JP3685322B2 - Method for nitriding maraging steel - Google Patents
Method for nitriding maraging steel Download PDFInfo
- Publication number
- JP3685322B2 JP3685322B2 JP2000371107A JP2000371107A JP3685322B2 JP 3685322 B2 JP3685322 B2 JP 3685322B2 JP 2000371107 A JP2000371107 A JP 2000371107A JP 2000371107 A JP2000371107 A JP 2000371107A JP 3685322 B2 JP3685322 B2 JP 3685322B2
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- maraging steel
- treatment
- present
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、マルエージング鋼の窒化処理方法に関する。
【0002】
【従来の技術】
従来から、鋼の疲労強度を向上させる方法として窒化処理が知られている。しかしながら、合金元素を多く含んだ鋼はその表面状態が安定なため、均一な窒化処理を施すのが困難であった。強靭鋼として用いられる18%Niマルエージング鋼や析出硬化型ステンレス鋼(17−4PH)等は、鋼として最高に近い強度を備えているが、軽量化等の目的により更なる強度の向上が望まれ、これらの強靭鋼についても一つの方法として窒化処理による強度向上が期待されているが、強靭化するために多くの合金元素を含み、その表面が種々の合金元素からなる緻密な酸化膜で覆われているため、均一な窒化処理に困難を伴っている。
【0003】
これまで、マルエージング鋼に対する窒化処理方法として、例えば、塩化水素又はリン酸を用いて酸化皮膜を除去する方法、硫化水素を添加した窒化雰囲気で浸硫窒化処理を行う方法、フッ素化合物を用いて表面の酸化皮膜を還元してから窒化処理を行う方法、塩浴中で窒化処理を行う方法等が提案され、疲労強度の向上が図られている。
【0004】
【発明が解決しようとする課題】
前記各提案において疲労強度の向上が図られてはいるが、品質の安定性、作業性、経済性あるいは公害対策などに問題が残されるものであった。例えば、塩化水素又はリン酸を用いて酸化皮膜を除去する方法は、均一な窒化層が得られにくいという品質上の問題があり、硫化水素を添加した窒化雰囲気で浸硫窒化処理を行う方法は、毒性の強い硫化水素を用いるため、取り扱い上および管理上など作業性に問題があり、フッ素化合物を用いて表面の酸化皮膜を還元してから窒化処理を行う方法は、マルエージング鋼の表面にフッ素化物が残存すること及びフッ化処理を行ってから窒化処理を行うためのコストアップという経済性などの問題があり、塩浴中で窒化処理を行う方法は、シアンをもちいるため排水処理など公害対策及び作業性に問題が残るものであった。
【0005】
なお、マルエージング鋼は、析出硬化型合金鋼であり、窒化処理と同時に時効効果が進行して機械的性質が変わるため、未時効・過時効とならないマルエージング鋼の特性を十分に引き出せる窒化処理条件の選定についても確認する必要がある。
【0006】
本発明は、前記事情に鑑み、マルエージング鋼の窒化処理における品質の安定性、作業性、経済性などを改善し、同時に疲労強度を向上させ、疲労寿命の延長を図ることを目的とする。
【0007】
【課題を解決するため手段】
前記事情に鑑み、本発明の請求項1は、窒化雰囲気に、有機系塩化物を添加した雰囲気ガス中で、処理温度を被処理物の時効析出温度以下、均熱時間を15〜60分の範囲内として窒化処理を行うマルエージング鋼の窒化処理方法である。
【0008】
この請求項1によれば、有機系塩化物が炉内で気化して塩化水素と炭素に分解し、分解により生じた塩化水素が被処理物、すなわち、マルエージング鋼の酸化皮膜を除去して表面を活性化し、活性化されたマルエージング鋼表面に雰囲気中のNH3ガスが吸着し、窒化反応が促進され、硬さの上昇及び深い窒化層が得られる。加えて、引っ張り、曲げ、曲げ戻し応力に対する疲労強度を向上させ、疲労寿命の延長を図った窒化処理品を提供することができる。
【0009】
本発明では、窒化雰囲気としては、NH3ガス、NH3ガス+N2ガス、NH3ガス+RXガス等が使用される。
【0012】
請求項2に示す実施の一形態は、窒化雰囲気に、有機系塩化物を添加した雰囲気ガス中で、処理温度を被処理物、すなわち、マルエージング鋼の時効析出温度以下、均熱時間を15〜60分の範囲内とし、被処理物表面に脆弱な白色の化合物層を形成させないで窒化処理を行うマルエージング鋼の窒化処理法である。
【0013】
この請求項2によれば、促進した窒化反応により得られた硬さの上昇及び深い窒化層が、引っ張り、曲げ、曲げ戻し応力に対する疲労強度を向上させ、疲労寿命の延長を図るが、被処理物表面に脆弱な化合物層(白色層)を形成させないことによって、疲労強度をさらに向上させ、疲労寿命のさらなる延長を図った窒化処理品を提供することができる。
【0017】
【発明の実施の形態】
以下に、本発明の実施の一形態を説明する。
【0018】
(実施例)
マルエージング鋼を800〜900℃で溶体化処理を行った後、480℃で3時間時効処理を行った。この溶体化処理並びに時効処理は、前記マルエージング鋼表面の酸化を防止するため、真空中(約1.33×10−1Pa≒10−3Torr)で行うことが好ましい。つづいて、溶体化処理並びに時効処理を終えた前記マルエージング鋼を前記時効析出温度以下の450℃に加熱した窒化炉で窒化処理を実施した。
【0019】
前記窒化処理は、窒化雰囲気として、NH3ガス40%+N2ガス60%の混合ガスで行われ、前記マルエージング鋼を窒化炉に装入後、炉内温度が450℃に復帰すると同時に、酸化皮膜除去剤として有機系塩化物の塩化メチレンを炉内容積1m3当り90mlの割合で炉内に添加した。
【0020】
前記450℃における均熱時間を15〜120分の範囲で実施し、均熱後、冷却室に移し、N2ガス雰囲気中で冷却を行った。
【0021】
(比較例)
前記本発明の実施例と異なり、炉内に有機系塩化物の塩化メチレンを添加することなく、窒化雰囲気、均熱温度、均熱時間及び冷却工程を前記本発明の実施例と同様にして窒化処理を行った。
【0022】
前記本発明の実施例及び比較例によって処理したマルエージング鋼の断面硬さを測定した結果が、図1に示されている。図1によれば、前記比較例の場合、窒化処理により表面における硬さが僅かに上昇したことが確認されたが、十分な深さの窒化層を得ることができなかった。
【0023】
前記比較例に対し、前記本発明の実施例の場合には、表面における硬さが839Hvまで上昇し、窒化層の深さが0.04mmの深さに及んだ。
【0024】
前記本発明の実施例における有機系塩化物の塩化メチレンの添加は、前記のごとく、添加された塩化メチレンが炉内で気化して塩化水素と炭素に分解し、該塩化水素がマルエージング鋼の酸化皮膜を除去して表面を活性化し、該活性化されたマルエージング鋼表面に雰囲気ガス中のNH3ガスが吸着し、窒化反応が促進させられたものである。
【0025】
なお、前記塩化メチレンの添加量が、炉内容積1m3当り30mlに満たない場合には、マルエージング鋼の表面の活性化が十分に行われず、窒化むら、窒化抜けが生じ、また、前記塩化メチレンの添加量が炉内容積1m3当り100mlを超えると、雰囲気中に遊離炭素が多くなり、マルエージング鋼および炉内の表面への煤の付着が多くなるため、前記塩化メチレンの添加量は、炉内容積1m3当り30〜100mlが妥当であることが確認された。
【0026】
つぎに、前記本発明の実施例において、窒化処理の均熱時間を15〜60分以内とした場合と、60分を超えた場合のマルエージング鋼の疲労試験結果が図3に示されている。疲労試験は、マルエージング鋼からなる無端ベルトを利用し、図2に示すベルトプーリー型疲労試験機を使用して、引っ張り強度、曲げおよび曲げ戻し強度について行われた。
【0027】
すなわち、図2において、1は主動プーリー、2は従動側プーリーであり、該従動プーリー2と前記主動プーリー1間に前記それぞれ無端ベルト3を掛け渡し、該それぞれのベルトに掛かる引張荷重を4,903N(=500kgf)に調節し、前記主動プーリー1を毎分1,000回転させて各ベルトが疲労破壊に至る回転数を評価したものである。なお、参考データ−として,窒化処理を実施しない無端ベルトの疲労寿命を均熱時間0分として合わせてプロットした。
【0028】
図3のデーターを検討すると、窒化処理を施さない無端ベルトの疲労寿命は、104回であったのに対して、前記本発明の実施例の範囲で窒化処理を施した無端ベルトの疲労寿命は、106〜107回となり、疲労寿命が飛躍的に向上することが判明した。しかしながら、前記本発明の実施例よりも均熱時間を延長した場合には、逆に疲労寿命が低下することが判明した。
【0029】
図4には、前記本発明の実施例の処理条件範囲と窒化層深さの関係が示されている。すなわち、前記本発明の実施例の範囲では、窒化層の深さは20〜38μmとなり、無端ベルトの厚さの1/2に対して20〜45%の窒化層が得られていることが判明した。
【0030】
前記本発明の実施例で得られた窒化層の結果を、前記図3の均熱時間と疲労寿命との関係と合わせ考えると、無端ベルトの厚さの1/2に対する窒化層の深さが20〜45%の範囲を超えないように時間管理することが無端ベルトの疲労寿命を最大限に引き出す有効な手段であることが確認された。
【0031】
すなわち、前記窒化層の深さが20%より浅い場合には、前記無端ベルトの疲労寿命にばらつきが生じやすく、45%より深い場合には疲労寿命そのものが短くなってしまうことが確認された。
【0032】
図5には、前記本発明の実施例の処理条件範囲と白色層形成の有り無しの関係が示されている。すなわち、前記本発明の実施例の範囲では、被処理物表面に白色層(脆弱な化合物層)を形成させないで窒化層のみを得られることが判明した。
【0033】
前記本発明の実施例で得られた白色層形成の有り無しの結果を、前記図3の均熱時間と疲労寿命との関係と合わせ考えると、白色層の形成によって疲労寿命が低下し、白色層を形成させないことが無端ベルトの疲労寿命を向上させる有効な手段であることが確認された。
【0034】
また、前記本発明の実施例では、マルエージング鋼の窒化処理について説明したが、該マルエージング鋼以外の、例えば、析出硬化型ステンレス鋼などの強靭鋼の窒化処理にも適用が可能であることが実験的に確認されている。
【0035】
【発明の効果】
本発明の窒化処理方法によれば、マルエージング鋼の窒化処理を有効に行うことができ、該マルエージング鋼の窒化処理における品質の安定性、作業性、経済性などが改善され、また、引っ張り、曲げ、曲げ戻し応力に対する疲労強度を向上させ、疲労寿命の延命を図ることができる。
【図面の簡単な説明】
【図1】本発明実施例及び比較例の断面硬さ測定図である。
【図2】ベルトプーリ型疲労試験機の原理図である。
【図3】灼熱時間と疲労寿命の試験結果を示す測定図である。
【図4】本発明実施例における灼熱時間と窒化層の深さの関係を示す説明図である。
【図5】本発明実施例における処理条件範囲と白色層形成の有無の関係を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitriding method for maraging steel.
[0002]
[Prior art]
Conventionally, nitriding treatment is known as a method for improving the fatigue strength of steel. However, steel containing a lot of alloy elements has a stable surface state, and it has been difficult to perform uniform nitriding treatment. 18% Ni maraging steel and precipitation hardening stainless steel (17-4PH) used as tough steels have strengths close to the highest as steel, but further improvement in strength is desired for the purpose of weight reduction. Rarely, the strength of these tough steels is expected to be improved by nitriding as a method. However, in order to strengthen the toughened steel, it contains many alloy elements, and the surface is a dense oxide film composed of various alloy elements. Since it is covered, it is difficult to perform uniform nitriding.
[0003]
Conventionally, as a nitriding method for maraging steel, for example, a method of removing an oxide film using hydrogen chloride or phosphoric acid, a method of performing a nitronitriding treatment in a nitriding atmosphere to which hydrogen sulfide is added, and a fluorine compound are used. A method of performing nitriding after reducing the oxide film on the surface, a method of performing nitriding in a salt bath, and the like have been proposed to improve fatigue strength.
[0004]
[Problems to be solved by the invention]
Although each of the above proposals has improved fatigue strength, problems remain in quality stability, workability, economy, and pollution control. For example, a method of removing an oxide film using hydrogen chloride or phosphoric acid has a quality problem that it is difficult to obtain a uniform nitride layer, and a method of performing nitrosulphurizing treatment in a nitriding atmosphere to which hydrogen sulfide is added is However, because it uses highly toxic hydrogen sulfide, there is a problem in workability such as handling and management. The method of nitriding after reducing the oxide film on the surface with a fluorine compound is applied to the surface of maraging steel. There are problems such as the remaining of fluoride and the cost of nitriding after the fluorination treatment, and the cost is increased. The method of nitriding treatment in a salt bath uses wastewater treatment because it uses cyanide. Problems remained in pollution measures and workability.
[0005]
In addition, maraging steel is a precipitation hardening type alloy steel, and the aging effect progresses simultaneously with the nitriding treatment, and the mechanical properties change. It is necessary to confirm the selection of conditions.
[0006]
In view of the above circumstances, an object of the present invention is to improve quality stability, workability, economy, etc. in nitriding treatment of maraging steel, and at the same time improve fatigue strength and extend fatigue life.
[0007]
[Means for solving the problems]
In view of the above circumstances,
[0008]
According to the first aspect, the organic chloride is vaporized in the furnace and decomposed into hydrogen chloride and carbon, and the hydrogen chloride generated by the decomposition removes the object to be treated, that is, the oxide film of the maraging steel. The surface is activated, NH 3 gas in the atmosphere is adsorbed on the activated maraging steel surface, the nitriding reaction is promoted, the hardness is increased, and a deep nitrided layer is obtained. In addition, it is possible to provide a nitrided article that has improved fatigue strength against tensile, bending, and unbending stress, and has extended fatigue life.
[0009]
In the present invention, NH 3 gas, NH 3 gas + N 2 gas, NH 3 gas + RX gas, or the like is used as the nitriding atmosphere.
[0012]
According to one embodiment of the present invention, in an atmosphere gas in which an organic chloride is added to a nitriding atmosphere, the treatment temperature is equal to or lower than the aging precipitation temperature of the object to be treated, that is, maraging steel, and the soaking time is 15 This is a maraging steel nitriding method in which nitriding is performed within a range of ˜60 minutes without forming a fragile white compound layer on the surface of the workpiece.
[0013]
According to the second aspect , the increase in hardness and deep nitrided layer obtained by the accelerated nitriding reaction improves the fatigue strength against tensile, bending and unbending stresses and extends the fatigue life. By not forming a fragile compound layer (white layer) on the surface of the object, it is possible to provide a nitrided product that further improves fatigue strength and further extends the fatigue life.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
[0018]
(Example)
The maraging steel was subjected to solution treatment at 800 to 900 ° C., and then subjected to aging treatment at 480 ° C. for 3 hours. This solution treatment and aging treatment are preferably performed in vacuum (about 1.33 × 10 −1 Pa≈10 −3 Torr) in order to prevent oxidation of the maraging steel surface. Subsequently, the maraging steel that had undergone the solution treatment and the aging treatment was subjected to nitriding treatment in a nitriding furnace heated to 450 ° C. below the aging precipitation temperature.
[0019]
The nitriding treatment is performed as a nitriding atmosphere with a mixed gas of NH 3 gas 40% + N 2 gas 60%, and after the maraging steel is charged into the nitriding furnace, the furnace temperature returns to 450 ° C. As a film removing agent, methylene chloride, an organic chloride, was added into the furnace at a rate of 90 ml per 1 m 3 of the furnace volume.
[0020]
The soaking time at 450 ° C. was carried out in the range of 15 to 120 minutes, and after soaking, it was transferred to a cooling chamber and cooled in an N 2 gas atmosphere.
[0021]
(Comparative example)
Unlike the embodiment of the present invention, the nitriding atmosphere, the soaking temperature, the soaking time, and the cooling step are nitrided in the same manner as in the above embodiment of the present invention without adding organic chloride methylene chloride in the furnace. Processed.
[0022]
The result of measuring the cross-sectional hardness of the maraging steel processed by the Example of the present invention and the comparative example is shown in FIG. According to FIG. 1, in the case of the comparative example, it was confirmed that the hardness on the surface was slightly increased by the nitriding treatment, but a nitride layer having a sufficient depth could not be obtained.
[0023]
In contrast to the comparative example, in the case of the example of the present invention, the hardness at the surface increased to 839 Hv, and the depth of the nitrided layer reached 0.04 mm.
[0024]
In the embodiment of the present invention, as described above, the addition of methylene chloride, an organic chloride, vaporizes the added methylene chloride in the furnace and decomposes it into hydrogen chloride and carbon. The surface is activated by removing the oxide film, and NH 3 gas in the atmospheric gas is adsorbed on the activated maraging steel surface to promote the nitriding reaction.
[0025]
When the amount of methylene chloride added is less than 30 ml per 1 m 3 of the furnace volume, the surface of the maraging steel is not sufficiently activated, causing uneven nitriding and nitriding loss, and If the amount of methylene added exceeds 100 ml per 1 m 3 of the furnace volume, the amount of free carbon in the atmosphere increases and soot adheres to the surface of the maraging steel and the furnace, so the amount of methylene chloride added is It was confirmed that 30 to 100 ml per 1 m 3 of the furnace volume was appropriate.
[0026]
Next, in the examples of the present invention, FIG. 3 shows the fatigue test results of maraging steel when the soaking time of the nitriding treatment is within 15 to 60 minutes and when it exceeds 60 minutes. . The fatigue test was conducted for tensile strength, bending and unbending strength using an endless belt made of maraging steel and using a belt pulley type fatigue tester shown in FIG.
[0027]
That is, in FIG. 2, 1 is a main pulley, 2 is a driven pulley, the endless belt 3 is stretched between the driven pulley 2 and the
[0028]
Considering the data of FIG. 3, the fatigue life of the endless belt is not subjected to nitriding treatment, whereas a which was 10 4 times, the fatigue life of the endless belt which has been subjected to nitriding treatment in the scope of the embodiments of the present invention Was 10 6 to 10 7 times, and it was found that the fatigue life was dramatically improved. However, it has been found that when the soaking time is extended as compared with the embodiment of the present invention, the fatigue life is decreased.
[0029]
FIG. 4 shows the relationship between the processing condition range of the embodiment of the present invention and the nitride layer depth. That is, in the range of the embodiment of the present invention, the depth of the nitrided layer was 20 to 38 μm, and it was found that 20 to 45% of the nitrided layer was obtained with respect to 1/2 of the thickness of the endless belt. did.
[0030]
Considering the result of the nitrided layer obtained in the embodiment of the present invention together with the relationship between the soaking time and the fatigue life of FIG. 3, the depth of the nitrided layer with respect to 1/2 of the thickness of the endless belt is It was confirmed that time management so as not to exceed the range of 20 to 45% is an effective means for maximizing the fatigue life of the endless belt.
[0031]
That is, it was confirmed that when the depth of the nitride layer is shallower than 20%, the fatigue life of the endless belt tends to vary, and when it is deeper than 45%, the fatigue life itself is shortened.
[0032]
FIG. 5 shows the relationship between the processing condition range of the embodiment of the present invention and the presence or absence of white layer formation. That is, it was found that only the nitride layer can be obtained without forming a white layer (fragile compound layer) on the surface of the object to be processed within the scope of the examples of the present invention.
[0033]
Considering the result of the presence or absence of the white layer formation obtained in the embodiment of the present invention together with the relationship between the soaking time and the fatigue life of FIG. 3, the fatigue life is reduced by the formation of the white layer, It was confirmed that not forming the layer is an effective means for improving the fatigue life of the endless belt.
[0034]
Further, in the examples of the present invention, the nitriding treatment of the maraging steel has been described. However, it can be applied to the nitriding treatment of a tough steel such as a precipitation hardening stainless steel other than the maraging steel. Has been confirmed experimentally.
[0035]
【The invention's effect】
According to the nitriding method of the present invention, it is possible to effectively perform nitriding treatment of maraging steel, improving the stability of quality, workability, economy, etc. in nitriding treatment of the maraging steel, and pulling In addition, the fatigue strength against bending and unbending stress can be improved, and the life of the fatigue life can be extended.
[Brief description of the drawings]
FIG. 1 is a cross-sectional hardness measurement diagram of an example of the present invention and a comparative example.
FIG. 2 is a principle diagram of a belt pulley type fatigue tester.
FIG. 3 is a measurement diagram showing test results of a burning time and a fatigue life.
FIG. 4 is an explanatory diagram showing the relationship between the heating time and the depth of a nitride layer in an embodiment of the present invention.
FIG. 5 is an explanatory diagram showing a relationship between a processing condition range and whether or not a white layer is formed in an embodiment of the present invention.
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000371107A JP3685322B2 (en) | 2000-12-06 | 2000-12-06 | Method for nitriding maraging steel |
EP01117289.7A EP1176224B1 (en) | 2000-07-24 | 2001-07-17 | Nitrided maraging steel and method of manufacturing thereof |
US09/907,455 US6733600B2 (en) | 2000-07-24 | 2001-07-18 | Nitrided maraging steel and method of manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000371107A JP3685322B2 (en) | 2000-12-06 | 2000-12-06 | Method for nitriding maraging steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002173760A JP2002173760A (en) | 2002-06-21 |
JP3685322B2 true JP3685322B2 (en) | 2005-08-17 |
Family
ID=18840884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000371107A Expired - Fee Related JP3685322B2 (en) | 2000-07-24 | 2000-12-06 | Method for nitriding maraging steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3685322B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4461014B2 (en) * | 2002-07-29 | 2010-05-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Plasma nitriding of maraging steel, shaver cap and cutting device for electric shaver manufactured from such maraging steel, and electric shaver |
JP2004169163A (en) * | 2002-11-22 | 2004-06-17 | Nippon Parkerizing Co Ltd | Molten salt composition for salt bath nitriding of maraging steel, method for treating the same, and endless metallic belt |
CN101151520B (en) * | 2005-04-01 | 2011-05-25 | 罗伯特·博世有限公司 | Quality monitoring method in a push belt making process |
NL1039971C2 (en) * | 2012-12-24 | 2014-06-25 | Bosch Gmbh Robert | Heat treatment process in a manufacturing method of a ring set for a drive belt. |
-
2000
- 2000-12-06 JP JP2000371107A patent/JP3685322B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002173760A (en) | 2002-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6733600B2 (en) | Nitrided maraging steel and method of manufacture thereof | |
EP1544317B1 (en) | Method of nitriding metal ring and apparatus therefor | |
US8414710B2 (en) | Method for surface treatment of metal material | |
JP3439132B2 (en) | Method for nitriding maraging steel and maraging steel product obtained thereby | |
JP3685322B2 (en) | Method for nitriding maraging steel | |
JP3114973B1 (en) | Gas nitriding method for maraging steel | |
JP2004043962A (en) | Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method | |
JP3064908B2 (en) | Carburized and hardened watch parts or accessories and their methods of manufacture | |
JP2005272884A (en) | Gas nitriding method | |
KR100862217B1 (en) | Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing | |
JP3823875B2 (en) | Nitriding method for maraging steel and belt for belt-type continuously variable transmission nitrided by the method | |
JP2001140020A (en) | Method for heat-treating carbo-nitriding treated member excellent in pitting resistance | |
JP3986996B2 (en) | Method for nitriding metal ring | |
JPH0754123A (en) | Nitriding method for steel | |
JP3288166B2 (en) | Micro shaft | |
JP2001150074A (en) | Method of manufacturing endless metallic belt | |
JP2005036278A (en) | Method of producing metallic belt for automobile, and metallic belt for automobile obtained thereby | |
JP4308368B2 (en) | Method for producing endless metal belt | |
KR100289286B1 (en) | Stainless Nitride Products | |
JP2005330565A (en) | Surface hardening treatment method for malaging steel | |
JPH11200010A (en) | Surface treatment of metallic multilayered belt for automobile | |
JP2808801B2 (en) | Method of carburizing Cr-containing steel | |
JP4494995B2 (en) | Metal surface treatment method | |
JP3025493B1 (en) | Gas nitriding method for maraging steel | |
JP3396336B2 (en) | Method of nitriding steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3685322 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090610 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100610 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100610 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130610 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |