light output peak angle from the light guide plate with respect to the horizontal direction of the surface is x [°], the apex angle of the triangular prism is (90−x) ÷ 2 + x [°], and this apex angle is A non-light diffusing light guide plate is used in which the angle on the light source side is x [°] and the angle on the non-light source side is (90−x) ÷ 2 [°] when divided by the normal to the light exit surface of the lens film. A surface light source device.
導光板が、光源側から離れるにつれて厚みがなだらかに薄くなる楔に類似した形状である請求項1記載の非光拡散性導光板を用いた面光源装置。  The surface light source device using a non-light diffusable light guide plate according to claim 1, wherein the light guide plate has a shape similar to a wedge whose thickness gradually decreases as the distance from the light source side increases. 断面が三角形の三角柱プリズムが多数二次元配列したレンズを有し、三角柱プリズムの頂角先端を導光板側に向けて配置し、該プリズムの底辺側のレンズフィルム面をレンズフィルムの出光面として用いる非光拡散性導光板を用いた面光源装置用のレンズフィルムにおいて、
三角柱プリズムの形状を、該プリズムの頂角を(90−x)÷2+x〔°〕とし、且つこの頂角をレンズフィルムの出光面に対する法線で分割した場合に光源側とする側の角度をx〔°〕、反光源側とする側の角度を(90−x)÷2〔°〕とした、レンズフィルム。但しx〔°〕は、レンズフィルムの出光面の水平方向を基準とした導光板からの光の出光ピーク角度〔°〕である。
It has a lens in which a large number of triangular prisms with a triangular cross section are arranged two-dimensionally, and the apex angle tip of the triangular prism is arranged toward the light guide plate side, and the lens film surface on the bottom side of the prism is used as the light exit surface of the lens film In the lens film for the surface light source device using the non-light diffusing light guide plate to be used ,
The triangular prism has a shape in which the apex angle of the prism is (90−x) ÷ 2 + x [°], and when the apex angle is divided by the normal to the light exit surface of the lens film, the angle on the light source side is A lens film in which x [°] and the angle on the side opposite to the light source side are (90−x) ÷ 2 [°]. However, x [°] is a light output peak angle [°] of light from the light guide plate with respect to the horizontal direction of the light output surface of the lens film.
JP33770595A 1995-12-04 1995-12-04 Surface light source device using non-light diffusing light guide plate and lens film Expired - Fee Related JP3688036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33770595A JP3688036B2 (en) 1995-12-04 1995-12-04 Surface light source device using non-light diffusing light guide plate and lens film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33770595A JP3688036B2 (en) 1995-12-04 1995-12-04 Surface light source device using non-light diffusing light guide plate and lens film

Publications (2)

Publication Number Publication Date
JPH09160507A JPH09160507A (en) 1997-06-20
JP3688036B2 true JP3688036B2 (en) 2005-08-24

Family

ID=18311190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33770595A Expired - Fee Related JP3688036B2 (en) 1995-12-04 1995-12-04 Surface light source device using non-light diffusing light guide plate and lens film

Country Status (1)

Country Link
JP (1) JP3688036B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907198B1 (en) * 1997-03-11 2009-09-25 닛또 쥬시 고교 가부시키가이샤 Surface light source device and asymmetric prism sheet
JP4053626B2 (en) 1997-03-11 2008-02-27 株式会社エンプラス Surface light source device and asymmetric prism sheet
KR20010072446A (en) * 1999-07-29 2001-07-31 모리시타 요이찌 Liquid Crystal Display Device
KR100432347B1 (en) 2003-07-01 2004-05-20 주식회사 엘지에스 Prism sheet of back light unit for lcd
JP4438441B2 (en) * 2004-02-16 2010-03-24 日本電気株式会社 Illumination device and display device including the same
KR200477083Y1 (en) * 2012-09-07 2015-05-04 오오오 "노브예 에너지티체스키에 테크놀로지" Illuminating device

Also Published As

Publication number Publication date
JPH09160507A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JPH10260315A (en) Lens light guide plate and surface light source unit using the same
US7804554B2 (en) Surface emitting device and liquid crystal display
JP4394977B2 (en) Surface light source device
US6659615B2 (en) Light pipe and method for producing the same
JP4544531B2 (en) Surface light source device
US6425673B1 (en) Light guide pipe having elongate roughened protrusions and/or roughened concaves, planar light source unit having a broad viewing angle characteristic, and liquid crystal display device
JPH09274184A (en) Lens film and surface light source device using it
JPH11305011A (en) Lens film and surface light source device
JP2008046601A (en) Optical plate and direct type backlight module using the optical plate
KR20060002446A (en) Prism sheet of liquid crystal display and back light unit using the prism sheet thereof
JP4119469B2 (en) Optical member and backlight unit using the same
JPH0682635A (en) Surface light source device
JP2002267849A (en) Light guide plate, surface light source device, and reflection type liquid crystal display device
JP5700084B2 (en) Light guide plate, surface light source device, transmissive display device
JP2009300989A (en) Light deflection sheet and surface light source apparatus equipped with the same
JPH07159607A (en) Optical control sheet and surface light emitting device provided therewith
US7139464B2 (en) Surface light source and light guide used therefor
WO2004079408A1 (en) Optical deflector element and light source device
JP2008218418A (en) Surface light source and light guide used for same
JP3688036B2 (en) Surface light source device using non-light diffusing light guide plate and lens film
JPH1073820A (en) Light nondiffusion property light transmission plate, lens film and surface light source device
KR20010051854A (en) Light pipe, planar light source unit and liquid-crystal display device
JP4119633B2 (en) Surface light source device and light guide used therefor
KR20010046581A (en) Backlight device for display
JP4446460B2 (en) Surface light source device, light guide for surface light source device, and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees