JP3687656B2 - Gas flow measuring device by differential pressure - Google Patents

Gas flow measuring device by differential pressure Download PDF

Info

Publication number
JP3687656B2
JP3687656B2 JP2003040503A JP2003040503A JP3687656B2 JP 3687656 B2 JP3687656 B2 JP 3687656B2 JP 2003040503 A JP2003040503 A JP 2003040503A JP 2003040503 A JP2003040503 A JP 2003040503A JP 3687656 B2 JP3687656 B2 JP 3687656B2
Authority
JP
Japan
Prior art keywords
differential pressure
pipes
heat insulating
heat
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003040503A
Other languages
Japanese (ja)
Other versions
JP2004251675A (en
Inventor
伸次 渡辺
純一 寺門
哲男 桧山
健二 掛札
Original Assignee
日立酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立酸素株式会社 filed Critical 日立酸素株式会社
Priority to JP2003040503A priority Critical patent/JP3687656B2/en
Publication of JP2004251675A publication Critical patent/JP2004251675A/en
Application granted granted Critical
Publication of JP3687656B2 publication Critical patent/JP3687656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、煙突あるいは高架排気塔などの高さの高い構造物、すなわち高層の排気塔の内部を流れて排出される気体(多くは排ガス)の流量の測定を差圧によって行う気体流量装置に関する。
【0002】
【従来の技術】
産業廃棄物を含む各種廃棄物の処理施設に設置される排ガス排出用の排気塔にあっては、排気塔を通過する排ガスの流量の計測監視が必要とされる場合がある。
そして、排気塔は、周辺環境への環境影響から非常に高い構造物とされる場合がある。このようなケースにあっては、排気塔の最上部高さは70m以上の高層になることがほとんどである。
【0003】
このように高い排気塔にあっても、排ガスの通過流速は非常に遅く、流量計測のためにベンチュリ式又はオリフィス式の計測方法が採用される。これらの計測方法は差圧を利用した気体流量計測手段としてよく知られている。
高層である排気塔の出口端付近に差圧検出器を配設し、流量検出端からの差圧を取り出して計測することが行われている。
【0004】
従来の検出方式として、1)高層部へ差圧伝送器を設置する形体、2)排気塔内部に二本の差圧電圧配管を設けて計測する形体、3)排気塔の外壁に二本の差圧導圧配管を設けて計測する形体が採用されている。
【0005】
【発明が解決しようとする課題】
従来の検出方式についての現状の問題点と今後の発生が予想される問題点は次の通りである。
前述した三方式に関し、個別記載する。
1.高層部への差圧伝送器設置方式
電子式計測器の設置位置が、地上70m以上の高所となり、年次点検その他の運用上の問題があり、現在実施されていない。
【0006】
2.排気塔内部への差圧検出導管設置方式
前記2に示す方式によれば、直射日光の影響は受けず、排気塔内の流体に依存した温度に二本の差圧導圧配管がなり正確な計測ができる。このため、本方式を採用することが現在は最も多い。しかし、排気塔内の環境により腐食が助長されることがあるほか、当然発生する経年劣化による腐食らでも再施行する必要が生じ、その場合に排気塔内部施工であるために再施工困難(事実上不可能)となる。
【0007】
3.排気塔外壁への差圧検出導管の設置方式
電子式計測器の設置場所は地上とすることができ、年次点検その他の問題は解決できるが、二本の差圧導圧管が日光の影響を受け温度差を生じ、その温度差により発生する上昇気流(上昇する流れ)により差圧の正確な測定ができない。排気塔の流量測定における計測差圧は、数mm〜数十mm水柱と非常に小さく、両方の管の温度差を1〜2℃にすることが求められるが、二本の差圧導圧管に保温等実施してもこの温度差に収めることは困難である。又、真空断熱配管とし、直射日光の影響を抑制することも考えられるが、差圧導圧管それぞれを真空断熱配管で施工した場合であってもやはり直射日光の影響を受け両管の温度差を完全に抑制することはできない。両方の差圧導圧配管を1つの真空断熱配管内に収納する場合であっても、両管の温度差を同一温度にすることは困難であり、更に非常に高価な配管となるほか、真空層の経年劣化・再真空排気を考えると採用はできない。
以上の記載の通りいずれの方法を採用しても問題がある。しかし現状は、その他の選択肢がないためいずれかの方式にて施工しているのが現状である。
【0008】
前述した問題を解決するためには、煙突外部への導管施工が可能で差圧導圧配管相互に温度差をつけない構造が必要である。
真空断熱配管・保温配管は全て入熱抑制方式であるが、入熱を完全に遮断することは不可能であり、入熱による配管の温度上昇を防止することも当然不可能である。このため、新装置には入熱を防止することに加え、配管相互が積極的に熱伝達を行い温度差を生じない構造にすることが求められる。問題は、配管相互の温度差を生じさせないことであり、温度を上げ下げしないことではない。本発明は、二本の差圧導圧配管の内部における気体の温度上昇に伴う温度差が許容値以内であることを担保とすることで、二本の差圧導圧配管を排気塔外に設置したことによる機能を満足することに着目した導圧配管構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、煙突あるいは高層構造物などの排気塔の排出路出口端付近に、排出される気体の差圧を計測する差圧検出器が設けられ、該差圧検出器からの二本の差圧導圧配管が差圧伝送器に接続されて、差圧に基づく気体流量が測定される気体流量測定装置において、前記二本のそれぞれの差圧導圧配管は、排気塔の外部に配管された金属配管からなって、溶着金属部によって接続、一体化され、前記二本の差圧導圧配管の間に熱伝導材が配設され、一体化した二本の差圧導管および前記熱伝導材が保温断熱材で被覆された構造として差圧による気体流量測定装置を提供する。
【0010】
保温断熱材は円筒状形状をなし、その内部の一部に空白領域が形成され得る。前記円筒状形状の保温断熱材の内部の空白領域は、定ピッチ間隔で塞がれた構成とされ得る。
【0011】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明の実施例の概略全体構成を示す。図の例にあっては、排気塔1は地上から70mの高さを持つ例であり、排気塔1内の気体排出路2を徐々に流速を増す排ガス3が流れ、出口から煙4として排出される。
排気塔1の排気路出口端付近には従来と同様にベンチュリ式あるいはオリフィス式などの差圧計測を行う差圧検出器5が設けられる。
【0012】
そして、地上付近には従来と同様に差圧伝送器6が設置され、得られた信号は電気信号配線7を介して流量処理装置、例えばパソコンなどのコンピュータ(図示せず)による処理装置に伝送され、排ガスの刻々の流量が算出され、コンピュータの画面に表示されたり、プリンタによってプリントアウトされる。
【0013】
差圧検出器5の高圧部と差圧部の2ヶ所と差圧伝送器6とを結んで同径状の二本の差圧導圧配管11、12が排気塔1の外部に排気塔1に沿って設けられる。二本の差圧導圧配管の一方は、高圧側導圧配管11となり、他方は低圧側導圧配管12となる。高圧側導圧配管11、低圧側導圧配管12の内部にはそれぞれ差圧検出器5の高圧側部、低圧側部に接続された導圧路21、22が形成されている。
【0014】
図2および図3に高圧側導圧配管11と低圧側導圧配管12の配設状況を示す。
これらの図において、高圧側導圧配管11と低圧側導圧配管12は、それぞれ金属管からなり、溶着金属部13によって接続、一体化固定される。すなわち、金属の溶着によって高圧側導圧配管11と低圧側導圧配管12とは一体とされる。二本の差圧導圧配管11、12の間にはこれらに接して、また溶着金属部13に接して熱伝導材14が配設される。熱伝導材14としては公知のものであってよい。
【0015】
図に示すように、熱伝導材14は、二本の差圧導圧配管11、12の間であって凹みのある部分を埋め、溶着金属部13を被覆するように設けられているが、凹みの一部、あるいはこれから盛り上がるようにして設けられてもよい。また、熱伝導材14の長さは二本の差圧導圧配管11、12の長さと同じようにされる。
【0016】
本実施例の場合、上述のように構成され、一体化された二本の差圧導圧配管11、12と、溶着金属部13と、熱伝導体14とは円筒状の保温断熱材15によって被覆されてツインヒートコンダクション管が構成される。保温断熱材15の内部は空間部25とされ、この空間部25に上述した構成が一体として配設される。従って、この空間部25の内部に熱伝導材14が配設される。図にあっては一部において、空間部25内に形成された空間領域を形成している。
【0017】
このような構成によって、二本の導圧配管11、12の間には熱伝導がなされ、ツインヒートコンダクション管の内部は空白領域による断熱効用部とされる。この空白領域は、定ピッチで塞ぎ施工がなされて形成され、各領域は空気が静止する、いわば静止空気空間とされる。
【0018】
保温断熱材15の内壁の一部はそれぞれの導圧配管11、12の一部、すなわち二つの最遠部において接触している。
ツインヒートコンダクション管に設けられる溶着金属部13と熱伝導体14と保温断熱材15とからなる温度均一化部材は、二本の導圧配管11、12のすべての長さにおいて、例えば70mの長さに亘って設けられる。
【0019】
以上のように、本実施例によれば、
1)排気塔上部開口部付近内部の差圧(流量)検出端にオリフィス又はベンチュリ管等からなる差圧検出器5が設置される。
2)差圧検出器5から排気塔1の外側面に敷設した二本の差圧導圧配管11、12により地上に設置している差圧伝送器6に差圧が伝達される。
3)差圧伝送器6は、差圧を検出し、電気信号に変換し、電気信号配管7を経由して、上位の流量計(パソコン)に信号を伝送し、流量が測定される。
【0020】
更に、この場合に、
4)二本の差圧導圧配管、すなわち高圧側配管11と低圧側導圧配管12は溶着金属部13によって接続される。
5)金属接続に加え、固体伝導面積を高めるために、更に二本の導圧配管11、12の間に熱伝導材を充填し、固体熱伝導を積極的に行う構造とした。
6)更に、外部からの入熱抑制のために外面部に保温断熱材15で被覆した。
7)更に、保温断熱材15の内部に空白領域(空間部)を形断し、断熱効用部とした。
【0021】
次に、管内温度と発生差圧を検討する。
差圧導圧配管の両端が密閉されている場合、両方の管内流体温度差により生ずる圧力差は次式で求められる。
【0022】
Pv=RT=一定 より
P1/T1=P2/T2
P2=P1・T2/T1
ここで、P:圧力
T:温度
V:容積
R:ガス定数
従って、直射日光の影響をより受ける配管側の内部気体温度T2=21℃=294°K、影響を受けない側の配管の内部気体温度をT1=20℃=293°K、圧力を大気圧P1=1.0332kgf/cm2absとするとP2=1.0368kgf/cm2absとなり、圧力差ΔP=P2−P1=0.0036kgf/cm2=36mmH20の差圧相当となる。
【0023】
この差圧は管の両端が閉塞されていない場合には、その差圧により管開口部側への擬似流れとして現れ、その流れ相当分の差圧が計測誤差となる。
しかしながら、本実施例の場合、上述の4)〜6)あるいは4)〜7)の構成によって流れ相当分の差圧がほとんど発生することがなく、計測誤差がなくなる。
【0024】
従来方式の配管及び保温施工の状況で行った試験データを次に示す。
試験に用いた配管は通常発電所にて採用されている下記に示す標準仕様の配管施工にて実施した。
[1]配管サイズ :20A
[2]配管材質 :SUS304TP−A
[3]配管肉厚 :2mm
[4]保温材 :ポリエスチレン整形品
[5]保温厚さ :30mm
[6]保温外面使用 :SUS板金仕上げ
[7]日射模擬 :垂直および水平投射
試験の結果を表1に示す。
【0025】
【表1】

Figure 0003687656
【0026】
本実施例のツインヒートコンダクション管にて同様の試験を行った結果を図4に示す。
試験に用いたツインヒートコンダクション管の仕様は下記の通りである。
[1]配管サイズ :20A
[2]配管材質 :SUS304TP−A
[3]配管肉厚 :2mm
[4]配管相互間 :溶着接続 + 熱伝導剤充填
[5]保温材 :ポリエスチレン整形品
[6]保温厚さ :30mm
[7]保温空間処理 :定ピッチグラスウール充填
[8]保温外面使用 :SUS板金仕上げ
[9]日射模擬 :垂直投射
試験結果を表2に示す。
【0027】
【表2】
Figure 0003687656
【0028】
すなわち、高圧側導圧配管11と低圧側導圧配管12の内部における気体温度はほとんど同一となって温度差による流れ相当分の差圧はほとんど計測されない。
【0029】
【発明の効果】
以上のように、本発明によれば、高圧側導圧配管と低圧側導圧配管の内部における気体温度はほとんど同一となって温度差による流れ相当分の差圧はほとんど計測されず、二本の導圧配管を排気塔の外部に設けることのメリットを生かすことが可能になる。
【図面の簡単な説明】
【図1】本発明の実施例である二本の導圧配管を排気塔外に設置する例を示す概略図。
【図2】本発明の実施例の構成を示す断面図。
【図3】図2の断面側面図。
【図4】試験図を示す図。
【符号の説明】
1…排気塔、5…差圧検出器、6…差圧伝送器、11…高圧側導圧配管、12…低圧側導圧配管、13…溶着金属部、14…熱伝導材、15…保温断熱部、25…空白領域(空間部)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas flow rate device that measures the flow rate of a gas (mostly exhaust gas) that flows through the inside of a tall structure such as a chimney or an elevated exhaust tower, that is, a high-rise exhaust tower, by a differential pressure. .
[0002]
[Prior art]
In an exhaust tower for exhaust gas emission installed in a treatment facility for various types of waste including industrial waste, measurement and monitoring of the flow rate of exhaust gas passing through the exhaust tower may be required.
And an exhaust tower may be made into a very high structure from the environmental influence on the surrounding environment. In such cases, the uppermost height of the exhaust tower is almost 70 m or higher.
[0003]
Even in such a high exhaust tower, the flow velocity of the exhaust gas is very slow, and a venturi type or orifice type measurement method is employed for flow rate measurement. These measuring methods are well known as gas flow rate measuring means using differential pressure.
A differential pressure detector is disposed in the vicinity of the outlet end of the exhaust tower, which is a high-rise building, and the differential pressure from the flow rate detection end is taken out and measured.
[0004]
As a conventional detection method, 1) a configuration in which a differential pressure transmitter is installed in a high-rise section, 2) a configuration in which two differential pressure voltage pipes are provided inside the exhaust tower, and 3) two configurations on the outer wall of the exhaust tower The form which provides and measures differential pressure guide piping is adopted.
[0005]
[Problems to be solved by the invention]
The current problems with conventional detection methods and the problems that are expected to occur in the future are as follows.
The three methods mentioned above will be described separately.
1. Differential pressure transmitter installation method in high-rise part The installation position of the electronic measuring instrument is over 70m above the ground, and there is an annual inspection and other operational problems.
[0006]
2. The differential pressure detection conduit installation system inside the exhaust tower According to the system shown in the above 2, there is no influence of direct sunlight, and two differential pressure guiding pipes are provided at an accurate temperature depending on the fluid in the exhaust tower. Can measure. For this reason, the present method is most often adopted. However, corrosion may be promoted by the environment in the exhaust tower, and it will be necessary to re-execute even corrosion caused by aging, which is naturally difficult to re-execute because the construction is inside the exhaust tower. Impossible).
[0007]
3. Installation method of differential pressure detection pipe on the outer wall of the exhaust tower The installation location of the electronic measuring instrument can be on the ground, and the annual inspection and other problems can be solved, but the two differential pressure impulse lines are affected by sunlight. A temperature difference is generated, and the differential pressure cannot be measured accurately due to the rising airflow (rising flow) generated by the temperature difference. The measured differential pressure in the flow measurement of the exhaust tower is very small, such as several mm to several tens of mm, and the temperature difference between both pipes is required to be 1-2 ° C. It is difficult to keep within this temperature difference even if the temperature is kept. In addition, it may be possible to suppress the influence of direct sunlight by using vacuum insulation piping, but even if each differential pressure guiding tube is constructed with vacuum insulation piping, it is still affected by direct sunlight and the temperature difference between the two tubes is reduced. It cannot be completely suppressed. Even when both differential pressure guiding pipes are housed in one vacuum insulation pipe, it is difficult to make the temperature difference between the two pipes the same, and the pipes are very expensive. It cannot be adopted considering the aging of layers and re-evacuation.
As described above, there is a problem even if any method is adopted. However, since there are no other options at present, construction is carried out by either method.
[0008]
In order to solve the above-described problems, it is necessary to have a structure capable of constructing a conduit outside the chimney and not causing a temperature difference between the differential pressure guiding pipes.
All of the vacuum insulation pipes and heat insulation pipes are heat input suppression systems, but it is impossible to completely block the heat input, and naturally it is impossible to prevent the temperature of the pipe from rising due to heat input. For this reason, in addition to preventing heat input, the new apparatus is required to have a structure in which the pipes actively transmit heat to each other and do not cause a temperature difference. The problem is not to cause a temperature difference between the pipes, not to raise or lower the temperature. The present invention ensures that the temperature difference accompanying the temperature rise of the gas inside the two differential pressure guiding pipes is within an allowable value, so that the two differential pressure guiding pipes are placed outside the exhaust tower. An object of the present invention is to provide a pressure guiding piping structure that pays attention to satisfying the function of the installation.
[0009]
[Means for Solving the Problems]
The present invention is provided with a differential pressure detector for measuring the differential pressure of the exhausted gas in the vicinity of the outlet end of an exhaust tower such as a chimney or a high-rise structure, and two differentials from the differential pressure detector. In the gas flow measuring device in which the pressure guiding pipe is connected to the differential pressure transmitter and the gas flow rate based on the differential pressure is measured, each of the two differential pressure guiding pipes is piped outside the exhaust tower. The two differential pressure conduits and the heat conduction are integrated with each other, and are connected and integrated by a weld metal part, and a heat conductive material is disposed between the two differential pressure induction pipes. A gas flow rate measuring device using a differential pressure is provided as a structure in which a material is covered with a heat insulating heat insulating material.
[0010]
The heat insulating heat insulating material has a cylindrical shape, and a blank region may be formed in a part of the inside thereof. The blank area inside the cylindrical heat insulating heat insulating material can be configured to be closed at constant pitch intervals.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic overall configuration of an embodiment of the present invention. In the example of the figure, the exhaust tower 1 is an example having a height of 70 m from the ground. The exhaust gas 3 that gradually increases in flow velocity flows through the gas exhaust passage 2 in the exhaust tower 1 and is discharged as smoke 4 from the outlet. Is done.
A differential pressure detector 5 for measuring a differential pressure such as a venturi type or an orifice type is provided in the vicinity of the exhaust channel outlet end of the exhaust tower 1 as in the prior art.
[0012]
A differential pressure transmitter 6 is installed in the vicinity of the ground in the same manner as in the prior art, and the obtained signal is transmitted via an electric signal wiring 7 to a processing device using a flow rate processing device, for example, a computer (not shown) such as a personal computer. The exhaust gas flow rate is calculated and displayed on a computer screen or printed out by a printer.
[0013]
Two differential pressure guiding pipes 11 and 12 having the same diameter are connected to the outside of the exhaust tower 1 by connecting the high pressure part of the differential pressure detector 5 and the two parts of the differential pressure part and the differential pressure transmitter 6. It is provided along. One of the two differential pressure guiding pipes is a high pressure side pressure guiding pipe 11 and the other is a low pressure side pressure guiding pipe 12. In the high pressure side pressure guiding pipe 11 and the low pressure side pressure guiding pipe 12, pressure guiding paths 21 and 22 connected to the high pressure side portion and the low pressure side portion of the differential pressure detector 5 are formed, respectively.
[0014]
FIG. 2 and FIG. 3 show the arrangement of the high pressure side pressure guiding pipe 11 and the low pressure side pressure guiding pipe 12.
In these drawings, a high pressure side pressure guiding pipe 11 and a low pressure side pressure guiding pipe 12 are each made of a metal pipe, and are connected and integrally fixed by a weld metal portion 13. That is, the high pressure side pressure guiding pipe 11 and the low pressure side pressure guiding pipe 12 are integrated by metal welding. Between the two differential pressure guiding pipes 11 and 12, a heat conductive material 14 is disposed in contact with these and the weld metal portion 13. The heat conductive material 14 may be a known material.
[0015]
As shown in the figure, the heat conductive material 14 is provided between the two differential pressure guiding pipes 11 and 12 so as to fill the recessed portion and cover the weld metal portion 13. It may be provided so as to be a part of the dent or to rise from now on. The length of the heat conducting material 14 is the same as the length of the two differential pressure guiding pipes 11 and 12.
[0016]
In the case of the present embodiment, the two differential pressure guiding pipes 11, 12, the weld metal part 13, and the heat conductor 14 configured and integrated as described above are formed by a cylindrical heat insulating heat insulating material 15. Covered to form a twin heat conduction tube. The inside of the heat insulation heat insulating material 15 is a space portion 25, and the above-described configuration is integrally disposed in the space portion 25. Therefore, the heat conductive material 14 is disposed inside the space portion 25. In the drawing, a space region formed in the space portion 25 is partially formed.
[0017]
With such a configuration, heat conduction is performed between the two pressure guiding pipes 11 and 12, and the inside of the twin heat conduction pipe is used as a heat insulation effect part by a blank area. This blank area is formed by being closed at a constant pitch, and each area is a so-called still air space where the air stops.
[0018]
A part of the inner wall of the heat insulation heat insulating material 15 is in contact with a part of each of the pressure guiding pipes 11 and 12, that is, at two farthest portions.
The temperature equalizing member comprising the weld metal part 13, the heat conductor 14, and the heat insulation heat insulating material 15 provided in the twin heat conduction pipe is, for example, 70 m in all the lengths of the two pressure guiding pipes 11 and 12. It is provided over the length.
[0019]
As described above, according to this embodiment,
1) A differential pressure detector 5 comprising an orifice or a venturi pipe is installed at a differential pressure (flow rate) detection end in the vicinity of the upper opening of the exhaust tower.
2) The differential pressure is transmitted from the differential pressure detector 5 to the differential pressure transmitter 6 installed on the ground by the two differential pressure guiding pipes 11 and 12 laid on the outer surface of the exhaust tower 1.
3) The differential pressure transmitter 6 detects the differential pressure, converts it into an electrical signal, transmits the signal to an upper flowmeter (personal computer) via the electrical signal pipe 7, and measures the flow rate.
[0020]
In this case,
4) Two differential pressure guiding pipes, that is, the high pressure side piping 11 and the low pressure side pressure guiding pipe 12 are connected by a weld metal part 13.
5) In addition to metal connection, in order to increase the solid conduction area, a heat conducting material is further filled between the two pressure guiding pipes 11 and 12, so that solid heat conduction is positively performed.
6) Further, in order to suppress heat input from the outside, the outer surface portion was covered with a heat insulating heat insulating material 15.
7) Furthermore, a blank area (space part) was cut inside the heat insulating heat insulating material 15 to obtain a heat insulation effect part.
[0021]
Next, the tube temperature and the generated differential pressure are examined.
When both ends of the differential pressure guiding pipe are sealed, the pressure difference caused by the temperature difference between both pipe fluids can be obtained by the following equation.
[0022]
P1 / T1 = P2 / T2 from Pv = RT = constant
P2 = P1 / T2 / T1
Here, P: pressure T: temperature V: volume R: gas constant Therefore, the internal gas temperature T2 on the piping side that is more affected by direct sunlight T2 = 21 ° C = 294 ° K, the internal gas of the piping on the unaffected side If the temperature is T1 = 20 ° C. = 293 ° K and the pressure is atmospheric pressure P1 = 1.0332 kgf / cm 2 abs, then P 2 = 1.0368 kgf / cm 2 abs and the pressure difference ΔP = P 2 −P 1 = 0.0036 kgf / cm 2 = 36 mmH20 It is equivalent to pressure.
[0023]
When the both ends of the pipe are not closed, this differential pressure appears as a pseudo flow toward the pipe opening due to the differential pressure, and the differential pressure corresponding to the flow becomes a measurement error.
However, in the case of the present embodiment, the above-described configurations 4) to 6) or 4) to 7) hardly generate a differential pressure corresponding to the flow and eliminate the measurement error.
[0024]
The test data carried out in the situation of conventional piping and heat insulation construction are shown below.
The piping used for the test was carried out by standard piping construction shown below, which is usually adopted at power plants.
[1] Piping size: 20A
[2] Piping material: SUS304TP-A
[3] Pipe thickness: 2 mm
[4] Thermal insulation material: Polystyrene molded article [5] Thermal insulation thickness: 30 mm
[6] Thermal insulation outer surface use: SUS sheet metal finish [7] Solar radiation simulation: Table 1 shows the results of vertical and horizontal projection tests.
[0025]
[Table 1]
Figure 0003687656
[0026]
FIG. 4 shows the result of a similar test performed on the twin heat conduction tube of this example.
The specifications of the twin heat conduction tube used for the test are as follows.
[1] Piping size: 20A
[2] Piping material: SUS304TP-A
[3] Pipe thickness: 2 mm
[4] Between pipes: welded connection + thermal conductive agent filling [5] Insulation material: Polystyrene foam [6] Insulation thickness: 30 mm
[7] Thermal insulation space treatment: Filled with constant pitch glass wool [8] Use of thermal insulation outer surface: SUS sheet metal finish [9] Solar radiation simulation: Table 2 shows the vertical projection test results.
[0027]
[Table 2]
Figure 0003687656
[0028]
That is, the gas temperature inside the high pressure side pressure guiding pipe 11 and the low pressure side pressure guiding pipe 12 is almost the same, and the pressure difference corresponding to the flow due to the temperature difference is hardly measured.
[0029]
【The invention's effect】
As described above, according to the present invention, the gas temperatures inside the high-pressure side pressure guiding pipe and the low-pressure side pressure guiding pipe are almost the same, and the differential pressure corresponding to the flow due to the temperature difference is hardly measured. It is possible to take advantage of the provision of the pressure guiding pipe outside the exhaust tower.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example in which two pressure guiding pipes according to an embodiment of the present invention are installed outside an exhaust tower.
FIG. 2 is a cross-sectional view showing a configuration of an embodiment of the present invention.
3 is a cross-sectional side view of FIG. 2. FIG.
FIG. 4 is a diagram showing a test diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust tower, 5 ... Differential pressure detector, 6 ... Differential pressure transmitter, 11 ... High pressure side pressure guiding pipe, 12 ... Low pressure side pressure guiding pipe, 13 ... Weld metal part, 14 ... Heat conduction material, 15 ... Thermal insulation Insulation part, 25 ... blank area (space part).

Claims (1)

煙突あるいは高層構造物などの排気塔の排出路出口端付近に、排出される気体の差圧を計測する差圧検出器が設けられ、該差圧検出器からの二本の差圧導圧配管が差圧伝送器に接続されて、差圧に基づく気体流量が測定される気体流量測定装置において、
前記二本のそれぞれの差圧導圧配管は、排気塔の外部に配管された金属配管からなって、溶着金属部によって接続、一体化され、前記二本の差圧導圧配管の間に熱伝導材が配設され、一体化した二本の差圧導管および前記熱伝導材が保温断熱材で被覆され、前記保温断熱材は円筒状形状をなし、その内部の一部に定ピッチ間隔で塞がれた空白領域が形成されることを特徴とする差圧による気体流量測定装置。
A differential pressure detector for measuring the differential pressure of the exhausted gas is provided in the vicinity of the outlet end of the exhaust tower such as a chimney or a high-rise structure, and two differential pressure guiding pipes from the differential pressure detector Is connected to the differential pressure transmitter, and the gas flow rate measuring device for measuring the gas flow rate based on the differential pressure,
Each of the two differential pressure induction pipes is composed of a metal pipe piped outside the exhaust tower, and is connected and integrated by a weld metal part, and heat is generated between the two differential pressure induction pipes. Conductive material is disposed, and the two integrated differential pressure conduits and the heat conductive material are covered with a heat insulating heat insulating material, and the heat insulating heat insulating material has a cylindrical shape, and a part of the inside thereof is formed at a constant pitch interval. A gas flow rate measuring device using a differential pressure, wherein a closed blank region is formed.
JP2003040503A 2003-02-19 2003-02-19 Gas flow measuring device by differential pressure Expired - Lifetime JP3687656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040503A JP3687656B2 (en) 2003-02-19 2003-02-19 Gas flow measuring device by differential pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040503A JP3687656B2 (en) 2003-02-19 2003-02-19 Gas flow measuring device by differential pressure

Publications (2)

Publication Number Publication Date
JP2004251675A JP2004251675A (en) 2004-09-09
JP3687656B2 true JP3687656B2 (en) 2005-08-24

Family

ID=33024341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040503A Expired - Lifetime JP3687656B2 (en) 2003-02-19 2003-02-19 Gas flow measuring device by differential pressure

Country Status (1)

Country Link
JP (1) JP3687656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128920A (en) * 2019-02-08 2020-08-27 日立Geニュークリア・エナジー株式会社 Sealing function check-up device for used fuel storage container

Also Published As

Publication number Publication date
JP2004251675A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP6291099B2 (en) Integrated thermoelectric generator for wireless devices
CN203824685U (en) Pressure measuring system with mineral matter insulating cable
JP6166456B2 (en) Pitot tube crossing assembly
CN102809581A (en) Device for testing performance of low-temperature vacuum multilayer heat-insulation material based on thermal protection
CN103016958A (en) Method and system for temperature and humidity monitoring of high-energy pipeline subject to medium leakage in nuclear power plant
CN106122773A (en) A kind of oil and gas pipes weld leakage monitoring device
CN111157228A (en) System and method for testing local resistance loss coefficient of flame arrester
US9921090B2 (en) Outer wall-heated two-phase flow detector
CN101311685A (en) Thermal mass flow meter
JP3687656B2 (en) Gas flow measuring device by differential pressure
CN101126653A (en) Low heat resistance thermal mass flow sensor
JP2013253836A (en) Gas leak detection device
EP2985597B1 (en) Steam wetness measurement device
JP6654350B2 (en) Piping structure and aircraft
CN104655349A (en) Pressure measurement apparatus and pressure measurement method
Vijayakumar et al. Performance evaluation of PFBR wire type sodium leak detectors
KR101153872B1 (en) A device for measuring gas temperature with radiation interference compensation
CN105784257A (en) Measuring apparatus and method for high-temperature helium pressure drop of small-diameter pebble bed
CN106124076B (en) Steam generator heat-transfer pipe flows backwards monitoring device
GB2538803A (en) A metering apparatus for and method of determining a characteristic of a fluid flowing through a pipe
CN204944631U (en) Measurement mechanism
CN104880283B (en) A kind of flue energy converter failure detector and method
CN208350398U (en) A kind of system and device suitable for the detection of group hole heat exchange quality
JP6489904B2 (en) Reactor water level measurement method and apparatus during emergency
Sylvia et al. Development of sodium leak detectors for PFBR

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Ref document number: 3687656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term