JP3686466B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment Download PDF

Info

Publication number
JP3686466B2
JP3686466B2 JP31018795A JP31018795A JP3686466B2 JP 3686466 B2 JP3686466 B2 JP 3686466B2 JP 31018795 A JP31018795 A JP 31018795A JP 31018795 A JP31018795 A JP 31018795A JP 3686466 B2 JP3686466 B2 JP 3686466B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
image
lens
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31018795A
Other languages
Japanese (ja)
Other versions
JPH09147776A (en
Inventor
寛 鈴木
裕介 矢島
由夫 高橋
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31018795A priority Critical patent/JP3686466B2/en
Publication of JPH09147776A publication Critical patent/JPH09147776A/en
Application granted granted Critical
Publication of JP3686466B2 publication Critical patent/JP3686466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は荷電粒子線装置、更に詳しく言えば、一つの荷電粒子源から発生した荷電粒子線で、二つ以上の観察対象の情報を得る荷電粒子線装置に係る。
【0002】
【従来の技術】
二つの観察対象に一つの荷電粒子線を通し、二つの観察対象の情報を含んだ像を得る荷電粒子線装置の例としては、文献アイイーイーイー トランスアクション オン マグネティクス 12巻 1号 1月 1976年 34頁−39頁(IEEE TRANSACTION ON MAGNETICS、VOL.MAG−12、NO.1、JANUARY 1976 p34−39)がある。この文献では、荷電粒子線装置として、透過型電子顕微鏡が用いられた。この荷電粒子線装置は、図11に示すように、まず、電子線EBをアモルファスの薄膜Dに通し、対物レンズOLを介して面D’に結像し、拡大レンズDLによって明視野像をネガ(Photo Plate)に撮る。次に、対物レンズOLの下に磁界Fを設置し、磁界Fにより歪んだ薄膜Dの明視野像を先に撮ったネガに重ね焼きしている。
【0003】
この荷電粒子線装置では一つの電子線が用いられ、歪んでいない薄膜の像と磁界で歪んだ薄膜の像の二つの像が一枚のネガに重ね焼きされる。このとき一枚の画像には、一つの観察対象である薄膜の情報と、もう一つの観察対象である磁界の情報とが含まれる。上記文献では、薄膜と磁界との二つの観察対象に関する情報を、一つのネガ、すなわち像に含ませることのできる装置が述べられている。
【0004】
【発明が解決しようとする課題】
上記文献に記載された従来技術を用いて、磁界Fで歪ませた薄膜の像を得るためには、薄膜Dと磁界Fの間にある対物レンズOLの励磁を調整し、薄膜の像を磁界Fの場所から少しずれた位置D’に結像させることが必要である。さらに、像に含まれる歪みの大きさを変えるためには、薄膜と磁界の間にある対物レンズOLの励磁を変化させて、薄膜の結像位置D’を変える必要がある。
【0005】
一般に、磁界レンズの励磁が変化すると、電子ビーム軸中心に電子ビーム軸と垂直な面で像は回転する。上記荷電粒子線装置も、対物レンズOLとして動作している磁界レンズの励磁が変化すると、薄膜と磁界を重ね合わせた像では、薄膜の像が磁界に対して回転したように観察される。しかし、例えば、薄膜Dの像が面内で格子状の様な方向性を有するものとすると、薄膜像の磁界による歪み量の調整を行うために、磁界レンズの励磁を変化させれば、薄膜の像が磁界に対して回転し、薄膜の歪み自体を観察する場合に、非常に不都合である。また、薄膜と磁界との関係に限らず、二つの試料の重ね合わせ像の中で、その方向性が観察にとって重要な場合には、像としての修整も困難であり、この回転現象が問題となる。
【0006】
従って、本発明の目的は、二つ以上の観察対象の間にある磁界レンズの励磁の変化によって生じる相対的回転現象を無くし、重ね合せ像における対象物の相対的な角度の関係を一定に保つことができる荷電粒子線装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の荷電粒子線装置では、一つの荷電粒子源から発生した荷電粒子線を複数の観察対象に通し、上記複数の観察対象に関する情報を得る荷電粒子線装置において、荷電粒子線の軌道上の異なる位置に、上記観察対象を保持する複数のステージを備え、上記複数のステージの間に一つ以上の磁界レンズを備え、上記複数のステージの少なくとも一つが、荷電粒子線の軌道方向と平行な軸を中心に回転する機能を備える。観察対象物は、荷電粒子線を部分的に通すことのできる試料、あるいは荷電粒子線を一様に通すことのできる試料、あるいは磁界、あるいは電界で構成される。また、観察対象に関する情報は、二次元面への投影像である。また、上記ステージの回転は、磁界レンズの励磁電流と連動して制御される。さらに、ステージの少なくとも一つは、荷電粒子線の軌道方向に垂直な面内方向に移動するように構成されている。
【0008】
また、好ましい実施の形態によれば、上述の構成に加え、少なくとも一つのステージと磁界レンズとの間に荷電粒子線の偏向手段を付加する。上記偏向手段は、磁界レンズの励磁電流と連動する制御ができる様に構成される。
【0009】
さらに、本発明の他の実施の形態では、一つの荷電粒子源から発生した荷電粒子線を二つ以上の観察対象に通し、二つ以上の観察対象に関する情報を得る荷電粒子線装置において、荷電粒子線の軌道上の異なる位置に、観察対象を保持する二つ以上のステージを備え、二つ以上のステージの間に二つ以上の磁界レンズを備える。ここで、ステージの間に備えた二つ以上の磁界レンズのうちの一つの磁界レンズの励磁電流の変化によって生じる二次元面への投影像の回転に対し、逆向きの回転を与えるように、他の磁界レンズの励磁電流を連動制御するように構成される。
【0010】
【発明の実施の形態】
(第1の実施の形態)
図1は本発明による荷電粒子線装置の第1の実施の形態を示す。本実施の形態では、荷電粒子線として、電子線を用いた場合で説明する。
【0011】
試料台3に保持された対象物7に、電子源1から発生した電子線2を通す。さらに、試料台3を透過した電子線2を磁界レンズ5に通し、磁界レンズ5の下に設置した試料台4に保持された対象物8に通す。試料台3は、第1のアクチュエータ13によって、その位置を電子線2に垂直な面内で移動させる。また、試料台4も、第2のアクチュエータ15によって、その位置を電子線2に垂直な面内で移動させる。試料台4は、電子線の進行方向に平行な軸を中心に回転することができ、この回転駆動も、アクチュエータ15によって行われる。アクチュエータ13及びアクチュエータ15は、それぞれ制御手段20中のアクチュエータ制御手段14及びアクチュエータ制御手段16によって制御される。
【0012】
以下、例として、対象物7が図2(a)に示されるようなメッシュ7A(例えばCu,5μm〜50μm方形)で、対象物8が図2(b)に示されるような粒子8A(例えばFeの結晶で10−100nm)の集合体である場合で説明する。磁界レンズ5を用いて、対象物7の像を対象物8の設置された位置にほぼ合わせ結像させる。さらに、撮像部6に映し出される重なりの像を観察しながら、図3(a)に示したようにメッシュ7Aの方向と粒子8Aの方向が合うように調節する。調節は、図1で示したスイッチ21をオフにして、アクチュエータ制御手段16で試料台4を回転させることにより行う。
【0013】
次に、試料7のフォーカスを微調整するために、レンズ電流制御手段17によってレンズ電源19を制御し、磁界レンズ5の励磁電流を微小に変化させると、図3(b)に示すように、対象物7のメッシュの像7Aが、対象物8の粒子の像8Aに対してΔθだけ回転する。さらに、相対的な倍率の微小な変化も生じる。倍率については図1には示されていないレンズを付加し、これを用いたり、あるいは撮像後の画像処理を行うことにより補正する。以下は倍率に関しての説明は省く。ここで、図1中のスイッチ21をオンにして、レンズ電源19の出力側に取り付けられたレンズ電流モニタ手段18の検出結果を、アクチュエータ制御手段16に送る。検出結果は調整前後の電流値、あるいは電流値の変化分である。この値を基にアクチュエータ制御手段16が、アクチュエータ15を動かし、試料台4に保持された対象物8を回転させる。
【0014】
一般に、磁界レンズ5の軸上磁界Bと像の回転角θとの関係は、Φを軸上電位として、
【0015】
【数1】

Figure 0003686466
【0016】
で表される。物面と像面が磁界レンズの磁界Bの外にあれば、Nをターン数、Iを電流として、
【0017】
【数2】
Figure 0003686466
【0018】
であるので、kを定数として、
【0019】
【数3】
Figure 0003686466
【0020】
と表すことができる。式(3)より、回転角の変化Δθは、電流値の変化ΔIとの関係を用いて以下のように示すことができ、これを用いて試料8を回転させ回転角を補正制御する。
【0021】
【数4】
Figure 0003686466
【0022】
この回転の制御により、観察された像は、図4のように、対象物7のメッシュと対象物8の粒子に生じた像の相対的な回転を打ち消すことができる。
上記実施の形態では、試料台4に回転機構を備えたが、これを試料台4ではなく、試料台3に取り付けて、試料台3に対して上記の回転補正の制御を行っても、同様に回転補正ができる。
【0023】
(第2の実施の形態)
図5は本発明による荷電粒子線装置の第2の実施の形態を示す。第1の実施の形態と同じように、構成は、一つの電子源1、試料台3に保持された試料7、試料台4に保持された試料8、試料台3と試料台4との間に磁界レンズ5、下に撮像部6を備えている。本実施の形態では、試料台3に回転機能を備えているが、試料台4に備えても同様の効果がある。さらに、本実施の形態では、磁界レンズ5と試料台4との間に偏向器9を備えている。尚、本実施の形態も図1の実施の形態と同様に、荷電粒子線として電子線2を用いた場合で説明する。
【0024】
まず、一つの電子源1から発生させた電子線2は試料7、磁界レンズ5、偏向器9及び試料8に通し、第1の実施の形態と同様に、撮像部6で二つの試料の重ね合わせ像を得る。ここで、磁界レンズ5の励磁を変化させると、回転が生じたように観察される。このため、第1に実施の形態と同じように、レンズ電源19の出力をレンズ電源モニタ手段18で検出する。スイッチ21をオンにし、この結果を回転機能を有する試料台3のアクチュエータ制御部14に入力し、励磁電流の変化分だけ、試料7を回転させる。回転角は、第1の実施の形態と同様に計算で求める。この結果、角度の補正が行え、試料7と試料8の方向を合わせることができる。
【0025】
しかし、上記の回転補正だけでは、図6に示したように矢印方向に画像の相対的なシフト成分が残る。この相対的なシフトは、電子線2が磁界レンズ5の軸外を通ることによって生じる現象であった。このため、本実施の形態では、図5に示したように磁界レンズ5と試料台4との間に偏向器9を備えた。偏向器9には、偏向器電源24の出力電流が流され、偏向器電源24は偏向器電源制御手段25によって制御される。ここで、スイッチ22をオンにし、偏向器電源制御手段25に上述のレンズ電流モニタ手段18で検出した電流を入力し、画像のシフトに相当した分だけ逆向きにシフトさせる。レンズ電流に対する像のシフト量と方向は、予め調べておいた値を制御に用いる。この結果、像のシフト成分を除去することができる。
【0026】
(第3の実施の形態)
図7は本発明による荷電粒子線装置の第3の実施の形態を示す。本実施の形態では、偏向器10が試料台3と磁界レンズ5との間に設置されたものである。図7において、図5と同一の構成要素には同じ番号を付している。本実施の形態では、偏向器10を使って、電子線2が磁界レンズ5の中心軸上を通るようにしている。これにより、軸外を通ることによって、像が相対的にシフトして観察される現象を回避した。
【0027】
また、上記の像のシフトは、例えば電子線2の進行方向に垂直な面内で移動することのできるアクチュエータ15を用いてもよい。この場合は、図5または図7のスイッチ23をオンにし、アクチュエータ制御手段16で試料台4を動かし、像をシフトさせる。これによっても上記のシフトを修整できる。
【0028】
(第4の実施の形態)
図8は本発明による荷電粒子線装置の第4の実施の形態を示す。本実施の形態では、試料台3、試料台4の間に二つの磁界レンズ5及び11を設けた。一つの電子源1から発生させた電子線2は試料7を通過する。さらに、磁界レンズ5、補助磁界レンズ11を通過し、2つの磁界レンズ5、11で、試料8の位置に試料7の像を結像させる。さらに、電子線2を試料8に通し、撮像部6で二つの試料の重ね合せ像を得る。まずスイッチ21をオフにし、アクチュエータ制御手段14で試料台3の試料7を回転させ、重ね合わせ像の回転角度を調整する。
【0029】
次に、磁界レンズ5の励磁を変化させる。前記実施の形態と同様に、試料8の位置に結像させた試料7の像が回転する。ここで、レンズ電流モニタ手段18でレンズ電源19の出力を検出し、これをレンズ電源制御部17に送る。レンズ電源制御部17では、第1の実施の形態と同様に、検出された励磁電流の変化から回転角を算出する。そして、これを基に回転を補うように補助レンズ電源28を制御する。これにより、逆向きの回転が像に与えられるように補助磁界レンズ11の励磁が変化する。撮像部6で得られる像では、磁界レンズ5の励磁の変化によって、回転した像が、逆方向の励磁の変化によって元の向きに戻り、相対的な回転を回避できる。
【0030】
本実施の形態では、磁界レンズ5の励磁の変化に補助磁界レンズ11の励磁を追従させる方式をとったが、逆に、補助磁界レンズ11を変化させ、これに磁界レンズ5を追従させてもよい。また、本実施の形態では、レンズ電源検出手段18を用いて、励磁電流をレンズ電流制御手段17に入力したが、これを行わず、レンズ電源制御部17の内部で、二つのレンズ電源の調整を同時に行ってもよい。また、レンズの連動を用いずに、スイッチ21をオンにし、試料7の回転による補正を行っても同様の効果がある。
【0031】
(第5の実施の形態)
図9は本発明による荷電粒子線装置の第4の実施の形態を示す。本実施の形態では、図8の試料8を磁気ヘッド部材のような磁界発生部材12に取り替え、試料8の粒子をこれまでの試料7の位置に設置しものである。磁界レンズ5と補助磁界レンズ11で、磁界発生部材12の中心に試料8の像を結像させた場合、図10(a)に示したように、得られる像には粒子と部材の影だけが、殆ど歪みのない状態で観察される。次に、スイッチ21をオンにし、磁界レンズ5の励磁の変化に伴う像の回転を、試料台4の回転で補正するようにする。この状態で、磁界レンズ5の励磁を変化させ、結像位置を磁界発生部材の中心から少しずらすと、像は図10(b)のようになり、磁界の発生している空間が歪んで観察される。観察された像では、磁界に対して角度一定なメッシュを基準として、電子線の磁界による偏向角度を求めることができる。この結果、磁界発生部材12からの漏洩磁界を定量的に測定することができる。
また、図9では磁界を用いたが、磁界の代わりに電界を用いた場合でも、画像の歪み量から、空間の電界強度を定量的に求めることができる。
【0032】
【発明の効果】
一つの荷電粒子源から発生させた荷電粒子線で、二つ以上の観察対象の重ね像を得る場合に、観察対象間の磁界レンズの励磁変化により生じる像の相対的な回転補正ができる。
【図面の簡単な説明】
【図1】本発明による荷電粒子線装置の第1の実施の形態を示す図である。
【図2】第1の実施の形態における試料7及び8を示す図である。
【図3】第1の実施の形態における試料像を示す図である。
【図4】第1の実施の形態における二つの試料像の回転補正を行った試料像を示す図である。
【図5】本発明による荷電粒子線装置の第2の実施の形態を示す図である。
【図6】二つの試料像の相対的位置ずれが生じた例を示す図である。
【図7】本発明による荷電粒子線装置の第3の実施の形態を示す図である。
【図8】本発明による荷電粒子線装置の第4の実施の形態を示す図である。
【図9】本発明による荷電粒子線装置の第5の実施の形態を示す図である。
【図10】本発明による荷電粒子線装置の第5の実施の形態における粒子と磁界の重ね合わせ像の例を示す図である。
【図11】従来の荷電粒子線装置の要部構成図である。
【符号の説明】
1…電子源、2…電子線、3…試料台A、4…試料台、5…磁界レンズ、
6…撮像部、7…対象物、8…対象物、9…偏向器、10…偏向器、
11…補助磁界レンズ、12…磁界発生部材、13…アクチュエータ、
14…アクチュエータ制御手段、15…アクチュエータ、
16…アクチュエータ制御手段、17…レンズ電流制御手段、
18…レンズ電流モニタ手段、19…レンズ電源、20…制御手段、21…スイッチ、22…スイッチ、23…スイッチ、24…偏向器電源、25…偏向器電源制御手段、28…補助レンズ電源、29…補助レンズ電流モニタ手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charged particle beam apparatus, and more particularly to a charged particle beam apparatus that obtains information of two or more observation objects with a charged particle beam generated from one charged particle source.
[0002]
[Prior art]
As an example of a charged particle beam device that passes through one charged particle beam through two observation objects and obtains an image including information on the two observation objects, the document IEE Transaction on Magnetics Vol. 12, No. 1, January 1976 Year 34-39 (IEEE TRANSACTION ON MAGNETICS, VOL.MAG-12, NO.1, JANUAY 1976 p34-39). In this document, a transmission electron microscope is used as a charged particle beam apparatus. As shown in FIG. 11, this charged particle beam apparatus first passes an electron beam EB through an amorphous thin film D, forms an image on a surface D ′ through an objective lens OL, and a negative field image by a magnifying lens DL. Take a photo on (Photo Plate). Next, a magnetic field F is placed under the objective lens OL, and a bright field image of the thin film D distorted by the magnetic field F is overprinted on the negative previously taken.
[0003]
In this charged particle beam apparatus, one electron beam is used, and two images of an undistorted thin film image and a magnetic film distorted thin film image are overlaid on one negative. At this time, one image includes information on a thin film that is one observation target and information on a magnetic field that is another observation target. The above document describes an apparatus that can include information about two observation objects, a thin film and a magnetic field, in one negative, that is, an image.
[0004]
[Problems to be solved by the invention]
In order to obtain an image of a thin film distorted by the magnetic field F using the conventional technique described in the above document, the excitation of the objective lens OL between the thin film D and the magnetic field F is adjusted, and the image of the thin film is converted into a magnetic field. It is necessary to form an image at a position D ′ slightly deviated from the position of F. Furthermore, in order to change the magnitude of the distortion included in the image, it is necessary to change the imaging position D ′ of the thin film by changing the excitation of the objective lens OL between the thin film and the magnetic field.
[0005]
In general, when the excitation of the magnetic lens changes, the image rotates on a plane perpendicular to the electron beam axis about the electron beam axis center. In the above charged particle beam apparatus, when the excitation of the magnetic lens operating as the objective lens OL changes, the image of the thin film is observed as if the image of the thin film is rotated with respect to the magnetic field. However, for example, if the image of the thin film D has a lattice-like directionality in the plane, the thin film image can be adjusted by changing the excitation of the magnetic lens in order to adjust the amount of distortion due to the magnetic field. This image is very inconvenient when the image is rotated with respect to the magnetic field and the distortion of the thin film itself is observed. In addition, not only the relationship between the thin film and the magnetic field, but also when the directionality is important for observation in the superimposed image of two samples, it is difficult to modify the image, and this rotational phenomenon is a problem. Become.
[0006]
Accordingly, an object of the present invention is to eliminate the relative rotation phenomenon caused by the excitation change of the magnetic lens between two or more observation objects, and to keep the relative angle relationship of the objects in the superimposed image constant. It is to provide a charged particle beam apparatus capable of performing the above.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the charged particle beam apparatus of the present invention, in the charged particle beam apparatus that obtains information on the plurality of observation objects by passing the charged particle beam generated from one charged particle source through the plurality of observation objects, A plurality of stages for holding the observation object are provided at different positions on the trajectory of the charged particle beam, one or more magnetic lenses are provided between the plurality of stages, and at least one of the plurality of stages is a charged particle. It has a function of rotating around an axis parallel to the line trajectory direction. The observation object is composed of a sample that can partially pass a charged particle beam, a sample that can uniformly pass a charged particle beam, a magnetic field, or an electric field. Moreover, the information regarding the observation target is a projected image on a two-dimensional surface. The rotation of the stage is controlled in conjunction with the excitation current of the magnetic lens. Furthermore, at least one of the stages is configured to move in an in-plane direction perpendicular to the trajectory direction of the charged particle beam.
[0008]
According to a preferred embodiment, in addition to the above-described configuration, a charged particle beam deflecting unit is added between at least one stage and the magnetic lens. The deflection means is configured to be able to perform control in conjunction with the excitation current of the magnetic lens.
[0009]
Furthermore, in another embodiment of the present invention, in a charged particle beam apparatus that obtains information about two or more observation objects by passing a charged particle beam generated from one charged particle source through two or more observation objects. Two or more stages for holding the observation target are provided at different positions on the particle beam trajectory, and two or more magnetic lenses are provided between the two or more stages. Here, in order to give a rotation in the opposite direction to the rotation of the projected image on the two-dimensional surface caused by the change in the excitation current of one of the two or more magnetic lenses provided between the stages, The excitation current of the other magnetic lens is configured to be linked and controlled.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a charged particle beam apparatus according to a first embodiment of the present invention. In this embodiment, the case where an electron beam is used as the charged particle beam will be described.
[0011]
The electron beam 2 generated from the electron source 1 is passed through the object 7 held on the sample stage 3. Further, the electron beam 2 transmitted through the sample table 3 is passed through the magnetic lens 5 and passed through the object 8 held on the sample table 4 installed under the magnetic lens 5. The sample stage 3 is moved in a plane perpendicular to the electron beam 2 by the first actuator 13. The sample stage 4 is also moved in a plane perpendicular to the electron beam 2 by the second actuator 15. The sample stage 4 can rotate around an axis parallel to the traveling direction of the electron beam, and this rotational drive is also performed by the actuator 15. The actuator 13 and the actuator 15 are controlled by the actuator control means 14 and the actuator control means 16 in the control means 20, respectively.
[0012]
Hereinafter, as an example, the object 7 is a mesh 7A (for example, Cu, 5 μm to 50 μm square) as shown in FIG. 2A, and the object 8 is a particle 8A (for example, as shown in FIG. 2B). The case of an aggregate of 10-100 nm with Fe crystals will be described. Using the magnetic lens 5, the image of the object 7 is substantially aligned with the position where the object 8 is installed. Further, while observing the overlapping image displayed on the imaging unit 6, adjustment is made so that the direction of the mesh 7A and the direction of the particle 8A match as shown in FIG. The adjustment is performed by turning off the switch 21 shown in FIG. 1 and rotating the sample stage 4 by the actuator control means 16.
[0013]
Next, in order to finely adjust the focus of the sample 7, when the lens power source 19 is controlled by the lens current control means 17 and the excitation current of the magnetic lens 5 is changed minutely, as shown in FIG. The mesh image 7A of the object 7 is rotated by Δθ with respect to the particle image 8A of the object 8. Furthermore, a minute change in relative magnification also occurs. The magnification is corrected by adding a lens not shown in FIG. 1 and using the lens or performing image processing after imaging. In the following, the explanation regarding the magnification is omitted. Here, the switch 21 in FIG. 1 is turned on, and the detection result of the lens current monitor means 18 attached to the output side of the lens power supply 19 is sent to the actuator control means 16. The detection result is the current value before and after the adjustment, or the change in the current value. Based on this value, the actuator control means 16 moves the actuator 15 to rotate the object 8 held on the sample stage 4.
[0014]
In general, the relationship between the on-axis magnetic field B of the magnetic lens 5 and the image rotation angle θ is such that Φ is an on-axis potential.
[0015]
[Expression 1]
Figure 0003686466
[0016]
It is represented by If the object plane and the image plane are outside the magnetic field B of the magnetic lens, N is the number of turns, I is the current,
[0017]
[Expression 2]
Figure 0003686466
[0018]
Therefore, let k be a constant,
[0019]
[Equation 3]
Figure 0003686466
[0020]
It can be expressed as. From the equation (3), the change Δθ in the rotation angle can be expressed as follows using the relationship with the change ΔI in the current value, and the sample 8 is rotated using this to control the correction of the rotation angle.
[0021]
[Expression 4]
Figure 0003686466
[0022]
By controlling this rotation, the observed image can cancel the relative rotation of the image generated on the mesh of the object 7 and the particles of the object 8, as shown in FIG.
In the above embodiment, the sample stage 4 is provided with the rotation mechanism. However, even if this is attached to the sample stage 3 instead of the sample stage 4 and the rotation correction is controlled on the sample stage 3, the same applies. The rotation can be corrected.
[0023]
(Second Embodiment)
FIG. 5 shows a second embodiment of the charged particle beam apparatus according to the present invention. As in the first embodiment, the configuration includes one electron source 1, a sample 7 held on the sample stage 3, a sample 8 held on the sample stage 4, and between the sample stage 3 and the sample stage 4. Are provided with a magnetic lens 5 and an imaging unit 6 below. In the present embodiment, the sample stage 3 has a rotation function, but the same effect can be obtained by providing the sample stage 4. Further, in the present embodiment, a deflector 9 is provided between the magnetic lens 5 and the sample stage 4. In the present embodiment, similarly to the embodiment of FIG. 1, a case where the electron beam 2 is used as a charged particle beam will be described.
[0024]
First, the electron beam 2 generated from one electron source 1 is passed through the sample 7, the magnetic lens 5, the deflector 9, and the sample 8, and, in the same way as in the first embodiment, the imaging unit 6 superimposes two samples. Obtain a combined image. Here, when the excitation of the magnetic lens 5 is changed, it is observed that rotation has occurred. For this reason, the output of the lens power supply 19 is detected by the lens power supply monitor means 18 as in the first embodiment. The switch 21 is turned on, and the result is input to the actuator control unit 14 of the sample stage 3 having a rotation function, and the sample 7 is rotated by the change in the excitation current. The rotation angle is obtained by calculation in the same manner as in the first embodiment. As a result, the angle can be corrected and the directions of the sample 7 and the sample 8 can be matched.
[0025]
However, only the rotation correction described above leaves a relative shift component of the image in the direction of the arrow as shown in FIG. This relative shift was a phenomenon caused by the electron beam 2 passing off the axis of the magnetic lens 5. For this reason, in this embodiment, a deflector 9 is provided between the magnetic lens 5 and the sample stage 4 as shown in FIG. The deflector 9 is supplied with the output current of the deflector power supply 24, and the deflector power supply 24 is controlled by the deflector power supply control means 25. Here, the switch 22 is turned on, and the current detected by the lens current monitoring means 18 is input to the deflector power supply control means 25 and shifted in the reverse direction by an amount corresponding to the shift of the image. For the shift amount and direction of the image with respect to the lens current, values previously examined are used for control. As a result, an image shift component can be removed.
[0026]
(Third embodiment)
FIG. 7 shows a third embodiment of the charged particle beam apparatus according to the present invention. In the present embodiment, the deflector 10 is installed between the sample stage 3 and the magnetic lens 5. In FIG. 7, the same components as those in FIG. In this embodiment, the deflector 10 is used so that the electron beam 2 passes on the central axis of the magnetic lens 5. This avoids the phenomenon that the image is observed with a relative shift by passing off-axis.
[0027]
Further, for the above-described image shift, for example, an actuator 15 that can move in a plane perpendicular to the traveling direction of the electron beam 2 may be used. In this case, the switch 23 in FIG. 5 or 7 is turned on, and the sample table 4 is moved by the actuator control means 16 to shift the image. This also corrects the shift described above.
[0028]
(Fourth embodiment)
FIG. 8 shows a fourth embodiment of the charged particle beam apparatus according to the present invention. In the present embodiment, two magnetic lenses 5 and 11 are provided between the sample table 3 and the sample table 4. The electron beam 2 generated from one electron source 1 passes through the sample 7. Further, it passes through the magnetic lens 5 and the auxiliary magnetic lens 11, and the image of the sample 7 is formed at the position of the sample 8 by the two magnetic lenses 5 and 11. Further, the electron beam 2 is passed through the sample 8, and an overlapped image of the two samples is obtained by the imaging unit 6. First, the switch 21 is turned off, and the actuator control means 14 rotates the sample 7 on the sample table 3 to adjust the rotation angle of the superimposed image.
[0029]
Next, the excitation of the magnetic lens 5 is changed. Similar to the above embodiment, the image of the sample 7 formed at the position of the sample 8 rotates. Here, the lens current monitor means 18 detects the output of the lens power supply 19 and sends it to the lens power supply controller 17. The lens power control unit 17 calculates the rotation angle from the detected change in the excitation current, as in the first embodiment. Based on this, the auxiliary lens power supply 28 is controlled to compensate for the rotation. This changes the excitation of the auxiliary magnetic field lens 11 so that the reverse rotation is imparted to the image. In the image obtained by the imaging unit 6, the rotated image returns to the original direction due to the excitation change of the magnetic field lens 5, and the relative rotation can be avoided.
[0030]
In the present embodiment, the method of following the excitation of the auxiliary magnetic lens 11 to the change of the excitation of the magnetic lens 5 is adopted, but conversely, even if the auxiliary magnetic lens 11 is changed and the magnetic field lens 5 follows this. Good. In this embodiment, the lens power source detection unit 18 is used to input the excitation current to the lens current control unit 17. However, this is not performed, and the two lens power sources are adjusted inside the lens power source control unit 17. May be performed simultaneously. Further, the same effect can be obtained even if the switch 21 is turned on and correction by rotation of the sample 7 is performed without using the lens interlocking.
[0031]
(Fifth embodiment)
FIG. 9 shows a fourth embodiment of the charged particle beam apparatus according to the present invention. In the present embodiment, the sample 8 in FIG. 8 is replaced with a magnetic field generating member 12 such as a magnetic head member, and the particles of the sample 8 are placed at the position of the sample 7 so far. When the magnetic lens 5 and the auxiliary magnetic lens 11 form an image of the sample 8 at the center of the magnetic field generating member 12, as shown in FIG. Is observed with almost no distortion. Next, the switch 21 is turned on, and the rotation of the image accompanying the change in excitation of the magnetic lens 5 is corrected by the rotation of the sample stage 4. In this state, when the excitation of the magnetic lens 5 is changed and the imaging position is slightly shifted from the center of the magnetic field generating member, the image becomes as shown in FIG. 10B, and the space where the magnetic field is generated is distorted and observed. Is done. In the observed image, the deflection angle of the electron beam due to the magnetic field can be obtained with reference to a mesh having a constant angle with respect to the magnetic field. As a result, the leakage magnetic field from the magnetic field generating member 12 can be measured quantitatively.
Further, although the magnetic field is used in FIG. 9, even when an electric field is used instead of the magnetic field, the electric field strength in the space can be quantitatively obtained from the distortion amount of the image.
[0032]
【The invention's effect】
When a superposed image of two or more observation objects is obtained with a charged particle beam generated from one charged particle source, it is possible to correct the relative rotation of the image generated by the excitation change of the magnetic lens between the observation objects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a charged particle beam apparatus according to the present invention.
FIG. 2 is a diagram showing samples 7 and 8 in the first embodiment.
FIG. 3 is a diagram showing a sample image in the first embodiment.
FIG. 4 is a diagram illustrating a sample image obtained by performing rotation correction of two sample images in the first embodiment.
FIG. 5 is a diagram showing a second embodiment of the charged particle beam apparatus according to the present invention.
FIG. 6 is a diagram illustrating an example in which a relative displacement between two sample images has occurred.
FIG. 7 is a diagram showing a charged particle beam apparatus according to a third embodiment of the present invention.
FIG. 8 is a diagram showing a charged particle beam apparatus according to a fourth embodiment of the present invention.
FIG. 9 is a diagram showing a fifth embodiment of a charged particle beam device according to the present invention.
FIG. 10 is a diagram showing an example of a superimposed image of particles and a magnetic field in a fifth embodiment of the charged particle beam apparatus according to the present invention.
FIG. 11 is a configuration diagram of a main part of a conventional charged particle beam apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron source, 2 ... Electron beam, 3 ... Sample stand A, 4 ... Sample stand, 5 ... Magnetic field lens,
6 ... Imaging unit, 7 ... Object, 8 ... Object, 9 ... Deflector, 10 ... Deflector,
11 ... auxiliary magnetic lens, 12 ... magnetic field generating member, 13 ... actuator,
14 ... Actuator control means, 15 ... Actuator,
16 ... Actuator control means, 17 ... Lens current control means,
DESCRIPTION OF SYMBOLS 18 ... Lens current monitor means, 19 ... Lens power supply, 20 ... Control means, 21 ... Switch, 22 ... Switch, 23 ... Switch, 24 ... Deflector power supply, 25 ... Deflector power supply control means, 28 ... Auxiliary lens power supply, 29 ... Auxiliary lens current monitoring means.

Claims (2)

一つの荷電粒子源から発生した荷電粒子線を第1の観察対象に通し、第1の観察対象を通過した荷電粒子線を第2の観察対象に通し、上記二つの観察対象に関する情報を得る荷電粒子線装置において、
上記荷電粒子線の軌道上の異なる位置に、上記観察対象を保持する二つの試料台を備え、上記二つの試料台の間に一つ以上の磁界レンズを備え、上記試料台の少なくとも一つを荷電粒子線の軌道方向と平行な軸を中心に回転させる回転駆動手段を備えたことを特徴とする荷電粒子線装置。
A charged particle beam generated from one charged particle source is passed through a first observation object, a charged particle beam passing through the first observation object is passed through a second observation object, and information on the two observation objects is obtained. In particle beam equipment,
At different positions on the orbit of the charged particle beam, comprising two sample stage for holding the observation target, comprises one or more field lens between the two sample table, at least one of the above sample table A charged particle beam apparatus comprising: a rotation driving unit configured to rotate about an axis parallel to a trajectory direction of the charged particle beam.
一つの荷電粒子源から発生した荷電粒子線を第1の観察対象に通し、第1の観察対象を通過した荷電粒子線を第2の観察対象に通し、上記二つの観察対象に関する情報を得る荷電粒子線装置において、上記荷電粒子線の軌道上の異なる位置に、上記観察対象を保持する二つの試料台を備え、上記二つの試料台の間に二つ以上の磁界レンズを備えたことを特徴とする荷電粒子線装置。A charged particle beam generated from one charged particle source is passed through a first observation object, a charged particle beam passing through the first observation object is passed through a second observation object, and information on the two observation objects is obtained. In the particle beam apparatus, two sample stands for holding the observation target are provided at different positions on the trajectory of the charged particle beam, and two or more magnetic lenses are provided between the two sample stands. A charged particle beam device.
JP31018795A 1995-11-29 1995-11-29 Charged particle beam equipment Expired - Fee Related JP3686466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31018795A JP3686466B2 (en) 1995-11-29 1995-11-29 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31018795A JP3686466B2 (en) 1995-11-29 1995-11-29 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH09147776A JPH09147776A (en) 1997-06-06
JP3686466B2 true JP3686466B2 (en) 2005-08-24

Family

ID=18002230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31018795A Expired - Fee Related JP3686466B2 (en) 1995-11-29 1995-11-29 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3686466B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449679B2 (en) * 2008-02-15 2014-03-19 株式会社日立製作所 Electron beam observation apparatus and sample observation method

Also Published As

Publication number Publication date
JPH09147776A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
EP2091063B1 (en) Electron beam observation device using a pre-specimen magnetic field as image-forming lens and specimen observation method
JP6173862B2 (en) electronic microscope
JPH04328232A (en) Charged particle beam device
US20120138814A1 (en) Particle beam device with deflection system
CN111354614B (en) Charged particle beam device and optical axis adjustment method therefor
JP2003331773A (en) Electron microscope
WO2013046277A1 (en) Electron microscope and sample observation method
JPH0414744A (en) Electron beam holography device
JP3686466B2 (en) Charged particle beam equipment
US6720558B2 (en) Transmission electron microscope equipped with energy filter
US6777679B2 (en) Method of observing a sample by a transmission electron microscope
JPH0313700B2 (en)
JPS614142A (en) Illumination lens system in electron microscope or the like
JP3953309B2 (en) Scanning electron microscope
JP3754186B2 (en) Electron beam optical device
US7060985B2 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
JPH03134944A (en) Electron beam device
JP3195708B2 (en) Astigmatism correction device for transmission electron microscope
US6586737B2 (en) Transmission electron microscope equipped with energy filter
JPS6231473B2 (en)
JP2004146192A (en) Test piece observation method by transmission electron microscope
JP2561739B2 (en) Lens device for electron microscope
WO2018189850A1 (en) Electron microscope
JPS59201354A (en) Electron microscope
JPH10106467A (en) Electron lens and nonrotating lens system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees