JP3686875B2 - Photocatalyst paper and production method thereof - Google Patents

Photocatalyst paper and production method thereof Download PDF

Info

Publication number
JP3686875B2
JP3686875B2 JP2002073295A JP2002073295A JP3686875B2 JP 3686875 B2 JP3686875 B2 JP 3686875B2 JP 2002073295 A JP2002073295 A JP 2002073295A JP 2002073295 A JP2002073295 A JP 2002073295A JP 3686875 B2 JP3686875 B2 JP 3686875B2
Authority
JP
Japan
Prior art keywords
paper
photocatalyst
fiber
photocatalytic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002073295A
Other languages
Japanese (ja)
Other versions
JP2003236391A5 (en
JP2003236391A (en
Inventor
佑美 井口
英明 市浦
卓也 北岡
浩雄 田中
Original Assignee
卓也 北岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓也 北岡 filed Critical 卓也 北岡
Priority to JP2002073295A priority Critical patent/JP3686875B2/en
Publication of JP2003236391A publication Critical patent/JP2003236391A/en
Publication of JP2003236391A5 publication Critical patent/JP2003236391A5/ja
Application granted granted Critical
Publication of JP3686875B2 publication Critical patent/JP3686875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、光触媒または吸着剤あるいは双方を担持させた無機繊維を基材繊維と混抄した光触媒紙状物とその製造方法に関し、更に詳しくは基材繊維として有機繊維を使用しても光触媒による基材劣化が起こらず、シックハウス症候群誘発物質などの有害物質分解除去効果ならびに抗菌性、抗カビ性、抗ダニ性などの生活環境改善効果を発揮する光触媒紙状物とその製造方法に関する。
【0002】
【従来の技術】
近年、大気汚染、水環境汚染、土壌汚染など、種々の環境汚染問題が深刻化している。その中でも、シックハウス症候群などを引き起こす化学物質過敏症誘発物質による生活環境汚染は、我々の日常生活に多大な影響を及ぼしている。そのため、上記原因物質の使用規制を強化するとともに、多種多様な有害物質によって既に汚染されている室内環境を浄化するための対策が必要不可欠である。
【0003】
その改善策の一つとして、活性炭などの多孔質体を利用した吸着除去があり、カラム状もしくはフィルターなどに担持させて有害物質の除去に使用されている。しかし、この方法では有害物質の吸着に伴い吸着能が徐々に低下し、飽和吸着後は除去効果が消失することから、実用に際しては頻繁に交換する必要がある。
【0004】
そこで、最近紫外線あるいは可視光線の照射によって、高い酸化還元力を発揮する光触媒が注目されている。特に、酸化チタンは光触媒活性が高く、安全性および安定性も高いため、広く利用されている。また、有害物質の分解除去能や消臭効果に加えて、抗菌性、抗カビ性、抗ダニ性などの生活環境を悪化させる生物的要因に対しても効果的である。しかし、酸化チタンは微粉末であるため、実用に際しては何らかの固定化が必要であるが、光触媒反応は酸化チタン粒子表面で起こるため、その表面を被覆する固定化法では光触媒能が著しく低下する。さらに、担持体が有機物である場合、基材繊維そのものを光触媒反応により分解劣化させるという大きな欠点がある。
【0005】
そのため、光触媒担持用基材としては、無機系樹脂、金属、セラミックなどが利用されているが、パルプ繊維や合成有機繊維から成る紙および紙状物は、上記欠点により使用が困難である。しかし、紙および紙製品は非常に身近な生活用品であり、軽量で加工性も良く、これに光触媒能を付与することが可能になれば、居住閉鎖空間における複合汚染環境は大いに改善される。
【0006】
最近、有機繊維を基材として利用するために無機バインダーやハイドロキシアパタイトなどの光触媒に不活性な物質との複合化が検討されているが、光触媒機能表面の被覆や固定化層からの光触媒の脱離などの問題があり、実用化には至っていない。また、これらの手法は紙製造後にコーティングなどの後処理により光触媒を担持させるため、製造コストが高いなどの問題もある。通常、紙および紙状物は、繊維懸濁液の脱水により湿紙を形成し、圧搾、乾燥工程を経て製造されており、この製造工程をそのまま利用して光触媒紙状物を製造する手法も希求されている。
【0007】
【発明の解決しようとする課題】
以上説明したように、光触媒を身の回りの生活用品として利用するためには、紙および紙製品などの有機繊維に担持させることが有効であり、光触媒機能表面を被覆しない成型法、有機基材繊維の劣化防止、ならびに現行の紙製造工程を利用可能な担持法の開発が希求されている。
【0008】
上記の従来の課題を解決するため本発明は、光触媒を単独あるいは吸着剤と混合して無機繊維に予め担持させた後、従来の製紙用添加剤と同様に完成紙料に供することで、基材である有機繊維を劣化させることなく、光触媒による有害物質分解除去効果や抗菌性、抗カビ性、抗ダニ性などの生活環境改善効果を発揮することを特徴とする光触媒紙状物およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
そこで、本発明の光触媒紙状物は、セラミック繊維などの無機繊維にポリジアリルジメチルアンモニウムクロリドなどのカチオン性凝集剤を加え、次いで光触媒を添加し、さらにアニオン性ポリアクリルアミドなどのアニオン性凝集剤を加えることで光触媒を無機繊維に担持させた後、木材パルプなどの基材繊維を加え、湿式により製造することを特徴とする。
【0010】
これにより、光触媒と基材繊維との接触を最小限にすることで基材繊維の劣化を抑制し、且つ光触媒による有害物質分解除去効果や生活環境改善効果を発揮することが可能になる。
【0011】
また、本発明の光触媒紙状物は、無機繊維あるいは基材繊維に吸着剤を担持させることで、有害物質分解除去効果が向上することを特徴とする。
【0012】
これにより、吸着剤による有害物質捕捉効果ならびに有害物質濃縮効果により、光触媒による有害物質分解除去効果の向上が可能となる。
【0013】
また、本発明の光触媒紙状物は、無機繊維懸濁液にイオン性凝集剤を1種または2種以上内添することで、上記懸濁液に添加した光触媒または吸着剤あるいは双方を無機繊維に担持させ、その後基材繊維と混抄することを特徴とする。
【0014】
これにより、現行の紙製造工程をそのまま利用して、光触媒紙状物を製造することが可能となる。
【0015】
【発明の実施の形態】
以下に、本発明の光触媒紙状物に係わる構成要素、次いでその製造方法について詳細に説明する。
【0016】
本発明に用いる光触媒として、酸化チタン、酸化亜鉛、酸化セリウム、金属酸化物光触媒、無機光触媒または有機光触媒およびこれらの複合物等が挙げられるが、安定性、安全性および光触媒活性等に優れた酸化チタンが有利に用いられる。
【0017】
本発明に用いる吸着剤として、ゼオライト、シリカ、アルミナ、セピオライト、ハロサイト、活性炭、活性白土、金属酸化物、多孔質無機物または多孔質有機物およびこれらの複合物等が挙げられるが、特にゼオライトは種々の有害物質に合わせて吸着効率が最大になるようにその細孔の大きさを調節できるため、吸着剤として有利に用いられる。
【0018】
本発明に用いる無機繊維として、セラミック繊維、ガラス繊維、鉱滓繊維または石綿等が挙げられるが、安定性、安全性、強度等に優れたセラミック繊維が有利に用いられる。
【0019】
本発明に用いる基材繊維として、木材パルプ、リンターパルプ、合成パルプ、合成有機繊維等の繊維状物質が挙げられるが、安価で用途の広い天然パルプが有利に用いられる。
【0020】
光触媒紙状物の製造には、和紙などの手抄き装置、円網抄紙機、長網抄紙機、ツインワイヤー抄紙機等を用いることができる。従来の光触媒紙製造におけるコーティング処理等の特別な後処理を施すことなく、脱水後の湿紙を加熱乾燥するだけで、光触媒紙状物を得ることができる。
【0021】
【実施例】
以下、本発明の光触媒紙状物を、代表的なシックハウス原因物質であるホルムアルデヒドの分解除去効果ならびに代表的な紙力強度特性である引張強度を実施例として具体的に説明する。但し、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例中の「部」及び「%」は重量基準の割合を示す。
【0022】
[実施例1]
セラミック繊維の0.12%水懸濁液10部に、ポリジアリルジメチルアンモニウムクロリドの0.012%水溶液1部を添加して600rpmで撹拌し、3分後に酸化チタン(石原産業社製、ST−01)の0.15%水懸濁液10部を加え、その3分後にアニオン性凝集剤(栗田工業社製、HH−351)の0.012%水溶液1部を加え、更に3分後にカナディアン・スタンダード・フリーネス450mlに叩解した木材パルプの0.15%水懸濁液80部を加え、5分後にJIS P 8209に準拠してシートを調製した。これを、手抄き紙用プレスを用いて3.5kPa、5分間圧締し、105℃、10分間送風加熱乾燥して、得られた坪量60g/mの光触媒紙状物を実施例1とした。
【0023】
[実施例2]
実施例1において、酸化チタンの0.15%水懸濁液を7部にし、ゼオライト(Y型、東ソー社製、HSZ−320NAA)の0.15%水懸濁液を3部添加する以外は、すべて実施例1と全く同一の処理を行い、実施例2とした。
【0024】
[実施例3]
実施例1において、酸化チタンの0.15%水懸濁液を5部にし、ゼオライトの0.15%水懸濁液を5部添加する以外は、すべて実施例1と全く同一の処理を行い、実施例3とした。
【0025】
[実施例4]
実施例1において、酸化チタンの0.15%水懸濁液を3部にし、ゼオライトの0.15%水懸濁液を7部添加する以外は、すべて実施例1と全く同一の処理を行い、実施例4とした。
【0027】
[比較例1]
実施例1において、セラミック繊維の0.12%水懸濁液を0部にする以外は、すべて実施例1と全く同一の処理を行い、比較例1とした。
【0028】
[比較例2]
実施例2において、セラミック繊維の0.12%水懸濁液を0部にする以外は、すべて実施例2と全く同一の処理を行い、比較例2とした。
【0029】
[比較例3]
実施例3において、セラミック繊維の0.12%水懸濁液を0部にする以外は、すべて実施例3と全く同一の処理を行い、比較例3とした。
【0030】
[比較例4]
実施例4において、セラミック繊維の0.12%水懸濁液を0部にする以外は、すべて実施例4と全く同一の処理を行い、比較例4とした。
【0031】
[比較例5]
実施例において、酸化チタンの0.15%水懸濁液を0部にし、ゼオライトの0.15%水懸濁液を10部添加し、セラミック繊維の0.12%水懸濁液を0部にする以外は、すべて実施例と全く同一の処理を行い、比較例5とした。
【0032】
[比較例6]
実施例1において、セラミック繊維の0.12%水懸濁液を0部にし、ポリジアリルジメチルアンモニウムクロリドの0.012%水溶液を0部にし、酸化チタンの0.15%水懸濁液を30部にし、アニオン性凝集剤の0.012%水溶液を0部にする以外は、すべて実施例1と全く同一の処理を行い、比較例6とした。
【0033】
[比較例7]
実施例1において、セラミック繊維の0.12%水懸濁液を0部にし、ポリジアリルジメチルアンモニウムクロリドの0.012%水溶液を0部にし、酸化チタンの0.15%水懸濁液を0部にし、アニオン性凝集剤の0.012%水溶液を0部にする以外は、すべて実施例1と全く同一の処理を行い、比較例7とした。
【0034】
以上、実施例で得られた光触媒紙状物と比較例の紙状物を、ホルムアルデヒド吸着分解試験と紙力強度試験に供した。
【0035】
[ホルムアルデヒド吸着分解試験]
石英製のカバーを有する体積200ccのステンレス反応容器に、25mm×25mmの大きさの実施例および比較例の紙状物を設置した後、反応容器に25ppmになるようにホルムアルデヒドをマイクロシリンジで注入した。紫外線照射下(波長365nm、0.3mW/cm)において、所定時間毎に反応容器内のホルムアルデヒド濃度を測定した。ホルムアルデヒドの定量には、ガスクロマトグラフを使用した。
【0036】
[紙力強度試験]
紙力強度試験はJIS P 8113に準拠して、乾燥引張強度を測定し、初期引張強度と紫外線照射(波長365nm、2.1mW/cm)を240時間行った後の引張強度を測定した。その結果を(表)に示す。
【0037】
【表】

Figure 0003686875
(表)によれば、実施例1〜と比較例1〜5のように、ホルムアルデヒド分解除去効率は無機繊維の有無に依らず同様の傾向を示すが、酸化チタンを凝集剤により担持させた実施例1と比較例1では、凝集剤を使わずに物理的濾過効果で酸化チタンを強制的に歩留まらせた比較例6と比べて、酸化チタン量が同じであってもホルムアルデヒドの初期分解量がやや少なく、無機粉体の凝集によって見かけの比表面積が減少し、光触媒性能の若干の低下が見られる。しかし、実施例2〜と比較例2〜5のように、吸着剤であるゼオライトと複合化することで、ホルムアルデヒドの吸着除去が起こり、初期除去効率が向上する。しかし、酸化チタン含有量が減少し、ゼオライト含有量が増加するに従って、実施例3〜と比較例3〜5のように、紫外線照射60分後にもホルムアルデヒドが検出され、光触媒効果が不十分なため最終的なホルムアルデヒドの分解除去能は低下する。なお、パルプ繊維のみから調製された比較例7の紙状物は、ホルムアルデヒドの分解除去効果はない。
【0038】
紙力強度については、酸化チタンおよびゼオライトを無機繊維に担持させた実施例1〜は、パルプ繊維のみから調製された比較例7の紙とほぼ同程度の紙力強度を発現するが、凝集剤を用いて直接パルプ繊維に担持させた比較例1〜5ならびに凝集剤を使わずに物理的濾過効果で酸化チタンを強制的に歩留まらせた比較例6では、紙力強度が著しく低下する。比較例1〜6では、パルプ繊維に直接担持された無機成分がパルプ繊維間の結合を阻害しているのに対して、実施例1〜では、無機繊維に担持させることでパルプ繊維間の結合の大部分が保持されている。また、紫外線照射240時間後の紙力強度についても、比較例1〜4では、酸化チタン量の増加に伴って紙力強度の低下が顕著になり、比較例6は著しい紙力強度の低下が見られるが、実施例1〜4では、初期紙力強度が維持されている。実施例1〜4では、パルプ繊維と接触している酸化チタン量が少ないため、紫外線照射による基材劣化がほとんどなく、比較例1〜4ならびに比較例6では、酸化チタンが直接パルプ繊維に接触していることから、光触媒作用による基材劣化が激しく起こる。特に、凝集剤を使用しない比較例6では、劣化作用が著しく大きく、実用に耐えない。なお、酸化チタンを含まない比較例5ならびに比較例7では、紫外線照射の紙力強度への影響はなかった。
【0039】
以上説明したように、本発明の光触媒紙状物においては、酸化チタンとゼオライトの総重量を基準とした場合、シート中の酸化チタンとゼオライトの重量比が7:3となる実施例2が最も効果的である。なお、酸化チタン量を基準とした場合は、ゼオライト量の増加に伴って初期吸着量が増加し、除去効率が向上する。
【0040】
【発明の効果】
以上説明したように、本発明の請求項1に記載された光触媒紙状物は、光触媒を担持させた無機繊維を基材繊維と混抄した光触媒紙状物であるため、光触媒と基材繊維との接触を最小限にすることで基材劣化を抑制し、且つ光触媒による有害物質分解除去効果や生活環境改善効果を発揮することができる。
【0041】
請求項2に記載された光触媒紙状物は、吸着剤を併用することで有害物質捕捉効果ならびに有害物質濃縮効果が付与され、光触媒による有害物質分解除去効果を向上させることができる。
【0042】
請求項3に記載された光触媒紙状物の製造方法は、無機繊維懸濁液にイオン性凝集剤を1種または2種以上内添することで、上記懸濁液に添加した光触媒または吸着剤あるいは双方を無機繊維に担持させ、その後基材繊維と混抄することで、光触媒と基材繊維との接触を最小限にすることで基材劣化を抑制し、且つ光触媒による有害物質分解除去効果や生活環境改善効果を発揮することができる光触媒紙状物を製造することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a photocatalyst paper-like material obtained by mixing inorganic fibers carrying a photocatalyst or an adsorbent or both with a base fiber, and a method for producing the same. More specifically, even if an organic fiber is used as the base fiber, the photocatalytic substrate is used. The present invention relates to a photocatalytic paper-like material that does not cause deterioration of the material and exhibits an effect of decomposing and removing harmful substances such as sick house syndrome-inducing substances, and an anti-bacterial, anti-fungal, and anti-mite property, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, various environmental pollution problems such as air pollution, water pollution, and soil pollution have become serious. Among them, living environment pollution by chemical hypersensitivity inducers causing sick house syndrome and the like has a great influence on our daily life. For this reason, it is indispensable to strengthen the regulations on the use of the causative substances and to take measures to purify the indoor environment that is already polluted by a wide variety of harmful substances.
[0003]
As one of the improvement measures, there is adsorption removal using a porous material such as activated carbon, which is used to remove harmful substances by supporting it in a column or filter. However, in this method, the adsorption ability gradually decreases with the adsorption of harmful substances, and the removal effect disappears after saturated adsorption.
[0004]
Therefore, recently, a photocatalyst that exerts a high redox power by being irradiated with ultraviolet rays or visible rays has attracted attention. In particular, titanium oxide is widely used because of its high photocatalytic activity and high safety and stability. In addition to the ability to decompose and remove harmful substances, it is also effective against biological factors that worsen the living environment such as antibacterial properties, antifungal properties, and mite properties. However, since titanium oxide is a fine powder, some immobilization is necessary for practical use. However, since the photocatalytic reaction occurs on the surface of the titanium oxide particles, the photocatalytic ability is remarkably reduced by the immobilization method for coating the surface. Further, when the support is an organic substance, there is a great drawback that the base fiber itself is decomposed and deteriorated by a photocatalytic reaction.
[0005]
For this reason, inorganic resins, metals, ceramics, and the like are used as the photocatalyst-supporting substrate. However, paper and paper-like materials made of pulp fibers and synthetic organic fibers are difficult to use due to the above-mentioned drawbacks. However, paper and paper products are very familiar everyday items, are light and easy to process, and if they can be given photocatalytic activity, the combined pollution environment in the residential enclosed space is greatly improved.
[0006]
Recently, in order to use organic fibers as a base material, compounding with a photocatalyst-inactive substance such as an inorganic binder or hydroxyapatite has been studied, but the photocatalyst is removed from the coating or immobilization layer on the surface of the photocatalyst. There are problems such as separation, and it has not been put into practical use. In addition, since these methods support the photocatalyst by post-treatment such as coating after paper production, there are also problems such as high production costs. Usually, paper and paper-like materials are produced by forming wet paper by dehydrating the fiber suspension, pressing and drying processes, and there is also a method for producing photocatalytic paper-like materials by using this production process as it is. It is sought after.
[0007]
[Problem to be Solved by the Invention]
As described above, in order to use a photocatalyst as a daily necessities, it is effective to carry it on organic fibers such as paper and paper products, a molding method that does not cover the surface of the photocatalytic function, There is a need to develop a support method that can prevent deterioration and use the current paper manufacturing process.
[0008]
In order to solve the above-described conventional problems, the present invention provides a base material by using a photocatalyst alone or mixed with an adsorbent and supporting it on an inorganic fiber in advance, and then providing it to a paper furnish in the same manner as a conventional paper additive. Photocatalyst paper-like material that exhibits the effect of decomposing and removing harmful substances by photocatalysts and anti-bacterial, anti-fungal, and anti-mite properties without degrading organic fibers, and its production It aims to provide a method.
[0009]
[Means for Solving the Problems]
Therefore, the photocatalytic paper-like material of the present invention is obtained by adding a cationic flocculant such as polydiallyldimethylammonium chloride to inorganic fibers such as ceramic fibers, then adding a photocatalyst, and further adding an anionic flocculant such as anionic polyacrylamide. After adding the photocatalyst to the inorganic fiber by adding, base fiber such as wood pulp is added, and it is manufactured by a wet process.
[0010]
Thereby, it becomes possible to suppress the degradation of the base fiber by minimizing the contact between the photocatalyst and the base fiber, and to exhibit the effect of decomposing and removing harmful substances and improving the living environment by the photocatalyst.
[0011]
Further, the photocatalytic paper-like material of the present invention is characterized in that the effect of decomposing and removing harmful substances is improved by supporting an adsorbent on inorganic fibers or base fibers.
[0012]
Thereby, the harmful substance decomposition effect by the photocatalyst can be improved by the harmful substance capturing effect and the harmful substance concentration effect by the adsorbent.
[0013]
Moreover, the photocatalyst paper-like material of the present invention can be obtained by adding one or more ionic flocculants to the inorganic fiber suspension so that the photocatalyst and / or the adsorbent added to the suspension are inorganic fibers And then mixed with the base fiber.
[0014]
This makes it possible to produce a photocatalytic paper-like material using the current paper production process as it is.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Below, the component concerning the photocatalyst paper-like material of this invention, and its manufacturing method are demonstrated in detail.
[0016]
Examples of the photocatalyst used in the present invention include titanium oxide, zinc oxide, cerium oxide, metal oxide photocatalyst, inorganic photocatalyst, organic photocatalyst, and composites thereof. Oxidation with excellent stability, safety, photocatalytic activity, etc. Titanium is advantageously used.
[0017]
Examples of the adsorbent used in the present invention include zeolite, silica, alumina, sepiolite, halosite, activated carbon, activated clay, metal oxide, porous inorganic substance or porous organic substance, and composites thereof. It can be advantageously used as an adsorbent because the pore size can be adjusted so that the adsorption efficiency is maximized according to the harmful substances.
[0018]
Examples of inorganic fibers used in the present invention include ceramic fibers, glass fibers, slag fibers, and asbestos. Ceramic fibers excellent in stability, safety, strength, and the like are advantageously used.
[0019]
Examples of the base fiber used in the present invention include fibrous materials such as wood pulp, linter pulp, synthetic pulp, and synthetic organic fiber, and natural pulp that is inexpensive and versatile is advantageously used.
[0020]
For the production of the photocatalyst paper, a hand-making device such as Japanese paper, a circular net paper machine, a long net paper machine, a twin wire paper machine, or the like can be used. A photocatalyst paper-like product can be obtained simply by heating and drying the wet paper after dehydration without performing a special post-treatment such as a coating treatment in the production of conventional photocatalytic paper.
[0021]
【Example】
Hereinafter, the photocatalytic paper-like material of the present invention will be specifically described by way of examples of the decomposition removal effect of formaldehyde which is a typical sick house causing substance and the tensile strength which is a typical paper strength property. However, the present invention is not limited to these examples. In the following examples, “parts” and “%” represent proportions based on weight.
[0022]
[Example 1]
1 part of a 0.012% aqueous solution of polydiallyldimethylammonium chloride was added to 10 parts of a 0.12% aqueous suspension of ceramic fibers and stirred at 600 rpm. After 3 minutes, titanium oxide (ST- 01) of 0.15% aqueous suspension was added, 3 minutes later, 1 part of an anionic flocculant (manufactured by Kurita Kogyo Co., Ltd., HH-351) was added, and 3 minutes later, Canadian was added. -80 parts of a 0.15% aqueous suspension of wood pulp beaten to 450 ml of standard freeness was added, and after 5 minutes, a sheet was prepared according to JIS P 8209. This was pressed at 3.5 kPa for 5 minutes using a hand-made paper press, blown and dried at 105 ° C. for 10 minutes, and the resulting photocatalyst paper material having a basis weight of 60 g / m 2 was used as an example. It was set to 1.
[0023]
[Example 2]
In Example 1, except that 0.15% aqueous suspension of titanium oxide is 7 parts and 3 parts of 0.15% aqueous suspension of zeolite (Y type, Tosoh Corporation, HSZ-320NAA) is added. All of the same processing as in Example 1 was performed to obtain Example 2.
[0024]
[Example 3]
In Example 1, the same treatment as in Example 1 was performed except that 5 parts of a 0.15% aqueous suspension of titanium oxide and 5 parts of a 0.15% aqueous suspension of zeolite were added. Example 3 was used.
[0025]
[Example 4]
In Example 1, the same treatment as in Example 1 was performed except that 3 parts of a 0.15% aqueous suspension of titanium oxide and 7 parts of a 0.15% aqueous suspension of zeolite were added. Example 4 was adopted.
[0027]
[Comparative Example 1]
In Example 1, except that the 0.12% aqueous suspension of ceramic fiber was changed to 0 part, the same treatment as in Example 1 was performed to obtain Comparative Example 1.
[0028]
[Comparative Example 2]
In Example 2, the same treatment as in Example 2 was performed except that the ceramic fiber 0.12% aqueous suspension was changed to 0 part, and Comparative Example 2 was obtained.
[0029]
[Comparative Example 3]
In Example 3, except that the 0.12% aqueous suspension of ceramic fiber was changed to 0 part, the same treatment as in Example 3 was performed to obtain Comparative Example 3.
[0030]
[Comparative Example 4]
In Example 4, the same treatment as in Example 4 was performed except that the ceramic fiber 0.12% aqueous suspension was changed to 0 part, and Comparative Example 4 was obtained.
[0031]
[Comparative Example 5]
In Example 1 , 0.1 part of 0.15% aqueous suspension of titanium oxide was added to 10 parts, 10 parts of 0.15% aqueous suspension of zeolite was added, and 0.12% aqueous suspension of ceramic fibers was added to 0 part. Except for the parts, all the same processing as in Example 1 was performed to obtain Comparative Example 5.
[0032]
[Comparative Example 6]
In Example 1, 0 part of a 0.12% aqueous suspension of ceramic fibers was made 0 part of a 0.012% aqueous solution of polydiallyldimethylammonium chloride, and 30 parts of a 0.15% aqueous suspension of titanium oxide was made 30 parts. The same treatment as in Example 1 was carried out except that the part was changed to 0 part and the 0.012% aqueous solution of the anionic flocculant was changed to 0 part.
[0033]
[Comparative Example 7]
In Example 1, 0 part of a 0.12% aqueous suspension of ceramic fibers, 0 part of a 0.012% aqueous solution of polydiallyldimethylammonium chloride, 0 part of a 0.15% aqueous suspension of titanium oxide The same treatment as in Example 1 was carried out except that the part was changed to 0 part with a 0.012% aqueous solution of the anionic flocculant, and Comparative Example 7 was obtained.
[0034]
As described above, the photocatalytic paper-like material obtained in the examples and the paper-like material of the comparative example were subjected to a formaldehyde adsorption decomposition test and a paper strength test.
[0035]
[Formaldehyde adsorption decomposition test]
After placing the paper-like materials of Examples and Comparative Examples having a size of 25 mm × 25 mm in a 200 cc stainless steel reaction vessel having a quartz cover, formaldehyde was injected into the reaction vessel with a microsyringe to 25 ppm. . Under ultraviolet irradiation (wavelength 365 nm, 0.3 mW / cm 2 ), the formaldehyde concentration in the reaction vessel was measured every predetermined time. A gas chromatograph was used for quantitative determination of formaldehyde.
[0036]
[Paper strength test]
In the paper strength test, the dry tensile strength was measured according to JIS P8113, and the initial tensile strength and the tensile strength after performing ultraviolet irradiation (wavelength 365 nm, 2.1 mW / cm 2 ) for 240 hours were measured. The results are shown in (Table).
[0037]
【table】
Figure 0003686875
According to (Table), as in Examples 1 to 4 and Comparative Examples 1 to 5, formaldehyde decomposition removal efficiency shows the same tendency regardless of the presence or absence of inorganic fibers, but titanium oxide was supported by a flocculant. In Example 1 and Comparative Example 1, compared with Comparative Example 6 in which titanium oxide was forcibly yielded by a physical filtration effect without using a flocculant, the initial decomposition of formaldehyde was the same even though the amount of titanium oxide was the same. The amount is slightly small, and the apparent specific surface area decreases due to the aggregation of the inorganic powder, and a slight decrease in the photocatalytic performance is observed. However, as in Examples 2 to 4 and Comparative Examples 2 to 5, by compounding with zeolite as an adsorbent, adsorption removal of formaldehyde occurs, and the initial removal efficiency is improved. However, as the titanium oxide content decreases and the zeolite content increases, as in Examples 3-4 and Comparative Examples 3-5, formaldehyde is detected even after 60 minutes of ultraviolet irradiation, and the photocatalytic effect is insufficient. Therefore, the final decomposition and removal ability of formaldehyde is lowered. Note that the paper-like material of Comparative Example 7 prepared only from pulp fibers has no effect of decomposing and removing formaldehyde.
[0038]
Regarding the paper strength, Examples 1 to 4 in which titanium oxide and zeolite were supported on inorganic fibers developed paper strength strength almost the same as that of the paper of Comparative Example 7 prepared from pulp fibers alone, but agglomerated. In Comparative Examples 1 to 5 that are directly supported on pulp fibers using an agent and Comparative Example 6 in which titanium oxide is forcibly yielded by a physical filtration effect without using a flocculant, the paper strength is significantly reduced. . In Comparative Examples 1 to 6, the inorganic component directly supported on the pulp fibers inhibits the binding between the pulp fibers, whereas in Examples 1 to 4 , the inorganic fibers are supported on the pulp fibers. Most of the bonds are retained. Further, regarding the paper strength after 240 hours of ultraviolet irradiation, in Comparative Examples 1 to 4, the decrease in paper strength becomes significant as the amount of titanium oxide increases, and in Comparative Example 6, there is a significant decrease in paper strength. As can be seen, in Examples 1 to 4, the initial paper strength is maintained. In Examples 1 to 4, since the amount of titanium oxide in contact with the pulp fiber is small, there is almost no deterioration of the base material due to ultraviolet irradiation. In Comparative Examples 1 to 4 and Comparative Example 6, titanium oxide directly contacts the pulp fiber. Therefore, the base material is severely deteriorated by the photocatalytic action. In particular, in Comparative Example 6 in which no flocculant is used, the deterioration effect is remarkably large and cannot be practically used. In Comparative Example 5 and Comparative Example 7 that did not contain titanium oxide, there was no effect on the paper strength of ultraviolet irradiation.
[0039]
As described above, in the photocatalytic paper-like material of the present invention, when the total weight of titanium oxide and zeolite is used as a reference, Example 2 in which the weight ratio of titanium oxide and zeolite in the sheet is 7: 3 is the most. It is effective. When the amount of titanium oxide is used as a reference, the amount of initial adsorption increases as the amount of zeolite increases, and the removal efficiency improves.
[0040]
【The invention's effect】
As described above, since the photocatalytic paper-like material described in claim 1 of the present invention is a photocatalytic paper-like material obtained by mixing inorganic fibers carrying a photocatalyst with base fiber, the photocatalyst and base fiber By minimizing the contact of the substrate, deterioration of the substrate can be suppressed, and the effect of decomposing and removing harmful substances by the photocatalyst and the effect of improving the living environment can be exhibited.
[0041]
The photocatalyst paper-like material described in claim 2 is provided with a harmful substance capturing effect and a harmful substance concentration effect by using an adsorbent in combination, and can improve the harmful substance decomposition and removal effect by the photocatalyst.
[0042]
The method for producing a photocatalytic paper according to claim 3, wherein one or more ionic flocculants are internally added to the inorganic fiber suspension, whereby the photocatalyst or adsorbent added to the suspension. Alternatively, both are supported on inorganic fibers, and then mixed with the base fiber to suppress the base material deterioration by minimizing the contact between the photocatalyst and the base fiber, and the harmful substance decomposition and removal effect by the photocatalyst A photocatalytic paper-like material capable of exhibiting a living environment improvement effect can be produced.

Claims (3)

光触媒を担持させた無機繊維を、少なくとも有機繊維を含む基材繊維と混抄してなることを特徴とする光触媒紙状物。  A photocatalytic paper-like material obtained by mixing inorganic fibers carrying a photocatalyst with a base fiber containing at least organic fibers. 請求項1記載の光触媒紙状物であって、前記無機繊維あるいは基材繊維に吸着剤を担持させたことを特徴とする光触媒紙状物。  2. The photocatalytic paper-like material according to claim 1, wherein an adsorbent is supported on the inorganic fiber or the base fiber. 無機繊維懸濁液にイオン性凝集剤を内添することで、上記懸濁液に添加した光触媒を無機繊維に担持させた後、該無機繊維と、少なくとも有機繊維を含む基材繊維とを混抄することを特徴とする光触媒紙状物の製造方法。An ionic flocculant is internally added to the inorganic fiber suspension so that the photocatalyst added to the suspension is supported on the inorganic fiber, and then the inorganic fiber and the base fiber containing at least the organic fiber are mixed. A method for producing a photocatalytic paper-like material.
JP2002073295A 2002-02-08 2002-02-08 Photocatalyst paper and production method thereof Expired - Fee Related JP3686875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073295A JP3686875B2 (en) 2002-02-08 2002-02-08 Photocatalyst paper and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073295A JP3686875B2 (en) 2002-02-08 2002-02-08 Photocatalyst paper and production method thereof

Publications (3)

Publication Number Publication Date
JP2003236391A JP2003236391A (en) 2003-08-26
JP2003236391A5 JP2003236391A5 (en) 2005-07-28
JP3686875B2 true JP3686875B2 (en) 2005-08-24

Family

ID=27785122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073295A Expired - Fee Related JP3686875B2 (en) 2002-02-08 2002-02-08 Photocatalyst paper and production method thereof

Country Status (1)

Country Link
JP (1) JP3686875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639270B2 (en) * 2005-02-04 2011-02-23 愛媛県 Photocatalyst paper and method for producing the same
EP2119500B1 (en) 2007-03-14 2016-11-30 Nissan Motor Co., Ltd. Fibrous structure

Also Published As

Publication number Publication date
JP2003236391A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
Robert et al. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review
AU735798B2 (en) Photocatalytic composition
Sano et al. Activation of graphitic carbon nitride (gC 3 N 4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase
CA2770444C (en) Sheets containing active agents and activated, carbonized fibrillated fibers, and filter mediums thereof
JP2011240338A (en) Filtering medium and method for making the same
Fukahori et al. Effect of void structure of photocatalyst paper on VOC decomposition
CN115087499A (en) Adsorption sheet, adsorption element, and adsorption treatment device using same
JPH08257360A (en) Photoreactive material for removing harmful substance
JP3686875B2 (en) Photocatalyst paper and production method thereof
JP2003225572A (en) Photocatalyst inorganic composite sheet
JP2000225349A (en) Filter
JP2003013390A (en) Sheet for removing harmful material
JPH10212685A (en) Sheet for adsorption and decomposition
KR100741170B1 (en) Zeolite photocatalytic paper and its manufacturing method therof
JP2001025668A (en) Photocatalytic corrugated filter
JP3854012B2 (en) Photocatalyst member
JP6616597B2 (en) 1,4-dioxane treatment method
JP3571104B2 (en) Method for producing titanium oxide-containing harmful substance removing material
JP2001303494A (en) Adsorbing photocatalytic inorganic sheet
JP2002292287A (en) Sheet for removing harmful substance and manufacturing method thereof
US20160151775A1 (en) Ion exchange product and manner of use
CN112058308B (en) Organic-inorganic composite formaldehyde catalytic composition, preparation method thereof and air purification filter element
Choudhury The Efficiency of Pt-Doped Titania Pillared Clay Membranes for the Treatment of Real Textile Wastewater: A Case Study
KR20060044236A (en) Photocatalytic paper and its manufacturing method for gas adsorption and photocatalytic oxidation
JP4030228B2 (en) Photocatalyst deodorization filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees