JP3686527B2 - Metal coating method of carbon fiber reinforced plastic - Google Patents

Metal coating method of carbon fiber reinforced plastic Download PDF

Info

Publication number
JP3686527B2
JP3686527B2 JP12972798A JP12972798A JP3686527B2 JP 3686527 B2 JP3686527 B2 JP 3686527B2 JP 12972798 A JP12972798 A JP 12972798A JP 12972798 A JP12972798 A JP 12972798A JP 3686527 B2 JP3686527 B2 JP 3686527B2
Authority
JP
Japan
Prior art keywords
metal
polished
plating
copper
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12972798A
Other languages
Japanese (ja)
Other versions
JPH116096A (en
Inventor
眞一 大橋
憲明 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP12972798A priority Critical patent/JP3686527B2/en
Publication of JPH116096A publication Critical patent/JPH116096A/en
Application granted granted Critical
Publication of JP3686527B2 publication Critical patent/JP3686527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、炭素繊維強化プラスチックにおいて、特に密着性及び耐摩耗性の優れためっきを得る金属被覆方法に関する。
【0002】
【従来の技術】
いわゆるエンジニアリングプラスチックは、金属と比較して軽量であり、金型による射出成形など成形性と量産性に富み、耐食性や自己潤滑性、装飾性に優れる反面、耐熱性、耐候性、特に機械的強度の面で不十分な点があった。このプラスチックの特性を保持しつつ欠陥をカバーするものに、各種繊維を強化材とし熱硬化性樹脂をマトリックスとした複合材、つまり繊維強化プラスチック(FRP)がある。なかでも炭素繊維強化プラスチック(CFRP)は、現在航空機の部品をはじめ、機械、電子工業などからスポーツ用品に至るまで諸工業において広く普及し、使用されている。
【0003】
しかし耐摩耗性や硬度を必要とする部位には、CFRP材をそのままで使用することができないので、めっきや溶射により金属を被覆することが行われており、めっきした金属ダイカスト部品に劣らない機能や長所を発揮している。この場合、基材となるプラスチックはABS樹脂(アクリロニトリル、ブタジエン及びスチレンの3成分から成る)が一般的であった。これは化学的なエッチングのみで十分な密着性のある金属のめっき膜が得られるためである。ABS素材を酸化性のエッチング液に浸すとブタジエンゴム成分が選択的に溶解し、表面に無数の微小凹凸が形成され、微小凹凸の中にめっきが食い込み、これがめっき層のアンカー効果をもたらすメカニズムと考えられている。
【0004】
ここで強化プラスチックとして機械的特性や熱的特性に優れ、一般に用いられているエポキシ樹脂には、エッチング液によって溶出する部分がなく、金属めっきの密着性に問題があった。そこで、普通のプラスチックや繊維強化プラスチックについて密着強度を向上する試みが種々なされている。
【0005】
例えば特開昭60−15142号公報にみられるものは、繊維強化プラスチックの円筒上に金属繊維を巻き付けて一体化した金属繊維層を設け、この上に金属の溶射皮膜を設けたものである。溶射された金属皮膜が金属繊維層のみならず、一体化された繊維強化プラスチックにも食い込み融着して密着力を高め、剥離抵抗性が優れ、摺動摩耗性が良好な円筒を得る技術が開示されている。
【0006】
また特開昭61−12872号公報には、強化プラスチックの表面に金属粉末を分散させ、硬化した繊維強化プラスチックの表面をエッチング処理して、金属粉末を溶出させ、その上に化学めっきを施したものであって、密着性の高い金属めっき法が示されている。
【0007】
さらに特開昭62−133060号公報には、プラスチック成形品等に合成樹脂溶液を塗布し、得られた被膜が乾燥、固化する前に金属又は合金を低温溶射して被覆する方法が示されている。
【0008】
【発明が解決しようとする課題】
しかしながら特開昭60−15142号公報に示されたものは、繊維強化プラスチックの円筒上に金属繊維を巻き付けるものであるから、巻き付けに適した形状に制限される。
【0009】
また、特開昭61−12872号公報のものは、繊維強化プラスチックの表面に金属粉末を分散塗布させた後に、繊維強化プラスチックを硬化するプロセスであるから、硬化後に金属層が除去された場合における補修加工が出来にくい。また金属粉末の大きさを10μm以下としているので、高いアンカー効果を得るのは難しい。
【0010】
他方、特開昭62−133060号公報のものは、低温溶射の条件が、金属を約1350℃でアーク溶融すると同時に窒素等の不活性気体を圧縮空気圧約5〜10kg/cm2で噴射させるものであるから、制御やそのための装置が複雑かつ重装備となる。さらに、他の溶射法に較べ、より微細な凹凸状の表面を持つ溶射被膜が得られるとしているが、全体を一度にめっきする化学めっきや電気めっきに比べ作業効率は良くない。また溶射ノズルが届きにくい内表面には適応が不十分である。
【0011】
以上のように、繊維強化プラスチックの表面に金属を被覆する技術は種々の方法が開発されているが、それらは被覆対象部品が単純な形状に限定されたり、FRPの強化繊維を損傷するおそれがあり、あるいは制御やそのための装置が複雑となるなど多くの課題があった。この発明はこのような課題を解決することを目的として、一般的な塗装手段と従来一般に行われているめっき手段を用いた、簡易で低コストの方法により、円筒形状の外表面は勿論のこと、一般的な塗装手段であるスプレー塗装を行うことが困難な円筒形状の内表面などの狭隘部にも適用することが容易な密着性及び耐摩耗性の優れた金属めっき被膜を得ることを目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明は、炭素繊維強化プラスチックの内表面を研磨して粗な面を形成し、洗浄後この粗な面にエポキシ樹脂を塗布し、前記エポキシ樹脂が硬化しない間に金属粒子を散布し、加熱もしくは室温放置により前記エポキシ樹脂を乾燥硬化し、乾燥硬化した前記エポキシ樹脂を研磨することにより前記金属粒子を切断して露出させた研磨面に形成し、洗浄後前記研磨面に化学めっき又は電気めっきを施すことを特徴とする。
【0013】
これにより、寸法的に小さいCFRP材の内表面に対しても、合成樹脂を流し塗りなど一般に行われている塗布方法により塗布し、塗布面に金属粒子をふりかけて金属粒子を含浸させ研磨して金属粒子を切断し露出させ、一般に行われているめっき方法により、CFRP材に金属を被覆することができるので、特殊な器具、複雑な装置などを用いず、低コストである。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照しながら説明する。
本発明の実施の形態を説明するにあたり、まず本実施の形態に関連する参考例として炭素繊維強化プラスチック製(以下CFRPとする)円筒の外表面に硬質クロムめっきを施す場合について第1、第2の参考例をそれぞれ図1、図2により説明し、CFRP円筒の内表面に硬質クロムめっきする場合を実施の形態として図3により説明する。
【0015】
まず第1、第2の参考例の説明に入る前に、その概要を述べる。
CFRP円筒の外表面を研磨して粗な面を形成し、この粗な面に金属粒子を予め混和させた合成樹脂の混和性物質を塗布する。塗布する方法は、塗装において一般に行われているエアースプレーガンやブラシ塗りなどによる。その後、CFRP円筒を乾燥させ、加熱もしくは室温放置により塗布面を硬化する。次にこの塗布面を手作業もしくは機械装置を用いて研磨し、金属粒子を切断して露出させる。そしてこの金属粒子の断面が露出した研磨面に、一般に行われている化学めっき又は電気めっきを施すことによって金属を被覆するものである。なお研磨工程の後は洗浄を行うのは勿論である。
【0016】
このプロセスにより、化学めっき又は電気めっきによるめっき(金属)が研磨された面に露出している金属粒子の切断断面に付着する。続いて各々の金属粒子上のめっきが時間と共に厚く広く成長し、露出した金属粒子断面間がはしかけとなって研磨面全体がめっきでカバーされる。したがって金属粒子を介して合成樹脂とめっきとが付着するので、密着力及び耐摩耗性の優れた金属めっき被膜が生成されるのである。
【0017】
第1の参考例
第1の参考例を図1により説明する。炭素繊維一方向の織物状又は繊条状などの強化繊維に樹脂を含浸させ、半硬化させた樹脂と強化繊維との混合物であるプリプレグシートを積層し、硬化してCFRP円筒11を製作する。このCFRP円筒11の外表面12を研磨する。研磨粗さは#400相当の耐水研磨紙で研磨した粗さ程度がよい。以上、図1(a)参照。
【0018】
トルエン等の溶剤で洗浄後、銅粒子13を予め合成樹脂14中に混和させて調合した塗料15をエアースプレーガンを用いて塗布する。ここで用いた塗料15は、米国のSPRAYLAT Corp製の商品番号が599−A8574−1の導電塗料のもので、銅粒子13の大きさは長さが略30μm一定の形状を呈し、合成(ウレタン)樹脂14中に81重量%で混和されているものである。塗布する厚さが薄いと銅めっきの際の十分な導通が得られない他、その後の加工精度がシビアになる。一方、塗布する厚さが厚いとムラとなって凹凸が発生するため、100〜300μm程度が良好である。その後、乾燥させ、室温で放置し硬化させた。以上、図1(b)参照。
【0019】
次にCFRP円筒11の塗料15を塗布した塗布面を、回転砥石で研磨して銅粒子13を切断し断面を露出させる研磨面Sに形成する。この発明はエッチング処理で金属を溶出させる方式とは異なり、研磨により金属粒子の切断断面を露出させる点に特徴を有する。よってプラスチックの部品形状に応じて、塗布面を研磨する手段は、#400相当の耐水研磨紙を用いて手により研磨しても或いは研磨砥石等を用いても可能で、選択の自由度は大きい。研磨後の塗布層の厚さTが80〜200μm程度になるようにする。以上、図1(c)参照。
【0020】
この塗布面の研磨により、銅粒子13切断断面を露出させた研磨面上に、一般に行われている硫酸銅電気めっきを実施する(20℃で4時間)。銅めっき層16を90μm被覆した後、回転砥石で研磨して銅めっき層16の厚さtを約70μmとする。以上、図1(d)参照。
【0021】
そしてこの研磨した銅めっき層16の上に、一般に行われているサージェント浴の硬質クロムめっきを50℃で10時間以上行い、約130μmのクロムめっき層17を被覆する。被覆した硬質クロムめっき層17を回転砥石で研磨し、約100μmの厚さに仕上げる。以上、図1(e)参照。
【0022】
このようにして得られた第1の参考例について、その密着性を前記特開昭61−12872号公報に示された粘着テープによる引き剥がしテストによる方法で評価した。このテスト結果を表1に示す。表1中の「比較例」は遠心分離法によって前記導電塗料の塗料15から銅粒子13を除去したもので、その他の塗装条件および研磨もしくは研磨条件、めっき条件は同一とした結果である。また第1の参考例の試料に関するデータは、研磨後の塗布層厚さは80μm、研磨後の銅めっき厚さは70μm、研磨後の硬質クロムめっき厚さは100μmである。なお、表1中の分母の数字は試験片のテストサンプル数を示し、その数は8個である。

Figure 0003686527
【0023】
この結果、第1の参考例は、銅めっき研磨面、硬質クロムめっき研磨面ともに、試験片の全数について良好な密着性を発揮した。これに対して比較例は全数剥がれを生じて不良であった。
【0024】
第2の参考例
第2の参考例は、第1の参考例が30μm長の金属粒子を用いたのに対し、径が約10〜200μmの範囲の金属粒子を用いたものである。
樹脂を含浸した炭素繊維のプリプレグを積層し、硬化してCFRP円筒21を製作する。このCFRP円筒21の外表面22を#400相当の耐水研磨紙を用いて研磨する。以上、図2(a)参照。
【0025】
トルエン等の溶剤で洗浄後、塗布する塗料25は径が約10〜200μmの球状の銅粒子23を加熱硬化型エポキシ樹脂24(米国DEXTER Corp製のEA−9394)中に60〜90重量%で混和させ、トルエン溶剤を加えたものとする。この塗料25をエアースプレーガンを用いて約200μm塗布する。その後、乾燥させ、メーカーの加熱条件により120℃で硬化する。ここで用いた銅粒子23は福田金属箔粉工業(株)製のもので商品名はCu−At−100である。以上、図2(b)参照。
【0026】
次に乾燥硬化させたCFRP円筒21の塗布面を回転砥石により研磨する。この塗布面の研磨により金属粒子である銅粒子23が切断され、その断面が露出した研磨面Sを形成する。そして研磨後の塗布層の厚さT2が80〜200μm程度になるようにする。以上、図2(c)参照。
【0027】
洗浄後、この銅粒子23の露出した研磨面上に第1の参考例と同様の硫酸銅電気めっきを実施する(20℃で4時間)。銅めっき層26を約90μm被覆した後、回転砥石により研磨してめっき層t2を70μm以上とする。以上、図2(d)参照。
【0028】
さらに洗浄した後、この研磨した銅めっき層26の上に、一般に行われているサージェント浴の硬質クロムめっきを50℃で10時間以上行い、約130μmの硬質クロムめっき層27を被覆する。被覆した硬質クロムめっき層27を研磨し、硬質クロムめっき層27の厚さが約100μm以上になるように仕上げる。以上、図2(e)参照。
【0029】
このようにして得られた第2の参考例について、その密着性を前記第1の参考例と同様のテストを実施した。このテスト結果を表2に示す。ここで、第2の参考例を比較するための「比較例」は、銅粒子23を加えず、エポキシ樹脂(前記EA−9394)にトルエン溶剤を加えたもので、その他の塗装条件は同一である。また第2の参考例の試料に関するデータは、研磨後の塗装厚さが150μm、研磨後の銅めっき厚さが70μm、研磨後の硬質クロムめっきが100μmである。
Figure 0003686527
【0030】
この結果、第2の参考例でも、銅めっき研磨面、硬質クロムめっき研磨面ともに、試験片の全数について良好な密着性を発揮した。これに対して比較例は全数剥がれを生じて不良であった。
【0031】
これら2つの参考例の結果から、CFRP円筒の外表面に銅めっきおよび硬質クロムめっき層が形成しやすく、粘着テープによっても、また研磨中の研磨砥石によっても剥がれを生じない、密着強度の大きい金属めっき被膜が得られることが裏付けられた。
【0032】
以上述べた第1、第2の参考例においては、合成樹脂の中に予め金属粒子を混和させて塗料化したものをエアースプレーにより塗装するものであった。この方法は部品の外表面を塗装するには適しているが、小径の円筒内面などの狭隘部に対しては問題がある。すなわち、めっきによる金属被覆は下地となる金属粒子を均一に連続して分散させることが基本であり、そのためにはスプレーガンの塗布面に対する角度や距離を一定にする必要がある。このような点からスプレーガンは塗装面から少なくとも10cm程度離す必要があり、10cmより径が小さい例えば円筒の内表面にはスプレー塗装をすることができない。このため本発明はさらにエアースプレーにはよらない、言い換えれば径の小さい部位にも適用できる金属被覆方法を提供するもので、以下本発明の実施の形態を説明する。
【0033】
ここで実施の形態の説明に入る前に、その概要を述べることとする。CFRP円筒の内表面を研磨して粗な面を形成し、洗浄後この粗な面に加熱硬化型エポキシ樹脂を内表面全体に塗布する。塗布する方法は、一般に行われている流し塗りや浸漬塗りなどによる。エポキシ樹脂の塗布面に金属粒子をふりかけ、金属粒子を含浸させる。その後、加熱して樹脂を硬化する。次にこの塗布面を手作業もしくは機械装置を用いた研磨により研磨し、金属粒子を切断しその断面を露出させる。そして洗浄後、この金属粒子が露出した研磨面に、一般に行われている化学めっき又は電気めっきを施すことによって金属を被覆するものである。
【0034】
このプロセスにより、銅めっき(金属)が研磨された面に露出している銅粒子の切断断面に析出する。続いて各々の銅粒子上の銅めっきが時間と共に厚く広く成長し、露出している銅粒子間がはしかけとなって内表面全体が銅めっきで結合する。したがって大きい銅粒子を介してエポキシ樹脂と銅めっきとが付着するので、密着力の優れた金属めっき被膜がCFRP円筒の内表面に形成される。
【0035】
実施の形態
実施の形態を図3に基づいて述べる。樹脂を含浸した炭素繊維のプリプレグシートを積層し、硬化してCFRP円筒31を製作する。このCFRP円筒31の内表面32を#400相当の研磨紙で研磨する。以上、図3(a)参照。
【0036】
研磨した内表面32をトルエン等の溶剤で洗浄後、加熱硬化型のエポキシ樹脂34(一例として、米国DEXTER Corp製のEA−9394)を塗布する。塗布する方法は、塗装において一般に行われている流し塗り或いは浸漬塗りによる。以上、図3(b)参照。
【0037】
次いでエポキシ樹脂34が硬化しない間に銅粒子33をエポキシ樹脂34中に含浸させる。具体的には、CFRP円筒31の一端を高くして約60度傾け保持し、上から銅粒子33(ここで銅粒子33は第2の参考例で用いたものと同じ、福田金属箔粉工業(株)製の商品名:Cu−At−100である)をCFRP円筒31の内表面32全体に沿わせて落下させる。この場合CFRP円筒31の傾斜は約30度から80度の範囲が良い。傾斜角度が小さいと銅粒子33が滑らかにエポキシ樹脂34の表面を覆っていかず、傾斜角度が大きいと銅粒子33のエポキシ樹脂34への含浸が不均一になり易いため、この範囲が好ましい。CFRP円筒31の上方から落下させた銅粒子33がCFRP円筒31の下部まで行き渡ったら、CFRP円筒31を回して同様に銅粒子33を落下させ、順次これを繰返してCFRP円筒31の内表面32の全周を銅粒子33で覆う。また銅粒子33を落下させる際、CFRP円筒31の中に穴、溝あるいは網付きの治具を用いてもよい。銅粒子33が含浸されつくすと、樹脂が不足状態になるので、余分な銅粒子33は樹脂には付着されなくなる。この段階まで銅粒子33をふりかけたら、CFRP円筒31を垂直に立てるなどして過剰の銅粒子33を除去する。以上、図3(c)参照。
【0038】
そしてCFRP円筒31を加熱炉に入れ、エポキシ樹脂34:EA−9394の硬化条件にしたがって120℃で1時間加熱硬化する。硬化後回転砥石で研磨して平滑面とする。この研磨により金属粒子である銅粒子33が切断されその断面が露出した研磨面Sを形成する。研磨後の銅粒子33を含んだエポキシ樹脂層の厚さT3は次の電気めっきの導電化のために、少なくとも80μm程度必要である。以上、図3(d)参照。
【0039】
次いで洗浄後、一般に行われている硫酸銅めっきを施す。銅めっき層36を100μm以上付加した後、回転砥石で研磨して銅めっき層36の厚さt3を約80μmとする。以上、図3(e)参照。
【0040】
さらに洗浄後、研削した銅めっき層36の上に、一般に行われているサージェント浴の硬質クロムめっきを行い、約130μmの硬質クロムめっき層37を付加し、回転砥石で研磨して約100μmの硬質クロムめっき層37になるように仕上げる。以上、図3(f)参照。
【0041】
こうして得られた実施の形態について、その密着性を前記第1の参考例と同様のテストを実施した。このテスト結果を表3に示す。
Figure 0003686527
【0042】
この結果、本実施の形態でも、銅めっき研磨面、硬質クロムめっき研磨面ともに、試験片の全数について良好な密着性を発揮した。
【0043】
【発明の効果】
以上述べたように、この発明は、寸法的に小さいCFRP材の内表面に対して合成樹脂を流し塗りや浸漬塗りなど一般に行われている塗布方法により塗布し、塗布面に金属粒子をふりかけて金属粒子を含浸させる。乾燥硬化した後、研磨して前記金属粒子を切断してその断面を露出させ、更に一般に行われている化学めっき又は電気めっき方法により、CFRP材に金属を被覆することができるので、特殊な器具、複雑な装置などを用いず、低コストである。
【0044】
化学めっき又は電気めっきのめっき(金属)が研磨された面に露出している金属粒子の切断断面に付着し、合成樹脂中に混和又は含浸された金属粒子を介して合成樹脂とめっきとが付着するので、密着力の優れた金属めっき被膜が生成される。
【0045】
また、プラスチック部品の上に金属を混和又は含浸した樹脂層を形成し、その上に金属を被覆するから、炭素繊維強化プラスチック材料に限らず一般のプラスチック材料、その他樹脂層が形成されていれば、適用可能であり応用範囲が広い。また、樹脂を塗布するから部品は凹凸のある形状でも良く、部品選択に制約を受けず、適用範囲が広い。
【図面の簡単な説明】
【図1】 この発明に係る第1の参考例を示す図である。
【図2】 この発明に係る第2の参考例を示す図である。
【図3】この発明の実施の形態を示す図である。
【符号の説明】
11、21、31 CFRP円筒
12、22 CFRP円筒の外表面
32 CFRP円筒の内表面
13、23、33 銅粒子(金属粒子)
14、24、34 合成樹脂、エポキシ樹脂
15、25 塗料
16、26、36 銅めっき層(電気めっき層)
17、27、37 硬質クロムめっき層
S 研磨面
T1、T2、T3 研磨後の塗布層(エポキシ樹脂)の厚さ[0001]
BACKGROUND OF THE INVENTION
This invention provides a carbon fiber reinforced plastic, about the particular metallization how to obtain the adhesion and wear resistance superior plating.
[0002]
[Prior art]
So-called engineering plastics are lighter than metals and have excellent moldability and mass productivity, such as injection molding with molds, and are excellent in corrosion resistance, self-lubrication, and decorative properties, but heat resistance, weather resistance, especially mechanical strength. There were insufficient points in terms of As a material that covers defects while retaining the characteristics of this plastic, there is a composite material in which various fibers are used as a reinforcing material and a thermosetting resin as a matrix, that is, a fiber reinforced plastic (FRP). Among them, carbon fiber reinforced plastic (CFRP) is widely spread and used in various industries from aircraft parts, machinery and electronics industries to sporting goods.
[0003]
However, CFRP material cannot be used as it is in parts that require wear resistance and hardness, so metal is coated by plating or thermal spraying, and the function is not inferior to plated metal die-cast parts. And show its strengths. In this case, an ABS resin (consisting of three components of acrylonitrile, butadiene and styrene) is generally used as a plastic as a base material. This is because a metal plating film having sufficient adhesion can be obtained only by chemical etching. When the ABS material is immersed in an oxidizing etching solution, the butadiene rubber component is selectively dissolved, and innumerable minute irregularities are formed on the surface, and the plating bites into the minute irregularities. It is considered.
[0004]
Here, the epoxy resin, which is excellent in mechanical properties and thermal properties as a reinforced plastic, has a problem in the adhesion of metal plating because there is no portion that is eluted by the etching solution. Thus, various attempts have been made to improve the adhesion strength of ordinary plastics and fiber reinforced plastics.
[0005]
For example, what is found in Japanese Patent Application Laid-Open No. 60-15142 is a structure in which a metal fiber layer is formed by winding a metal fiber around a fiber reinforced plastic cylinder, and a metal spray coating is provided thereon. Technology to obtain a cylinder with a sprayed metal film that penetrates and fuses not only to the metal fiber layer but also to the integrated fiber reinforced plastic to improve adhesion, and has excellent peeling resistance and good sliding wear. It is disclosed.
[0006]
Japanese Patent Application Laid-Open No. 61-12872 discloses that a metal powder is dispersed on the surface of a reinforced plastic, the surface of the cured fiber reinforced plastic is etched, the metal powder is eluted, and chemical plating is performed thereon. A metal plating method with high adhesion is shown.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 62-133060 discloses a method of applying a synthetic resin solution to a plastic molded article and the like, and coating the resulting coating or film by low-temperature spraying before the resulting coating is dried and solidified. Yes.
[0008]
[Problems to be solved by the invention]
However, the one disclosed in Japanese Patent Application Laid-Open No. 60-15142 is limited to a shape suitable for winding since a metal fiber is wound around a fiber-reinforced plastic cylinder.
[0009]
JP-A-61-12872 is a process in which a metal powder is dispersed and applied to the surface of a fiber reinforced plastic, and then the fiber reinforced plastic is cured. In this case, the metal layer is removed after curing. It is difficult to repair. Moreover, since the size of the metal powder is 10 μm or less, it is difficult to obtain a high anchor effect.
[0010]
On the other hand, in Japanese Patent Application Laid-Open No. Sho 62-133060, the low temperature spraying conditions are such that the metal is arc-melted at about 1350 ° C. and at the same time an inert gas such as nitrogen is injected at a compression air pressure of about 5-10 kg / cm 2. Therefore, the control and the device for it become complicated and heavy equipment. Furthermore, although it is said that a sprayed coating having a finer uneven surface can be obtained as compared with other thermal spraying methods, the working efficiency is not good compared with chemical plating or electroplating in which the whole is plated at once. Moreover, the adaptation is insufficient for the inner surface where the spray nozzle is difficult to reach.
[0011]
As described above, various methods have been developed for coating the metal on the surface of the fiber reinforced plastic. However, there is a possibility that the parts to be coated are limited to a simple shape or the reinforcing fiber of the FRP may be damaged. There were many problems such as being complicated or complicated control and apparatus therefor. In order to solve these problems, the present invention has a cylindrical outer surface by a simple and low-cost method using a general coating means and a conventional plating means. The purpose is to obtain a metal plating film with excellent adhesion and wear resistance that can be easily applied to narrow parts such as cylindrical inner surfaces where spray coating, which is a general painting means, is difficult to perform And
[0012]
[Means for Solving the Problems]
In the first aspect of the invention, the inner surface of the carbon fiber reinforced plastic is polished to form a rough surface, and after washing, an epoxy resin is applied to the rough surface, and the metal particles are dispersed while the epoxy resin is not cured. The epoxy resin is dried and cured by heating or standing at room temperature, and the epoxy resin that has been dried and cured is polished to form a polished surface that is exposed by cutting the metal particles. After cleaning, the polished surface is chemically plated. Alternatively, electroplating is performed.
[0013]
As a result, the inner surface of the CFRP material having a small size is applied by a commonly applied application method such as flow coating of synthetic resin, and the coated surface is sprinkled with metal particles so that the metal particles are impregnated and polished. Since the metal particles can be cut and exposed and the CFRP material can be coated with a metal by a generally used plating method, a special tool or a complicated apparatus is not used, and the cost is low.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In describing embodiments of the present invention, first and second cases where hard chromium plating is applied to the outer surface of a carbon fiber reinforced plastic (hereinafter referred to as CFRP) cylinder as a reference example related to the present embodiment . each Figure 1 the reference example of, described with reference to FIG. 2, will be described with reference to FIG. 3 as the present embodiment a case in which hard chrome plating on the inner surface of the CFRP cylinder.
[0015]
First, an overview of the first and second reference examples will be described.
The outer surface of the CFRP cylinder is polished to form a rough surface, and a synthetic resin miscible material in which metal particles are previously mixed is applied to the rough surface. The method of application is by an air spray gun or brush coating, which is generally performed in painting. Thereafter, the CFRP cylinder is dried, and the coated surface is cured by heating or standing at room temperature. Next, the coated surface is polished manually or using a mechanical device, and the metal particles are cut and exposed. Then, the metal surface is coated by performing chemical plating or electroplating generally performed on the polished surface where the cross section of the metal particles is exposed. Of course, cleaning is performed after the polishing step.
[0016]
By this process, chemical plating or electroplating (metal) adheres to the cut cross section of the metal particles exposed on the polished surface. Subsequently, the plating on each metal particle grows thick and wide with time, and the exposed metal particle cross-section is overhanged so that the entire polished surface is covered with the plating. Therefore, since the synthetic resin and the plating adhere through the metal particles, a metal plating film having excellent adhesion and wear resistance is generated.
[0017]
( First reference example )
A first reference example will be described with reference to FIG. A CFRP cylinder 11 is manufactured by impregnating a reinforced fiber such as a woven or filamentary carbon fiber in one direction with a resin, laminating a prepreg sheet that is a mixture of a semi-cured resin and a reinforced fiber, and curing it. The outer surface 12 of the CFRP cylinder 11 is polished. The polishing roughness is preferably about the roughness polished with water-resistant polishing paper equivalent to # 400. As described above, refer to FIG.
[0018]
After washing with a solvent such as toluene, a paint 15 prepared by previously mixing the copper particles 13 in the synthetic resin 14 is applied using an air spray gun. The paint 15 used here is a conductive paint having a product number of 599-A8574-1 manufactured by SPRAYLAT Corp. of the United States. The size of the copper particles 13 has a constant length of about 30 μm, and is a synthetic (urethane). ) It is blended in the resin 14 at 81% by weight. If the coating thickness is thin, sufficient conduction during copper plating cannot be obtained, and the subsequent processing accuracy becomes severe. On the other hand, when the applied thickness is thick, unevenness and unevenness are generated, and therefore, about 100 to 300 μm is preferable. Then, it was dried and allowed to stand at room temperature for curing. As described above, refer to FIG.
[0019]
Next, the coated surface of the CFRP cylinder 11 on which the coating material 15 is applied is polished on a rotating grindstone to cut the copper particles 13 to form a polished surface S that exposes the cross section. Unlike the method of eluting metal by etching, the present invention is characterized in that the cut cross section of metal particles is exposed by polishing. Therefore, depending on the shape of the plastic part, the means for polishing the coated surface can be polished manually by using a water-resistant polishing paper equivalent to # 400 or using a grinding stone, etc. . The thickness T of the coated layer after polishing is set to about 80 to 200 μm. As described above, refer to FIG.
[0020]
By this polishing of the coated surface, copper sulfate electroplating generally performed is performed on the polished surface where the cut cross section of the copper particles 13 is exposed (at 20 ° C. for 4 hours). After coating the copper plating layer 16 by 90 μm, the copper plating layer 16 is polished with a rotating grindstone so that the thickness t of the copper plating layer 16 is about 70 μm. As described above, refer to FIG.
[0021]
On the polished copper plating layer 16, a hard chrome plating of a sergeant bath generally performed is performed at 50 ° C. for 10 hours or more to cover a chromium plating layer 17 of about 130 μm. The coated hard chrome plating layer 17 is polished with a rotating grindstone and finished to a thickness of about 100 μm. As described above, refer to FIG.
[0022]
With respect to the first reference example thus obtained, the adhesion was evaluated by a method based on a peeling test using an adhesive tape disclosed in Japanese Patent Application Laid-Open No. 61-12872. The test results are shown in Table 1. The “comparative example” in Table 1 is the result of removing the copper particles 13 from the conductive paint 15 by centrifugal separation, and the other coating conditions, polishing or polishing conditions, and plating conditions are the same. The data regarding the sample of the first reference example is that the coating layer thickness after polishing is 80 μm, the copper plating thickness after polishing is 70 μm, and the hard chromium plating thickness after polishing is 100 μm. The number of the denominator in Table 1 indicates the number of test samples of the test piece, and the number is eight.
Figure 0003686527
[0023]
As a result, the first reference example exhibited good adhesion with respect to the total number of test pieces on both the copper plating polished surface and the hard chrome plated polished surface. On the other hand, all of the comparative examples were unsatisfactory due to peeling.
[0024]
( Second reference example )
The second reference example uses metal particles having a diameter in the range of about 10 to 200 μm, whereas the first reference example uses metal particles having a length of 30 μm.
A carbon fiber prepreg impregnated with resin is laminated and cured to produce a CFRP cylinder 21. The outer surface 22 of the CFRP cylinder 21 is polished using water-resistant polishing paper equivalent to # 400. As described above, refer to FIG.
[0025]
The paint 25 to be applied after washing with a solvent such as toluene is 60 to 90% by weight of spherical copper particles 23 having a diameter of about 10 to 200 μm in a thermosetting epoxy resin 24 (EA-9394 manufactured by DEXTER Corp, USA). Mix and add toluene solvent. This paint 25 is applied to about 200 μm using an air spray gun. Then, it is dried and cured at 120 ° C. under the heating conditions of the manufacturer. The copper particles 23 used here are manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., and the trade name is Cu-At-100. As described above, refer to FIG.
[0026]
Next, the coated surface of the dried and hardened CFRP cylinder 21 is polished with a rotating grindstone. By polishing the coated surface, the copper particles 23, which are metal particles, are cut to form a polished surface S whose cross section is exposed. Then, the thickness T2 of the coated layer after polishing is set to about 80 to 200 μm. As described above, refer to FIG.
[0027]
After washing, the same copper sulfate electroplating as in the first reference example is performed on the exposed polished surface of the copper particles 23 (4 hours at 20 ° C.). After coating the copper plating layer 26 by about 90 μm, the plating layer t2 is made 70 μm or more by polishing with a rotating grindstone. As described above, refer to FIG.
[0028]
After further cleaning, a hard chrome plating of a conventional Sargent bath is performed on the polished copper plating layer 26 at 50 ° C. for 10 hours or more to cover the hard chromium plating layer 27 of about 130 μm. The coated hard chrome plating layer 27 is polished and finished so that the thickness of the hard chrome plating layer 27 is about 100 μm or more. As described above, refer to FIG.
[0029]
A second reference example obtained in this way, the adhesion was carried out similar test as in the first embodiment. The test results are shown in Table 2. Here, the “comparative example” for comparing the second reference example is obtained by adding a toluene solvent to the epoxy resin (EA-9394) without adding the copper particles 23, and other coating conditions are the same. is there. The data concerning the sample of the second reference example is that the coating thickness after polishing is 150 μm, the copper plating thickness after polishing is 70 μm, and the hard chromium plating after polishing is 100 μm.
Figure 0003686527
[0030]
As a result, also in the second reference example , both the copper-plated polished surface and the hard chrome-plated polished surface exhibited good adhesion with respect to the total number of test pieces. On the other hand, all of the comparative examples were unsatisfactory due to peeling.
[0031]
From the results of these two reference examples , it is easy to form a copper plating and hard chrome plating layer on the outer surface of the CFRP cylinder, and it does not peel off with an adhesive tape or with a polishing grindstone during polishing. It was confirmed that a plating film was obtained.
[0032]
In the first and second reference examples described above, a coating material obtained by previously mixing metal particles in a synthetic resin and applying a paint is applied by air spray. This method is suitable for coating the outer surface of a part, but has a problem for narrow portions such as a small-diameter cylindrical inner surface. That is, the metal coating by plating is basically to uniformly and continuously disperse the metal particles as the base, and for this purpose, the angle and distance to the application surface of the spray gun must be constant. For this reason, the spray gun needs to be separated from the coating surface by at least about 10 cm, and for example, the inner surface of a cylinder having a diameter smaller than 10 cm cannot be sprayed. For this reason, the present invention further provides a metal coating method that does not depend on air spray, in other words, can be applied to a portion having a small diameter. Embodiments of the present invention will be described below.
[0033]
Here, the outline of the embodiment will be described before the description of the embodiment. The inner surface of the CFRP cylinder is polished to form a rough surface, and after cleaning, a thermosetting epoxy resin is applied to the entire inner surface. The application method is based on generally used flow coating or dip coating. Metal particles are sprinkled on the epoxy resin coating surface to impregnate the metal particles. Thereafter, the resin is cured by heating. Next, the coated surface is polished manually or by polishing using a mechanical device, and the metal particles are cut to expose the cross section. And after washing | cleaning, the metal is coat | covered by giving the chemical plating or electroplating generally performed to the grinding | polishing surface which this metal particle exposed.
[0034]
By this process, copper plating (metal) is deposited on the cut cross section of the copper particles exposed on the polished surface. Subsequently, the copper plating on each copper particle grows thick and wide with time, and the exposed copper particles are put together to bond the entire inner surface by copper plating. Therefore, since the epoxy resin and the copper plating adhere via the large copper particles, a metal plating film having excellent adhesion is formed on the inner surface of the CFRP cylinder.
[0035]
( Embodiment )
The embodiment will be described with reference to FIG. A carbon fiber prepreg sheet impregnated with resin is laminated and cured to produce a CFRP cylinder 31. The inner surface 32 of the CFRP cylinder 31 is polished with polishing paper equivalent to # 400. As described above, refer to FIG.
[0036]
After the polished inner surface 32 is washed with a solvent such as toluene, a thermosetting epoxy resin 34 (for example, EA-9394 manufactured by DEXTER Corp., USA) is applied. The method of application is by flow coating or dip coating which is generally performed in coating. As described above, refer to FIG.
[0037]
Next, the copper particles 33 are impregnated in the epoxy resin 34 while the epoxy resin 34 is not cured. Specifically, one end of the CFRP cylinder 31 is raised and held at an angle of about 60 degrees, and the copper particles 33 from above (the copper particles 33 are the same as those used in the second reference example , Fukuda Metal Foil Powder Industry) (Trade name: Cu-At-100 manufactured by Co., Ltd.) is dropped along the entire inner surface 32 of the CFRP cylinder 31. In this case, the inclination of the CFRP cylinder 31 is preferably in the range of about 30 to 80 degrees. This range is preferable because when the inclination angle is small, the copper particles 33 do not smoothly cover the surface of the epoxy resin 34, and when the inclination angle is large, the impregnation of the copper particles 33 into the epoxy resin 34 tends to be uneven. When the copper particles 33 dropped from above the CFRP cylinder 31 reach the lower part of the CFRP cylinder 31, the CFRP cylinder 31 is turned to similarly drop the copper particles 33, and this is sequentially repeated to form the inner surface 32 of the CFRP cylinder 31. The entire circumference is covered with copper particles 33. Further, when dropping the copper particles 33, a jig with holes, grooves or nets may be used in the CFRP cylinder 31. If the copper particles 33 are completely impregnated, the resin becomes insufficient, so that the excess copper particles 33 are not attached to the resin. When the copper particles 33 are sprinkled up to this stage, excess copper particles 33 are removed by, for example, raising the CFRP cylinder 31 vertically. As described above, refer to FIG.
[0038]
Then, the CFRP cylinder 31 is placed in a heating furnace and cured by heating at 120 ° C. for 1 hour in accordance with the curing conditions of epoxy resin 34: EA-9394. After curing, the surface is polished with a rotating grindstone to obtain a smooth surface. By this polishing, the copper particles 33, which are metal particles, are cut to form a polished surface S whose cross section is exposed. The thickness T3 of the epoxy resin layer containing the polished copper particles 33 is required to be at least about 80 μm for the subsequent electroplating. As described above, refer to FIG.
[0039]
Next, after washing, copper sulfate plating generally performed is applied. After adding 100 μm or more of the copper plating layer 36, the copper plating layer 36 is polished with a rotating grindstone so that the thickness t 3 of the copper plating layer 36 is about 80 μm. As described above, refer to FIG.
[0040]
Further, after washing, a hard chrome plating of a Sargent bath which is generally performed is performed on the ground copper plating layer 36, a hard chromium plating layer 37 of about 130 μm is added, and polished with a rotating grindstone, and a hard hardness of about 100 μm is applied. Finish to be a chrome plating layer 37. As described above, refer to FIG.
[0041]
The embodiment thus obtained was subjected to the same test as that of the first reference example for the adhesion. The test results are shown in Table 3.
Figure 0003686527
[0042]
As a result, also in this embodiment , both the copper plating polished surface and the hard chrome plated polished surface exhibited good adhesion with respect to the total number of test pieces.
[0043]
【The invention's effect】
As described above, in the present invention, a synthetic resin is applied to the inner surface of a CFRP material having a small dimension by a general application method such as flow coating or dip coating, and metal particles are sprinkled on the coated surface. Impregnated with metal particles. After drying and curing, the metal particles are cut by cutting to expose the cross section, and the CFRP material can be coated with a metal by a general chemical plating or electroplating method. The cost is low without using complicated devices.
[0044]
Chemical plating or electroplating plating (metal) adheres to the cut cross section of the metal particles exposed on the polished surface, and the synthetic resin and the plating adhere through the metal particles mixed or impregnated in the synthetic resin. Therefore, a metal plating film with excellent adhesion is generated.
[0045]
In addition, a resin layer in which a metal is mixed or impregnated is formed on a plastic part, and the metal is coated thereon, so that not only carbon fiber reinforced plastic materials but also general plastic materials and other resin layers are formed. It is applicable and has a wide range of applications. In addition, since the resin is applied, the part may have an uneven shape, is not restricted by part selection, and has a wide application range.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first reference example according to the present invention .
FIG. 2 is a diagram showing a second reference example according to the present invention .
3 is a diagram illustrating a form of implementation of the present invention.
[Explanation of symbols]
11, 21, 31 CFRP cylinder 12, 22 CFRP cylinder outer surface 32 CFRP cylinder inner surface 13, 23, 33 Copper particles (metal particles)
14, 24, 34 Synthetic resin, epoxy resin 15, 25 Paint 16, 26, 36 Copper plating layer (electroplating layer)
17, 27, 37 Hard chrome plating layer S Polished surface T1, T2, T3 Thickness of coating layer (epoxy resin) after polishing

Claims (1)

炭素繊維強化プラスチックの内表面を研磨して粗な面を形成し、Polishing the inner surface of carbon fiber reinforced plastic to form a rough surface,
洗浄後この粗な面にエポキシ樹脂を塗布し、After cleaning, apply an epoxy resin to this rough surface.
前記エポキシ樹脂が硬化しない間に金属粒子を散布し、Sprinkling metal particles while the epoxy resin is not cured,
加熱もしくは室温放置により前記エポキシ樹脂を乾燥硬化し、The epoxy resin is dried and cured by heating or standing at room temperature,
乾燥硬化した前記エポキシ樹脂を研磨することにより前記金属粒子を切断して露出させた研磨面に形成し、Forming on the polished surface exposed by cutting and exposing the metal particles by polishing the epoxy resin dried and cured,
洗浄後前記研磨面に化学めっき又は電気めっきを施すことによって金属を被覆することを特徴とする炭素繊維強化プラスチックの金属被覆方法。A metal coating method for carbon fiber reinforced plastic, wherein the metal is coated by chemical plating or electroplating on the polished surface after cleaning.
JP12972798A 1997-04-25 1998-04-24 Metal coating method of carbon fiber reinforced plastic Expired - Fee Related JP3686527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12972798A JP3686527B2 (en) 1997-04-25 1998-04-24 Metal coating method of carbon fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-121468 1997-04-25
JP12146897 1997-04-25
JP12972798A JP3686527B2 (en) 1997-04-25 1998-04-24 Metal coating method of carbon fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JPH116096A JPH116096A (en) 1999-01-12
JP3686527B2 true JP3686527B2 (en) 2005-08-24

Family

ID=26458825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12972798A Expired - Fee Related JP3686527B2 (en) 1997-04-25 1998-04-24 Metal coating method of carbon fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP3686527B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303293A (en) * 2000-04-27 2001-10-31 Inoac Corp Method for manufacturing metal/plastic composite
DE10241137B4 (en) * 2002-09-03 2008-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the metallization of plastics
RU2436266C2 (en) * 2006-06-14 2011-12-10 Басф Се Method to make electroconductive surfaces on carrier
DE102012213455B4 (en) * 2012-07-31 2022-03-03 Bayerische Motoren Werke Aktiengesellschaft Process for forming an anti-corrosion layer on the surface of a CFRP component
EP3536477A4 (en) * 2016-11-04 2020-04-29 Sanpura Co., Ltd. Method for producing metal-imitating resin molded member, metal-imitating resin molded member and use of metal-imitating resin molded member
KR102030407B1 (en) * 2018-05-31 2019-10-10 (주)에스에이치팩 A carbon fiber reinforced plastic surface coating method and a hydraulic cylinder comprising components coated by the method
JP7173299B2 (en) * 2019-04-02 2022-11-16 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
WO2020202457A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite
CN114075344A (en) * 2020-08-19 2022-02-22 华为机器有限公司 Composite base material, electronic device, and method for manufacturing composite base material

Also Published As

Publication number Publication date
JPH116096A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
US3787229A (en) Low-friction, wear-resistant material
KR940001676B1 (en) Undercoat composition and composite molded articles produced using said composition
JP3686527B2 (en) Metal coating method of carbon fiber reinforced plastic
EP1129787B1 (en) Coatings on fiber reinforced composites
US20080254227A1 (en) Method for Coating a Component
CA2066149A1 (en) Method for coating a fibre-reinforced plastics body
US5993906A (en) Edge seal process and product
US20070042126A1 (en) Coatings on fiber reinforced composites
US2984895A (en) Method for reconditioning worn pistons
EP1676469B1 (en) Method for making an infused composite
US20060210718A1 (en) Combination high density/low density layers
US2756200A (en) Porous article impregnation
JP2007191738A (en) Molded body having metal film and its production method
JPH09164351A (en) Masking jig for coating
JPH06210763A (en) Metal-clad roll of fiber-reinforced plastic and its production
JPS6015142A (en) Manufacture of metal coated fiber reinforced plastic cylinder
JPH05286057A (en) Plated roll of fiber-reinforced resin and manufacture thereof
JPH04286633A (en) Fiber reinforced plastic roll and manufacture thereof
EP0549728B1 (en) Plastics article provided with electrostatically applied coating
JPH10299761A (en) Composite material roll
JPS62246661A (en) Pipe-like object
JPH1158223A (en) Polishing jig and manufacture thereof
JPH05286058A (en) Plated roll of fiber-reinforced resin and manufacture thereof
JPS6196063A (en) Manufacture of composite formed body
JPH0564839A (en) Metallic tone coloring method for plastic molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees