JP3686810B2 - High pressure mechanical seal - Google Patents

High pressure mechanical seal Download PDF

Info

Publication number
JP3686810B2
JP3686810B2 JP2000027131A JP2000027131A JP3686810B2 JP 3686810 B2 JP3686810 B2 JP 3686810B2 JP 2000027131 A JP2000027131 A JP 2000027131A JP 2000027131 A JP2000027131 A JP 2000027131A JP 3686810 B2 JP3686810 B2 JP 3686810B2
Authority
JP
Japan
Prior art keywords
sliding
sealing
sliding ring
ring
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000027131A
Other languages
Japanese (ja)
Other versions
JP2001221344A (en
Inventor
宜昭 瀧ケ平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2000027131A priority Critical patent/JP3686810B2/en
Publication of JP2001221344A publication Critical patent/JP2001221344A/en
Application granted granted Critical
Publication of JP3686810B2 publication Critical patent/JP3686810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転軸の軸周を密封する高圧用メカニカルシールであって、特に、COガスを冷媒とする空調装置の圧縮機(以下CO圧縮機という)において、冷媒COを密封するのに適したメカニカルシールに関する。
【0002】
【従来の技術】
図4は、密封対象流体が高圧となる条件下で使用されるメカニカルシールとして、CO圧縮機用メカニカルシールの典型的な従来例を示すものである。このメカニカルシールにおいては、静止側摺動環123が、セラミック等の硬質摺動材からなるものであって、シールハウジング111にOリング125を介して気密的に固定されている。一方、回転側摺動環121が、カーボン等の自己潤滑性摺動材からなるものであって、その内周面の環状段差部128に収容された作動用Oリング124を介して、回転軸112の外周に軸方向移動自在に設けられている。
【0003】
回転側摺動環121の軸方向一端には環状の摺動突起122が形成されており、その反対側の面(以下、背面という)に当接配置されたスプリング127の軸方向付勢力によって、前記摺動突起122が、静止側摺動環123に密接されると共に、ケース126を介して回転軸112の回転力が伝達されることによって、この回転軸112と共に回転される。これによって、回転側摺動環121と静止側摺動環123の間に、密封摺動部Sが形成される。
【0004】
ここで、密封摺動部Sの外径側に達する機内空間Pは、ミスト状の冷凍機油を含む冷媒CO雰囲気、前記密封摺動部Sの内径側に達する機外空間Qは大気雰囲気であり、両空間P,Qの差圧は3〜13MPaの範囲で変化する。
【0005】
上記構成において、回転側摺動環121に作用する機内空間Pと機外空間Qの差圧のうち、径方向に作用する圧力に着目すると、図5に示されるように、この回転側摺動環121の断面における質量重心Gから、摺動突起122による密封摺動面122Sまでの範囲Aに作用する径方向圧力△P1は、前記密封摺動面122Sを俯方向へ傾斜させる変形力M1を生じさせ、一方、前記質量重心Gから作動用Oリング124による冷媒COガス封止部分Tまでの範囲Bに作用する径方向圧力△P2は、前記密封摺動面122Sを仰方向へ傾斜させる変形力M2を生じさせる。なお、前記封止部分Tよりも背面側の範囲Cでは、径方向圧力△P3と△P3’が互いに対向してバランスしている。
【0006】
ここで、回転側摺動環121の密封摺動面122Sから質量重心Gまでの軸方向距離をaとし、密封摺動部Sから作動用Oリング124による封止部分Tまでの範囲A+Bの軸方向距離をbとした場合、a/bを質量重心比と呼ぶ。そして、図4に例示した従来構造のメカニカルシールにおいては、a/b=0.63となっており、すなわち、変形力M1とM2の間にはM1>M2の関係がある。したがって、冷媒COの圧力と大気圧との差圧△Pが高圧となった場合、回転側摺動環121の質量重心Gを軸とする変形力M(変形力M1とM2の差分)が大きくなり、図6に誇張して示されるように、ヤング率の小さい回転側摺動環121が、その密封摺動面122Sを俯方向へ傾斜させるように、テーパ状の変形を生じる。その結果、例えば回転側摺動環121がカーボン材からなり、摺動突起122の外径が20mm程度、その先端の摺動幅が2mm程度のメカニカルシールを用いた場合、摺動によって、密封摺動面122Sの外周側の摩耗量が内周側より1〜3μm程度大きくなるといった偏摩耗を生じる。
【0007】
そして、このような偏摩耗が生じた後、機内空間Pの圧力が低下することによって変形力Mが小さくなった場合は、図7に示されるように、外周側(CO雰囲気側)へ開いたテーパ状の隙間Nを生じる。したがって、隙間Nに△Pが作用することによって密封摺動部Sを開かせる力Fが増大する。また、前記密封摺動部Sには、冷媒CO中にミスト状に混在する冷凍機油の一部が介入することによって潤滑油膜が形成され、この潤滑油膜が冷媒COの漏洩防止に大きく貢献しているが、上述のように外周側へ開いたテーパ状の隙間Nが形成されると、実質的な密封摺動部Sの幅が著しく小さくなると共に、そこに介在する油膜も著しく減少する。そして、このような経緯によって、冷媒COが洩れ易い状況となる問題が指摘されている。
【0008】
なお、回転側摺動環121に作用する機内空間Pの圧力と機外空間Qの大気圧との差圧のうち、軸方向に作用する圧力に着目すると、図8に示されるように、密封摺動部Sの外周端よりも外径側の範囲Dに作用する軸方向圧力△P4と△P4’は互いに対向してバランスしており、前記密封摺動部Sの外周端よりも内径側の範囲Eに作用する軸方向圧力△P5によって、密封摺動面122Sを仰方向へ傾斜させる変形力M3を生じる。但し、△P5の作用範囲が狭く、しかも、質量重心Gからの径方向距離、すなわち、変形力M3の作用距離が短いため、先に説明した図6に示される変形力M(変形力M1とM2の差分)と比較してその力は非常に小さく、上述の径方向圧力によって回転側摺動環121が、その密封摺動面122Sを俯方向へ傾斜させるように倒れこむのを抑止する効果は、確認されない。
【0009】
また、上記従来構造のメカニカルシールにおいては、密封摺動部Sにおける内径側と外径側の摺動発熱量及び除熱効率の差によって径方向の温度分布が生じ、このため、密封摺動面122Sが不均一に熱膨張しながら摺動することによって、内周側(大気雰囲気側)へ開いたテーパ状の隙間を生じる場合がある。しかし、CO圧縮機用メカニカルシールの使用条件程度において、前記密封摺動面122Sにおける内径側と外径側の熱膨張の差は無視できる程度に小さいことが、FEM解析より確認されており、また、上述のようなメカニカルシールで問題とされる外周側(冷媒CO雰囲気側)へ開いたテーパ状の隙間の形成を抑止する効果も確認されない。
【0010】
【発明が解決しようとする課題】
本発明は、上記のような問題に鑑みてなされたもので、その技術的課題とするところは、密封空間圧力と大気圧との差圧のうち、径方向の圧力に起因する回転側摺動環及び摺動突起の変形がもたらす密封摺動面の偏摩耗、すなわち外周側へ開いたテーパ状隙間の形成を抑制し、密封摺動面の油膜切れを抑制することによって密封対象流体の漏洩を抑えることにある。
【0011】
【課題を解決するための手段】
上述した技術的課題は、本発明によって有効に解決することができる。
すなわち本発明に係る高圧用メカニカルシールは、回転軸に作動用パッキングを介して装着されてこの回転軸と共に回転し、円周方向に連続した摺動突起を有する回転側摺動環と、ハウジング側に気密的に固定され、前記摺動突起の端面と密接される非回転の静止側摺動環を備え、密封対象流体の存在する空間が前記両摺動環による密封摺動部の外周側に達し、前記密封対象流体はミスト状の冷凍機油を含む冷媒CO であり、該CO ガスを冷媒とする空調装置の圧縮機の軸封装置として装着されるメカニカルシールであって、前記回転側摺動環が自己潤滑性摺動材からなり、前記静止側摺動環が前記自己潤滑性摺動材よりヤング率の大きい摺動材からなり、前記回転側摺動環の質量重心から密封摺動面までの軸方向距離をa、前記作動用パッキングによる密封対象流体封止部分から前記密封摺動面までの軸方向距離をbとした場合、質量重心比a/bが、
0.4≦a/b≦0.6・・・・・・・・・・・・(1)
となるように、前記回転側摺動環の背面寄りの外周面に径方向肉厚を減少させる段差を形成することにより前記回転側摺動環の質量重心Gの位置を設定したものである。
このメカニカルシールは、特に、COを冷媒とする空調装置の圧縮機の軸封装置として、好適に使用される。
【0012】
なお、ここでいう「質量重心」とは軸心を通る平面で切断した断面における質量の重心のことである。したがって、この質量重心は、円周方向に連続して存在する。
【0013】
本発明において、上記(1)式を成立させるためには、回転側摺動環の背面寄りの外周面を径方向肉厚を減少させる形状に形成する。
【0014】
また、本発明において好ましくは、自己潤滑性摺動材はカーボン摺動材、PTFE摺動材又はポリイミド摺動材から選択される。
【0015】
ここで、密封空間圧力と大気圧との差圧のうち、回転側摺動環に、その質量重心より密封摺動面側の範囲に作用する径方向圧力によって、この回転側摺動環の密封摺動面を俯方向へ傾斜させる変形力をM1とし、前記質量重心よりも背面側の範囲に作用する径方向圧力によって、前記密封摺動面を仰方向へ傾斜させる変形力、すなわち前記変形力M1を打ち消す方向の変形力をM2とした場合、本発明においては、回転側摺動環の質量重心を、上記(1)式を満足する位置に設定し、質量重心比a/bの値を0.5に近似させることによって、前記変形力M1とM2がほぼ拮抗し、回転側摺動環の変形が抑えられ、したがって密封摺動面の偏摩耗が抑制される。
【0016】
なお、上記(1)式において、質量重心比a/bの値の上限を0.6と規定したのは、後述する試験結果(【表1】および【表2】)から明らかなように、a/b=0.59では、変形力M1とM2の差分(この場合はM1>M2)による密封摺動面の偏摩耗量が0.9μmであるのに対し、a/b=0.63では偏摩耗量が1.7μmとなり、0.6超では、顕著な偏摩耗を生じることが確認されたからである。また、上記(1)式において、a/bの値の下限を0.4と規定したのは、0.4未満では、変形力M1とM2の差分(この場合はM1<M2)によって、傾斜変形が上述の0.6超の場合と逆方向(仰方向)へ生じることになり、密封摺動面に、外周側へ開となる顕著なテーパ状隙間を生じるからである。
【0017】
【発明の実施の形態】
図1は、本発明の第一の実施形態として、CO圧縮機用のメカニカルシールを示すものである。この図において、参照符号1はCO圧縮機のシールハウジング、参照符号2はこのシールハウジング1に開設された軸孔11から機内へ挿通された回転軸である。
【0018】
シールハウジング1と回転軸2との間に介在される本発明のメカニカルシール3は、前記シールハウジング1側に装着された静止側摺動環31と、前記回転軸2側に装着されてこの回転軸2と共に回転する回転側摺動環32を備え、両摺動環31,32が軸方向に対向する端面同士で互いに密接摺動されることによって、その密封摺動部3Sの外周側に達する機内空間Pに存在する高圧の冷媒COが、大気雰囲気である機外空間Qへ漏洩するのを防止するものである。ここで、前記機内空間Pはミスト状の冷凍機油を含むCO雰囲気で、機内空間Pと機外空間Qの差圧△Pは3〜13MPaの間で変化する。
【0019】
メカニカルシール3の構成を更に詳しく説明すると、静止側摺動環31はセラミックス等の硬質材からなるものであって、シールハウジング1における軸孔11の端部に形成された環状凹部12内に収容され、前記環状凹部12の円筒面に形成されたOリング装着溝13に装着されたOリング33を介して、気密的かつ固定的に密嵌されている。
【0020】
一方、回転側摺動環32はカーボン等の自己潤滑性摺動材からなるものであって、静止側摺動環31側を向いた端部に摺動突起32aを有し、内周面の環状段差部32bに収容された作動用Oリング34を介して回転軸2の外周面に軸方向移動自在に設けられている。
【0021】
回転側摺動環32の背面側(静止側摺動環31と反対側)には、鍔状の金属板からなるケース35が配置されており、このケース35は、内周部が、回転軸2の外周面に形成された環状段差部21に嵌合されると共に、その円周方向一部に形成された切欠部21aと円周方向に係合している。また、このケース35の外周部には、軸方向に延在された複数の係合爪35aが等位相間隔で形成されており、回転側摺動環32の外周面に等位相間隔で形成された係合切欠32cと軸方向相対移動自在に係合している。一方、回転側摺動環32の背面とケース35との間には、スプリング(例えばウェーブスプリング)36が軸方向に適宜圧縮された状態で介在されている。
【0022】
すなわち回転側摺動環32は、スプリング36の軸方向付勢力によって、摺動突起32aが静止側摺動環31の端面に密接されると共に、ケース35を介して回転軸2の回転力が伝達されることによって、この回転軸2と共に回転される。そして、これによって、静止側摺動環31と回転側摺動環32との間に密封摺動部3Sが形成され、軸封機能を奏する。
【0023】
ここで、回転側摺動環32の背面寄りの外側面には、背面側の質量を減少させる環状段差32dが形成されており、また、摺動突起32aの外周側の端面32eが軸心とほぼ直交する平面をなすように形成されている。その結果、図2に示されるように、回転側摺動環32の質量重心32Gが、従来構造のものよりも摺動突起32a側へ偏在し、密封摺動面32Sから前記質量重心32Gまでの軸方向距離aは、密封摺動部3Sから作動用Oリング34による冷媒COの封止部分Tまでの軸方向距離bの0.51倍、すなわち質量重心比a/bが0.51となっている。
【0024】
以上の構成において、CO圧縮機の駆動時は、冷媒COガス中にミスト状に混在している冷凍機油の一部は、密封摺動部3Sに介入して潤滑油膜を形成し、この密封摺動部3Sを良好に潤滑すると共に、大気側空間Qへの冷媒COガスの通過を遮断する。そして図2に示されるように、回転側摺動環32に作用する機内の冷媒CO圧力と機外の大気圧との差圧のうち、摺動環の質量重心Gから密封摺動部3Sまでの範囲32Aに作用する径方向圧力△P1は、この摺動環32における摺動突起32aの先端の密封摺動面32Sを俯方向へ傾斜させる変形力M1を生じさせ、一方、質量重心Gから作動用Oリング34による封止部分Tまでの範囲32Bにかかる径方向圧力△P2は、前記密封摺動面32Sを仰方向へ傾斜させるM2を生じさせる。なお、前記作動用Oリング34によるガス封止部分Tより背面側の範囲32Cでは、径方向圧力△P3と△P3’が対向してバランスしている。
【0025】
ここで、回転側摺動環32の質量重心32Gの位置によれば、この回転側摺動環32の密封摺動面32Sから前記質量重心32Gまでの軸方向距離aと、前記密封摺動面32Sから作動用Oリング34による封止部分Tまでの軸方向距離bの間には、先に説明したように、a/b=0.51なる関係が成立している。すなわち、変形力M1とM2は、M1>M2ではあるが、その差が非常に小さいため、質量重心32Gを軸とする変形力による俯方向への倒れ込みが抑えられ、したがって密封摺動面32Sにおける外周側の偏摩耗が抑制される。
【0026】
下の表1は、実機での摺動試験結果を示すものである。試験は図1に示される本発明の第一実施形態及び図4に示される従来構造のメカニカルシールを、雰囲気温度60℃、密封対象流体の圧力5.0MPa、軸回転数1000rpmの条件下で20hrs摺動させたものである。なお、何れのメカニカルシールについても回転側摺動環の摺動材はカーボンであり、密封摺動面(摺動突起)の外径はφ20.6mm、密封摺動面の幅は1.8mmである。
【表1】

Figure 0003686810
【0027】
上記試験結果によると、図4に示される従来構造のメカニカルシールにおいては、摺動突起の端面に発生した偏摩耗が1.7μmであったのに対し、本発明のメカニカルシールに於いては、同一試験条件下での偏摩耗が0.3μmに抑えられているのがわかる。このため、本発明によれば、密封摺動面には充分な潤滑油膜が形成され、冷媒COの漏洩量を大幅に抑制できる。
【0028】
【0029】
【0030】
つぎに図3は、比較例に係るCO 圧縮機用メカニカメシールを示すものである。この比較例においては、回転側摺動環32に図1のような環状段差部32dを形成していないが、摺動突起32aの外周側の端面32eが軸心とほぼ直交する平面をなすように形成されていることによって、質量重心32Gが、図5に示される従来のメカニカルシールにおける回転側摺動環121の質量重心Gに比較して、密封摺動面寄りに位置するものである。詳しくは、この実施形態においては、質量重心比a/b=0.59となっている。
【0031】
下の表2は、上記比較例によるメカニカルシールについて、上述と同様の摺動試験を実施した結果を示すものである。この試験結果から明らかなように、回転側摺動環の密封摺動面に発生した偏摩耗は0.9μmであった。
【表2】
Figure 0003686810
【0032】
上述の表1及び表2に示される各試験結果は、密封摺動面に発生する偏摩耗の程度・度合いが、摺動突起付近の形状、すなわち回転側摺動環の剛性に影響されず、回転側摺動環の質量重心比に大きく左右されることを示唆している。
【0033】
【発明の効果】
本発明によると、回転側摺動環の背面寄りの外周面に、径方向肉厚を減少させる段差を形成することにより、自己潤滑性摺動材からなる回転側摺動環の質量重心を、質量重心比a/bの値が0.4以上0.6以下となるように設定したことによって、密封対象流体の圧力に起因する密封摺動面の偏摩耗を抑制することができ、このため、前記密封対象流体の漏洩を有効に防止することが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る高圧用メカニカルシールの第一の実施形態を、軸心を通る平面で切断して示す断面図である。
【図2】 上記第一の実施形態の作用を示す説明図である。
【図3】 比較例に係る高圧用メカニカルシールを、軸心を通る平面で切断して示す半断面図である。
【図4】 従来技術による高圧用メカニカルシールを、軸心を通る平面で切断して示す半断面図である。
【図5】 上記従来技術における変形力の発生原理を示す説明図である。
【図6】 上記従来技術における変形の発生状態を誇張して示す説明図である。
【図7】 上記従来技術における偏摩耗の発生状態を示す説明図である。
【図8】 上記従来技術における軸方向圧力の分布を示す説明図である。
【符号の説明】
1 シールハウジング
2 回転軸
3 メカニカルシール
31 静止側摺動環
32 回転側摺動環
32d 環状段差部
32G 質量重心
32S 密封摺動面
34 作動用Oリング
P 機内空間
Q 大気側空間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-pressure mechanical seals for sealing the shaft circumference of the rotary shaft, in particular, the compressor of the air conditioning apparatus for CO 2 gas as a refrigerant in (hereinafter referred to as CO 2 compressor), seals the refrigerant CO 2 It is related with the mechanical seal suitable for.
[0002]
[Prior art]
FIG. 4 shows a typical conventional example of a mechanical seal for a CO 2 compressor as a mechanical seal used under a condition where the fluid to be sealed is at a high pressure. In this mechanical seal, the stationary-side sliding ring 123 is made of a hard sliding material such as ceramic, and is hermetically fixed to the seal housing 111 via an O-ring 125. On the other hand, the rotation-side sliding ring 121 is made of a self-lubricating sliding material such as carbon, and the rotation shaft is interposed through an operation O-ring 124 accommodated in the annular step portion 128 on the inner peripheral surface thereof. It is provided on the outer periphery of 112 so as to be axially movable.
[0003]
An annular sliding protrusion 122 is formed at one end in the axial direction of the rotation-side sliding ring 121, and the axial biasing force of the spring 127 disposed in contact with the opposite surface (hereinafter referred to as the back surface) The sliding protrusion 122 is brought into close contact with the stationary-side sliding ring 123 and is rotated together with the rotating shaft 112 by transmitting the rotational force of the rotating shaft 112 through the case 126. As a result, a sealed sliding portion S is formed between the rotating side sliding ring 121 and the stationary side sliding ring 123.
[0004]
Here, the in-machine space P reaching the outer diameter side of the sealed sliding portion S is a refrigerant CO 2 atmosphere containing mist-like refrigerating machine oil, and the outer space Q reaching the inner diameter side of the sealed sliding portion S is an atmospheric atmosphere. Yes, the differential pressure between both spaces P and Q varies in the range of 3 to 13 MPa.
[0005]
In the above configuration, when attention is paid to the pressure acting in the radial direction among the differential pressures of the in-machine space P and the out-of-machine space Q acting on the rotation-side sliding ring 121, as shown in FIG. The radial pressure ΔP1 acting on the range A from the mass center of gravity G in the cross section of the ring 121 to the sealing sliding surface 122S by the sliding protrusion 122 causes a deformation force M1 to incline the sealing sliding surface 122S in the heel direction. On the other hand, the radial pressure ΔP2 acting on the range B from the mass center of gravity G to the refrigerant CO 2 gas sealing portion T by the operating O-ring 124 causes the sealing sliding surface 122S to tilt upward. A deformation force M2 is generated. In the range C on the back side of the sealing portion T, the radial pressures ΔP3 and ΔP3 ′ are balanced against each other.
[0006]
Here, the axial distance from the sealing sliding surface 122S of the rotation-side sliding ring 121 to the mass center of gravity G is a, and the axis in the range A + B from the sealing sliding portion S to the sealing portion T by the operating O-ring 124 When the directional distance is b, a / b is referred to as mass centroid ratio. In the conventional mechanical seal illustrated in FIG. 4 , a / b = 0.63, that is, there is a relationship of M1> M2 between the deformation forces M1 and M2. Therefore, when the differential pressure ΔP between the pressure of the refrigerant CO 2 and the atmospheric pressure becomes high, a deformation force M (difference between the deformation forces M1 and M2) about the mass center of gravity G of the rotation-side sliding ring 121 is generated. As shown in an exaggerated manner in FIG. 6 , the rotation-side sliding ring 121 having a small Young's modulus causes a taper-shaped deformation so that the sealing sliding surface 122S is inclined in the heel direction. As a result, for example, when a mechanical seal is used in which the rotation-side sliding ring 121 is made of a carbon material, the outer diameter of the sliding protrusion 122 is about 20 mm, and the sliding width of the tip is about 2 mm, Uneven wear occurs such that the amount of wear on the outer peripheral side of the moving surface 122S is about 1 to 3 μm larger than that on the inner peripheral side.
[0007]
Then, after such uneven wear occurs, when the deformation force M decreases due to a decrease in the pressure in the in-machine space P, as shown in FIG. 7, it opens to the outer peripheral side (CO 2 atmosphere side). A tapered gap N is generated. Therefore, when ΔP acts on the gap N, the force F that opens the sealing sliding portion S increases. In addition, a lubricating oil film is formed on the sealing sliding portion S when a part of the refrigeration oil mixed in the mist form in the refrigerant CO 2 intervenes, and this lubricating oil film greatly contributes to preventing leakage of the refrigerant CO 2. However, when the tapered gap N opened to the outer peripheral side is formed as described above, the width of the substantial sealing sliding portion S is remarkably reduced, and the oil film interposed therein is also significantly reduced. . Then, by such circumstances, problems that might easily situation leakage of refrigerant CO 2 has been pointed out.
[0008]
When attention is paid to the pressure acting in the axial direction out of the differential pressure between the pressure in the machine space P acting on the rotation side sliding ring 121 and the atmospheric pressure in the machine outside space Q, as shown in FIG. The axial pressures ΔP4 and ΔP4 ′ acting on the outer diameter side range D from the outer peripheral end of the sliding portion S are balanced and opposed to each other, and the inner diameter side from the outer peripheral end of the sealing sliding portion S. A deformation force M3 for inclining the sealing sliding surface 122S in the upward direction is generated by the axial pressure ΔP5 acting on the range E. However, since the action range of ΔP5 is narrow and the radial distance from the mass center of gravity G, that is, the action distance of the deformation force M3 is short, the deformation force M (deformation force M1 and the deformation force M1 shown in FIG. The force is very small compared to the difference (M2), and the effect of suppressing the rotation-side sliding ring 121 from collapsing so as to incline the sealing sliding surface 122S in the heel direction by the above-mentioned radial pressure. Is not confirmed.
[0009]
Further, in the mechanical seal having the conventional structure, a temperature distribution in the radial direction is generated due to a difference in sliding heat generation and heat removal efficiency between the inner diameter side and the outer diameter side in the sealing sliding portion S, and therefore, the sealing sliding surface 122S. May slide while being thermally expanded non-uniformly, resulting in a taper-shaped gap that opens to the inner peripheral side (atmosphere side). However, it has been confirmed by FEM analysis that the difference in thermal expansion between the inner diameter side and the outer diameter side of the sealing sliding surface 122S is negligibly small under the conditions of use of the mechanical seal for the CO 2 compressor. Moreover, not also confirmed the effect of suppressing the formation of the outer peripheral side (refrigerant CO 2 atmosphere side) to the open tapered gap is a problem in mechanical seal as described above.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the problems as described above, and the technical problem thereof is that the rotation side sliding caused by the radial pressure out of the differential pressure between the sealed space pressure and the atmospheric pressure. Suppresses uneven wear of the sealing sliding surface caused by deformation of the ring and sliding protrusion, that is, prevents the formation of a tapered gap that opens to the outer peripheral side, and prevents leakage of the fluid to be sealed by suppressing oil film breakage on the sealing sliding surface. There is to suppress.
[0011]
[Means for Solving the Problems]
The technical problem described above can be effectively solved by the present invention.
That is, the high-pressure mechanical seal according to the present invention is mounted on the rotating shaft through the operation packing, rotates together with the rotating shaft, and has a rotating side sliding ring having a continuous sliding projection in the circumferential direction, and the housing side. A non-rotating stationary side sliding ring that is airtightly fixed to the end face of the sliding projection, and a space in which a fluid to be sealed exists is located on the outer peripheral side of the sealing sliding portion formed by the both sliding rings. The fluid to be sealed is a refrigerant CO 2 containing mist-like refrigerating machine oil , and is a mechanical seal mounted as a shaft seal device of a compressor of an air conditioner using the CO 2 gas as a refrigerant, The sliding ring is made of a self-lubricating sliding material, the stationary side sliding ring is made of a sliding material having a Young's modulus greater than that of the self-lubricating sliding material, and the sliding ring is sealed from the center of mass of the rotating side sliding ring. A, the axial distance to the moving surface, If from sealed fluid seal portion by packing an axial distance to the sealing sliding surface is b, the center of mass ratio a / b is,
0.4 ≦ a / b ≦ 0.6 (1)
The position of the mass center of gravity G of the rotating side sliding ring is set by forming a step that reduces the radial thickness on the outer peripheral surface near the back surface of the rotating side sliding ring.
This mechanical seal is particularly preferably used as a shaft seal device for a compressor of an air conditioner using CO 2 as a refrigerant.
[0012]
The “mass center of gravity” here refers to the center of mass of a mass in a cross section cut by a plane passing through the axis. Therefore, this mass center of gravity exists continuously in the circumferential direction.
[0013]
In the present invention, in order to establish the above expression (1), the outer peripheral surface near the back surface of the rotation-side sliding ring is formed in a shape that reduces the radial thickness.
[0014]
In the present invention, the self-lubricating sliding material is preferably selected from a carbon sliding material, a PTFE sliding material, or a polyimide sliding material.
[0015]
Here, of the differential pressure between the sealed space pressure and the atmospheric pressure, the rotational sliding ring is sealed by the radial pressure acting on the rotational sliding ring on the sealing sliding surface side of the mass center of gravity. A deformation force for inclining the sliding surface in the heel direction is M1, and a deformation force for inclining the sealing sliding surface in the upward direction by a radial pressure acting on the back side of the mass center of gravity, that is, the deformation force. When the deformation force in the direction to cancel M1 is M2, in the present invention, the mass center of gravity of the rotation-side sliding ring is set to a position satisfying the above expression (1), and the value of the mass center-of-gravity ratio a / b is set. By approximating 0.5, the deformation forces M1 and M2 almost antagonize and the deformation of the rotating side sliding ring is suppressed, and therefore the uneven wear of the sealing sliding surface is suppressed.
[0016]
In the above formula (1), the reason why the upper limit of the mass center-of-gravity ratio a / b is defined as 0.6 is, as will be apparent from the test results (Table 1 and Table 2) described later. At a / b = 0.59, the uneven wear amount of the sealing sliding surface due to the difference between the deformation forces M1 and M2 (in this case, M1> M2) is 0.9 μm, whereas a / b = 0.63 In this case, the amount of uneven wear was 1.7 μm, and when it exceeded 0.6, it was confirmed that significant uneven wear occurred. Further, in the above equation (1), the lower limit of the value of a / b is defined as 0.4. If the value is less than 0.4, the inclination is determined by the difference between the deformation forces M1 and M2 (in this case M1 <M2) This is because the deformation occurs in the reverse direction (upward direction) as compared with the above-described case of 0.6, and a conspicuous tapered gap that opens to the outer peripheral side is generated on the sealing sliding surface.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a mechanical seal for a CO 2 compressor as a first embodiment of the present invention. In this figure, reference numeral 1 is a seal housing of a CO 2 compressor, and reference numeral 2 is a rotating shaft inserted into the machine from a shaft hole 11 formed in the seal housing 1.
[0018]
The mechanical seal 3 of the present invention interposed between the seal housing 1 and the rotating shaft 2 includes a stationary side sliding ring 31 mounted on the seal housing 1 side and the rotating shaft 2 side. A rotation-side sliding ring 32 that rotates together with the shaft 2 is provided, and both the sliding rings 31 and 32 are slid closely to each other at their axially opposed end surfaces to reach the outer peripheral side of the sealing sliding portion 3S. The high-pressure refrigerant CO 2 present in the in-machine space P is prevented from leaking into the outside space Q that is an atmospheric atmosphere. Here, the internal space P is a CO 2 atmosphere containing mist-like refrigerating machine oil, and the differential pressure ΔP between the internal space P and the external space Q varies between 3 and 13 MPa.
[0019]
The structure of the mechanical seal 3 will be described in more detail. The stationary-side sliding ring 31 is made of a hard material such as ceramics and is accommodated in an annular recess 12 formed at the end of the shaft hole 11 in the seal housing 1. The airtightly and fixedly is tightly fitted through an O-ring 33 mounted in an O-ring mounting groove 13 formed in the cylindrical surface of the annular recess 12.
[0020]
On the other hand, the rotation-side sliding ring 32 is made of a self-lubricating sliding material such as carbon, and has a sliding projection 32a at an end facing the stationary-side sliding ring 31 side. It is provided on the outer peripheral surface of the rotary shaft 2 so as to be axially movable through an operation O-ring 34 accommodated in the annular step portion 32b.
[0021]
A case 35 made of a bowl-shaped metal plate is disposed on the back side of the rotation-side sliding ring 32 (on the side opposite to the stationary-side sliding ring 31). 2 is engaged with an annular step portion 21 formed on the outer peripheral surface of the outer peripheral surface, and is engaged with a notch portion 21a formed in a part of the circumferential direction in the circumferential direction. A plurality of engaging claws 35 a extending in the axial direction are formed at equal phase intervals on the outer peripheral portion of the case 35, and are formed at equal phase intervals on the outer peripheral surface of the rotation-side sliding ring 32. The engaging notch 32c engages with the axially movable notch 32c. On the other hand, a spring (for example, a wave spring) 36 is interposed between the back surface of the rotation-side sliding ring 32 and the case 35 in a state where it is appropriately compressed in the axial direction.
[0022]
That is, in the rotation side sliding ring 32, the sliding projection 32 a is brought into close contact with the end surface of the stationary side sliding ring 31 by the axial biasing force of the spring 36, and the rotation force of the rotation shaft 2 is transmitted through the case 35. As a result, the rotary shaft 2 is rotated. And thereby, the sealing sliding part 3S is formed between the stationary side sliding ring 31 and the rotation side sliding ring 32, and has a shaft sealing function.
[0023]
Here, an annular step 32d for reducing the mass on the back side is formed on the outer side surface near the back side of the rotation side sliding ring 32, and an end surface 32e on the outer peripheral side of the sliding projection 32a is an axial center. It is formed so as to form a substantially orthogonal plane. As a result, as shown in FIG. 2, the mass gravity center 32G of the rotation-side sliding ring 32 is unevenly distributed toward the sliding projection 32a than the conventional structure, and from the sealing sliding surface 32S to the mass gravity center 32G. The axial distance a is 0.51 times the axial distance b from the sealing sliding portion 3S to the sealing portion T of the refrigerant CO 2 by the operation O-ring 34, that is, the mass center-of-gravity ratio a / b is 0.51. It has become.
[0024]
In the above configuration, when the CO 2 compressor is driven, a part of the refrigerating machine oil mixed in the mist form in the refrigerant CO 2 gas intervenes in the sealing sliding portion 3S to form a lubricating oil film. The sealed sliding portion 3S is lubricated well and the passage of the refrigerant CO 2 gas to the atmosphere side space Q is blocked. As shown in FIG. 2, the sealing sliding portion 3 </ b > S from the mass center of gravity G of the sliding ring out of the differential pressure between the refrigerant CO 2 pressure inside the machine acting on the rotating side sliding ring 32 and the atmospheric pressure outside the machine. The radial pressure ΔP1 acting on the range 32A up to this point causes a deformation force M1 that inclines the sealing sliding surface 32S at the tip of the sliding projection 32a in the sliding ring 32 in the heel direction, while the mass center of gravity G The radial pressure ΔP2 applied to the range 32B from the operating O-ring 34 to the sealing portion T causes M2 to incline the sealing sliding surface 32S in the upward direction. In the range 32C on the back side from the gas sealing portion T by the operating O-ring 34, the radial pressures ΔP3 and ΔP3 ′ are oppositely balanced.
[0025]
Here, according to the position of the mass center of gravity 32G of the rotation side sliding ring 32, the axial distance a from the sealing sliding surface 32S of the rotation side sliding ring 32 to the mass center of gravity 32G, and the sealing sliding surface As described above, the relationship of a / b = 0.51 is established between the axial distance b from 32S to the sealing portion T by the operating O-ring 34. That is, although the deformation forces M1 and M2 satisfy M1> M2, the difference between them is very small. Therefore, the deformation force M1 and the deformation force about the center of gravity 32G can be prevented from falling in the heel direction. Uneven wear on the outer peripheral side is suppressed.
[0026]
Table 1 below shows the results of sliding tests with actual machines. In the test, the mechanical seal of the first embodiment of the present invention shown in FIG. 1 and the conventional structure shown in FIG. 4 was subjected to 20 hrs under the conditions of an atmospheric temperature of 60 ° C., a pressure of a fluid to be sealed of 5.0 MPa, and a shaft rotation speed of 1000 rpm. It is made to slide. In any mechanical seal, the sliding material of the rotating side sliding ring is carbon, the outer diameter of the sealing sliding surface (sliding projection) is φ20.6 mm, and the width of the sealing sliding surface is 1.8 mm. is there.
[Table 1]
Figure 0003686810
[0027]
According to the above test results, in the mechanical seal of the conventional structure shown in FIG. 4 , the uneven wear generated on the end face of the sliding projection was 1.7 μm, whereas in the mechanical seal of the present invention, It can be seen that the uneven wear under the same test conditions is suppressed to 0.3 μm. For this reason, according to the present invention, a sufficient lubricating oil film is formed on the sealing sliding surface, and the leakage amount of the refrigerant CO 2 can be greatly suppressed.
[0028]
[0029]
[0030]
Next, FIG. 3 shows a mechanical camera seal for a CO 2 compressor according to a comparative example . In this comparative example , the rotation-side sliding ring 32 is not formed with the annular step portion 32d as shown in FIG. 1, but the end face 32e on the outer peripheral side of the sliding projection 32a forms a plane substantially perpendicular to the axis. by being formed in the mass center of gravity 32G, compared to the mass center of gravity G of the rotary side sliding ring 121 in a conventional mechanical seal shown in FIG. 5, it is to position the sealing slide surface closer. Specifically, in this embodiment, the mass center-of-gravity ratio a / b = 0.59.
[0031]
Table 2 below shows the results of a sliding test similar to that described above for the mechanical seal according to the comparative example . As is apparent from the test results, the uneven wear generated on the sealing sliding surface of the rotary sliding ring was 0.9 μm.
[Table 2]
Figure 0003686810
[0032]
The test results shown in Table 1 and Table 2 show that the degree and degree of uneven wear occurring on the sealing sliding surface is not affected by the shape near the sliding protrusion, that is, the rigidity of the rotating side sliding ring. This suggests that it is greatly influenced by the mass center-of-gravity ratio of the rotating sliding ring.
[0033]
【The invention's effect】
According to the present invention, the mass center of gravity of the rotating side sliding ring made of a self-lubricating sliding material is formed on the outer peripheral surface near the back surface of the rotating side sliding ring by forming a step that reduces the radial thickness . By setting the mass center-of-gravity ratio a / b to be 0.4 or more and 0.6 or less, it is possible to suppress uneven wear of the sealing sliding surface caused by the pressure of the fluid to be sealed. The leakage of the fluid to be sealed can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a high-pressure mechanical seal according to the present invention by cutting along a plane passing through an axis.
FIG. 2 is an explanatory diagram showing the operation of the first embodiment.
FIG. 3 is a half sectional view showing a high-pressure mechanical seal according to a comparative example cut along a plane passing through an axis.
FIG. 4 is a half sectional view showing a high-pressure mechanical seal according to the prior art cut along a plane passing through an axis.
FIG. 5 is an explanatory diagram showing the principle of generation of a deformation force in the prior art.
FIG. 6 is an explanatory diagram exaggeratingly showing the state of occurrence of deformation in the prior art.
FIG. 7 is an explanatory view showing a state of occurrence of uneven wear in the conventional technique.
FIG. 8 is an explanatory diagram showing the distribution of axial pressure in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seal housing 2 Rotating shaft 3 Mechanical seal 31 Stationary side sliding ring 32 Rotating side sliding ring 32d Annular level difference part 32G Mass center of gravity 32S Sealing sliding surface 34 O-ring P for operation | working machine space Q Atmosphere side space

Claims (1)

回転軸に作動用パッキングを介して装着されてこの回転軸と共に回転し、円周方向に連続した摺動突起を有する回転側摺動環と、ハウジング側に気密的に固定され、前記摺動突起の端面と密接される非回転の静止側摺動環を備え、密封対象流体の存在する空間が前記両摺動環による密封摺動部の外周側に達し、前記密封対象流体はミスト状の冷凍機油を含む冷媒CO であり、該CO ガスを冷媒とする空調装置の圧縮機の軸封装置として装着されるメカニカルシールであって、
前記回転側摺動環が自己潤滑性摺動材からなり、前記静止側摺動環が前記自己潤滑性摺動材よりヤング率の大きい摺動材からなり、
前記回転側摺動環の質量重心から密封摺動面までの軸方向距離をa、前記作動用パッキングによる密封対象流体封止部分から前記密封摺動面までの軸方向距離をbとした場合、質量重心比a/bが、
0.4≦a/b≦0.6・・・・・・・・・・・・(1)
となるように、前記回転側摺動環の背面寄りの外周面に径方向肉厚を減少させる段差を形成することにより前記回転側摺動環の質量重心の位置を設定したことを特徴とする高圧用メカニカルシール。
A rotating-side sliding ring which is mounted on the rotating shaft via an operating packing and rotates together with the rotating shaft and has a sliding protrusion continuous in the circumferential direction; and the sliding protrusion which is airtightly fixed to the housing side. A non-rotating stationary sliding ring that is in close contact with the end face of the sealing member, and a space in which the fluid to be sealed exists reaches the outer peripheral side of the sealing sliding portion formed by the both sliding rings , and the fluid to be sealed is a mist-like refrigeration It is a refrigerant CO 2 containing machine oil, a mechanical seal mounted as a shaft seal device of a compressor of an air conditioner using the CO 2 gas as a refrigerant ,
The rotating side sliding ring is made of a self-lubricating sliding material, and the stationary side sliding ring is made of a sliding material having a Young's modulus larger than the self-lubricating sliding material,
When the axial distance from the center of gravity of the rotating side sliding ring to the sealing sliding surface is a, and the axial distance from the sealing target fluid sealing portion by the working packing to the sealing sliding surface is b, Mass center-of-gravity ratio a / b is
0.4 ≦ a / b ≦ 0.6 (1)
The position of the center of mass of the rotating side sliding ring is set by forming a step that reduces the radial thickness on the outer peripheral surface near the back surface of the rotating side sliding ring. Mechanical seal for high pressure.
JP2000027131A 2000-02-04 2000-02-04 High pressure mechanical seal Expired - Lifetime JP3686810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027131A JP3686810B2 (en) 2000-02-04 2000-02-04 High pressure mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027131A JP3686810B2 (en) 2000-02-04 2000-02-04 High pressure mechanical seal

Publications (2)

Publication Number Publication Date
JP2001221344A JP2001221344A (en) 2001-08-17
JP3686810B2 true JP3686810B2 (en) 2005-08-24

Family

ID=18552755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027131A Expired - Lifetime JP3686810B2 (en) 2000-02-04 2000-02-04 High pressure mechanical seal

Country Status (1)

Country Link
JP (1) JP3686810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997583B2 (en) 2005-11-08 2011-08-16 Eagle Industry Co., Ltd. Mechanical sealing device

Also Published As

Publication number Publication date
JP2001221344A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
US8074995B2 (en) Low and reverse pressure application hydrodynamic pressurizing seals
EP1918617B1 (en) Hydrodynamic seal with circumferentially varying lift force
JP5372772B2 (en) Tandem seal
US6655693B2 (en) Non-contacting gas compressor seal
US20070132193A1 (en) Compliant abradable sealing system and method for rotary machines
JPH0599345A (en) Improved type spiral groove gas lubrication type seal
CA2513053A1 (en) Controlled gap carbon seal
WO2020032086A1 (en) Mechanical seal
JPH0656214B2 (en) Dry gas seal device
EP1098117A1 (en) Mechanical seal for compressor
JP4606545B2 (en) Compressor shaft seal mechanism with mechanical seal
JPH09292034A (en) Mechanical seal
JP3686810B2 (en) High pressure mechanical seal
JPH0769020B2 (en) mechanical seal
US6592345B2 (en) Scroll compressor
JPH02248675A (en) Scroll fluid machine
EP1837525A2 (en) Scroll fluid machine
JP2007071309A (en) Rotary shaft seal
EP3742027A1 (en) Seal structure and seal to be used in same
WO2018117276A1 (en) Screw compressor
JP2004124906A (en) Scroll compressor
JP2001004034A (en) Mechanical seal for carbon dioxide compressor
JP7010202B2 (en) Fluid machine
JPH10141005A (en) Seal device and centrifugal compressor using it
JP2020186659A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3686810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term