JP3685073B2 - Flat light source - Google Patents

Flat light source Download PDF

Info

Publication number
JP3685073B2
JP3685073B2 JP2001051370A JP2001051370A JP3685073B2 JP 3685073 B2 JP3685073 B2 JP 3685073B2 JP 2001051370 A JP2001051370 A JP 2001051370A JP 2001051370 A JP2001051370 A JP 2001051370A JP 3685073 B2 JP3685073 B2 JP 3685073B2
Authority
JP
Japan
Prior art keywords
light source
discharge
flat light
flat
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001051370A
Other languages
Japanese (ja)
Other versions
JP2002251982A (en
Inventor
眞一 品田
茂生 御子柴
智一 志賀
完 池田
清 五十嵐
要次 新井
正志 土屋
靖 生田
Original Assignee
日立ライティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ライティング株式会社 filed Critical 日立ライティング株式会社
Priority to JP2001051370A priority Critical patent/JP3685073B2/en
Publication of JP2002251982A publication Critical patent/JP2002251982A/en
Application granted granted Critical
Publication of JP3685073B2 publication Critical patent/JP3685073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は平面状に発光する放電装置等の平板型光源、例えば液晶パネル等のバックライトが必要な表示素子を使用する、例えばテレビ、ゲーム機やカーナビゲーションシステム等の情報映像機器やワープロ等のOA機器、若しくは光源を内蔵した表示システム等における平板型光源、平板型光源を用いた照明装置および液晶表示装置に関するものである。
【0002】
【従来の技術】
液晶パネルは薄型軽量でありかつ低消費電力であるため、パソコンやテレビ等各種の情報映像ディスプレイとして広く利用されているが、液晶自体は発光素子でなく、表示のためには液晶パネルの背面から光を供給するバックライトが必要である。通常用いられているバックライトは、細径の蛍光ランプとアクリル樹脂の導光体を組み合わせたものが主であるが、平板型放電ランプも使用されている。
【0003】
図5は、例えば特開平9ー115483号に記載されている従来の平板型光源の断面図である。図に示すように、ソーダガラス等からなる透光性の前面板2と、ソーダガラスやセラミック等からなる背面板3とが、例えば低融点ガラス(図示せず)で一体に気密封着され、扁平状の放電空間8を有する密閉容器1が構成されている。発光面となる前面板2の内面には互いに平行な一対の放電電極4、5が設けられており、該放電電極4、5の表面は誘電体層6で覆われている。また、前面板2と絶縁基板3の内面には蛍光体7が塗布されており、密閉容器1内の放電空間8にはキセノンーアルゴンやキセノンーアルゴンーネオン等の希ガスの混合ガスや水銀と希ガス等の放電ガスが封入されている。
【0004】
本構成による平板型光源は、放電電極4、5間に高周波電圧(例えば、休止期間のある電圧パルス)を印加することにより放電空間8内に放電が発生し、放電で発生した紫外線により蛍光体7が励起されて発光し、光が前面板2を通して外部に放射される。
【0005】
【発明が解決しようとする課題】
上記平板型光源はキセノンからの紫外線で蛍光体を励起発光させるが、輝度、効率が低い問題があった。効率改善のため、例えば、周波数20kHzでパルス幅約1μsの電圧パルスを印加して放電させると効率は改善されが、輝度はあまり高くならない。高輝度化のため電圧を高くすると放電が収縮したり不均一になると共に安全性が問題になる。また、高耐圧の回路部品が必要になりコストが高くなるなど、高効率を維持したまま輝度を高くできない問題があった。
矩形波で駆動すると輝度を高くできるが、上記した従来の平板型光源では放電が収縮して平面状発光にならなかったり、均一性が悪くなり液晶表示装置のバックライトとして使えない問題があった。
【0006】
本発明の目的は上述した課題を解決するためになされたもので、簡単な構成で高輝度、高効率で均斉度の良い平板型光源を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明においては、透光性を有する前面板と絶縁基板とを組み合わせて扁平状の放電空間を有する密閉容器を構成し、前記前面板の内面に少なくとも一対の放電電極を設け、前記放電電極の表面を覆って誘電体層を設け、前記密閉容器の内部に放電ガスを封入した平板型光源において、前記放電電極の幅を0.2mm以上1.8mm以下にする。また、前記放電ガスとしてキセノンあるいはキセノンと他の希ガスを混合したガスを用いる。また、前記放電ガスとして水銀と希ガスを封入する。また、前記密閉容器の内面に蛍光体を設ける。さらに、前記放電電極に矩形波を印加して放電させる。
【0008】
また、前記放電電極を前記放電空間の辺の長さ方向ほぼ全長に渡って設けたり、前記放電電極を複数個に分割する。
【0009】
また、前記誘電体層の表面に保護膜を設ける。
【0010】
また、照明装置において、上記の平板型光源を用いて照明するよう構成する。
【0011】
また、液晶表示装置において上記の平板型光源をバックライトとして用いる。
【0012】
【発明の実施の形態】
つぎに本発明の実施例を図面と共に説明する。図1は本発明による平板型光源の一実施例を示す断面図である。図に示すように、例えばソーダガラス等からなる透光性の前面板2と背面板3と側板9とが例えば低融点ガラス(図示せず)で一体に気密封着され、扁平状の密閉容器1を構成している。背面板3は、例えば、側板9と一体にした箱型の形状をした容器を用いても良い。前面板2の内面には幅Wmmの互いに平行な一対の放電電極4、5が設けられ、該放電電極4、5の表面は厚膜印刷法等によって設けられた誘電体層6によって覆われている。前面板2と背面板3、側板9の内面には蛍光体7が塗布されており、密閉容器1内の放電空間8には放電ガスとしてキセノンーアルゴンーネオンの混合ガスが封入されている。発光面の大きさは、例えば2.5インチ液晶用のバックライトに用いる場合52mmΧ40mmで、この時、電極間距離は約54mm、放電空間8の高さは1.8mmである。また、5インチ液晶用のバックライトに用いる場合105mmΧ75mmで、この時、電極間距離は約80mm、放電空間8の高さは2.4mmである。
【0013】
本実施例による平板型光源の駆動方法は、放電電極4、5に矩形波を印加して放電させる。
【0014】
図2は矩形波の電圧波形の例を示した図で、例えば放電電極4には0Vを中心にVsと−Vsの電圧を有する矩形波か略矩形波の電圧11を印加し、放電電極5には同じ周波数で、11と逆の極性を有する矩形波か略矩形波の電圧12を印加して放電を行わせる。
このように、放電空間8内に放電を発生させ、放電で発生した紫外線により蛍光体7が励起されて発光し、光が前面板10を通して外部に放射される。
上記した駆動電圧波形を用いると、放電電極4、5間にはVsの2倍の電圧が印加されるので、1回路あたりの出力電圧が低くて済み回路構成が簡単になる。上記した実施例のように矩形波電圧を両電極に印加しても良いし、片方の電極に印加して放電させても良い。
図3は別の駆動波形を示した図で、例えば前記電極4に-Vh
の電圧パルスを有する電圧11を印加し、他の一方の電極5には11と同じ電圧パルスで、半周期位相のずれた電圧パルス-Vhを有する電圧12を印加して放電を行わせる。パルス幅W1と休止期間W2を同じ時間幅にすれば電圧11と電圧12を合わせた電圧波形は矩形波になり矩形波の駆動となる。周波数は10kHzから100kHz位まで使用できる。
上記した平板型光源は容量性負荷のため、電圧の印加と共に電荷が移動して電極上の誘電体層6に蓄積して壁電荷となる。外部電界と壁電荷による電界が等しくなった時点で壁電荷の移動が停止し、電流も停止する。このように、本構成による平板型光源は壁電荷により放電が支配されるため、従来の平板型光源では矩形波で駆動すると前記壁電荷が多すぎて放電の収縮を起こしていた。
図4は平板型光源に矩形波を印加して放電させた場合の前記放電電極4、5の幅Wと安定動作周波数領域の関係を示した特性図である。
図に示したように、前記放電電極4、5の幅Wを狭くするに従い高い周波数の矩形波で放電を収縮せずに点灯できる。これは、前記壁電荷を制御するためには電極幅Wと駆動周波数を安定動作領域に選べばよく、図4の安定動作領域内では高効率でかつ高輝度な平板型光源が得られる。
矩形波点灯では、放電電極の幅Wが4mm以上になると周波数によらず放電が収縮して平面発光にならない。また、4mmから2mm程度までは矩形波で点灯できるが点灯可能な周波数が低く、可聴周波数領域にあり、この周波数領域では点灯時、音が聞こえる。例えば携帯用機器のバッライトに平板型光源を用いるとこの周波数領域では異音が聞こえるため使用できない。電極幅Wが1.8
mm以下になると点灯周波数は17kHz程度になり可聴周波数範囲を超えるため異音がなくなり使用できる。
電極幅Wが0.2mmより狭くなると、前記誘電体層に蓄積される壁電荷が少なくなりすぎて高輝度を得るためには高電圧の印加が必要になる。また、電極を、例えば厚膜印刷法等で形成する場合、線幅が0.2mmより細くなると断線の発生や線幅のムラが起きる恐れがある。これらのことから、前記放電電極の幅Wは
0.2mm以上が実用的な幅となる。
以上結果から、前記放電電極の幅Wは0.2mmから1.8mmの間にすれば矩形波で駆動可能な平板型光源が得られる。
【0015】
上記した実施例は放電ガスとして希ガスの混合ガスの例を述べたが、水銀を封入しても同様な結果が得られる。
【0016】
放電電極の長さは上記実施例では放電空間8の辺の全長とほぼ同じ長さとしたが、これに限らず多少短くても良いし、放電空間の辺より長く封着部分にまで形成されていても良い。また、発光面が大きくなると放電電極が長くなるが、放電電極があまり長くなると放電電流が多くなり駆動回路の電流容量が大きくなる。駆動回路の電流容量が大きくなると放熱やコスト高になるなどの問題がでてくるので、この場合は放電電極を適当な数に分割して形成すると電極1ヶあたりの電流は少なくなるので回路を小さくできる。
放電電極4,5は、このほかITO膜やネサ膜等の透明導電膜を用いても良い。また、誘電体層6の表面をMgO等の保護層(図示せず)で覆ってやることで動作電圧の低下、スパッタの減少が可能になり、さらに長寿命の平板型光源が得られる。
【0017】
以上、詳述したように本発明による平板型光源は、矩形波で点灯可能で高輝度、高発光効率で安定性の良い平面発光が維持される特徴を有する。また、本発明による平板型光源を、例えば液晶表示装置のバックライト用光源に用いれば、高輝度で長寿命のバックライトが得られる。
【0018】
【発明の効果】
本発明によれば、封入ガスにキセノンやキセノンと他の希ガスの混合ガスを用いても、矩形波で点灯可能で、高輝度、高発光効率で、安定な放電で均一性の良い平板型光源が得られる。
【図面の簡単な説明】
【図1】本発明による平板型光源の断面図である。
【図2】平板型光源の駆動電圧波形である。
【図3】平板型光源の別の駆動電圧波形である。
【図4】電極幅と周波数の関係を示す特性図である。
【図5】従来の平板型光源を示す断面斜視図である。
【符号の説明】
1……密閉容器
2……前面板
3……背面板
9……側板
4、5……放電電極
11、12……駆動電圧波形
6……誘電体層
7……蛍光体
8……放電空間。
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a flat light source such as a discharge device that emits light in a flat form, for example, a display element that requires a backlight such as a liquid crystal panel, for example, information video equipment such as a TV, a game machine, a car navigation system, a word processor, etc. The present invention relates to a flat light source, a lighting device using a flat light source, and a liquid crystal display device in an OA device or a display system incorporating a light source.
[0002]
[Prior art]
Liquid crystal panels are thin and light and have low power consumption, so they are widely used as various information video displays such as personal computers and televisions. A backlight that supplies light is required. The backlight that is usually used is mainly a combination of a small-diameter fluorescent lamp and an acrylic resin light guide, but a flat discharge lamp is also used.
[0003]
FIG. 5 is a cross-sectional view of a conventional flat light source described in, for example, JP-A-9-115483. As shown in the figure, a translucent front plate 2 made of soda glass or the like and a back plate 3 made of soda glass or ceramic are integrally hermetically sealed with, for example, low-melting glass (not shown), An airtight container 1 having a flat discharge space 8 is configured. A pair of discharge electrodes 4, 5 parallel to each other are provided on the inner surface of the front plate 2 serving as a light emitting surface, and the surfaces of the discharge electrodes 4, 5 are covered with a dielectric layer 6. A phosphor 7 is applied to the inner surfaces of the front plate 2 and the insulating substrate 3, and a mixed gas of rare gas such as xenon-argon or xenon-argon-neon or mercury is applied to the discharge space 8 in the sealed container 1. And a discharge gas such as a rare gas is enclosed.
[0004]
The flat light source according to the present configuration generates a discharge in the discharge space 8 by applying a high-frequency voltage (for example, a voltage pulse having a rest period) between the discharge electrodes 4 and 5, and phosphors by the ultraviolet rays generated by the discharge 7 is excited to emit light, and light is emitted to the outside through the front plate 2.
[0005]
[Problems to be solved by the invention]
The flat light source excites phosphors with ultraviolet light from xenon, but has a problem of low brightness and efficiency. In order to improve the efficiency, for example, when a voltage pulse having a frequency of 20 kHz and a pulse width of about 1 μs is applied and discharged, the efficiency is improved, but the luminance is not so high. When the voltage is increased to increase the brightness, the discharge contracts or becomes non-uniform and safety becomes a problem. In addition, there is a problem that the luminance cannot be increased while maintaining high efficiency, for example, high voltage circuit components are required and the cost is increased.
When driven by a rectangular wave, the brightness can be increased. However, the conventional flat light source described above has a problem that the discharge contracts and the flat light emission does not occur or the uniformity is deteriorated and cannot be used as a backlight of a liquid crystal display device. .
[0006]
An object of the present invention is to solve the above-described problems, and is to provide a flat light source having a simple configuration, high luminance, high efficiency, and good uniformity.
[0007]
[Means for Solving the Problems]
To achieve the above object, in the present invention, a light-transmitting front plate and an insulating substrate are combined to form a sealed container having a flat discharge space, and at least a pair of discharges are formed on the inner surface of the front plate. In a flat light source in which an electrode is provided, a dielectric layer is provided to cover the surface of the discharge electrode, and a discharge gas is sealed inside the sealed container, the width of the discharge electrode is set to 0.2 mm or more and 1.8 mm or less . Further, as the discharge gas, xenon or a gas in which xenon and other rare gas are mixed is used. Further, mercury and a rare gas are enclosed as the discharge gas. A phosphor is provided on the inner surface of the sealed container. Further, a rectangular wave is applied to the discharge electrode for discharge.
[0008]
In addition, the discharge electrode is provided over substantially the entire length of the side of the discharge space, or the discharge electrode is divided into a plurality of parts.
[0009]
A protective film is provided on the surface of the dielectric layer.
[0010]
Moreover, it is comprised in an illuminating device so that it may illuminate using said flat type light source.
[0011]
In the liquid crystal display device, the flat light source is used as a backlight.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of a flat light source according to the present invention. As shown in the figure, a translucent front plate 2, a back plate 3, and a side plate 9 made of, for example, soda glass are integrally hermetically sealed with, for example, low melting point glass (not shown), so that a flat sealed container is formed. 1 is configured. For the back plate 3, for example, a box-shaped container integrated with the side plate 9 may be used. A pair of parallel discharge electrodes 4 and 5 having a width Wmm are provided on the inner surface of the front plate 2, and the surfaces of the discharge electrodes 4 and 5 are covered with a dielectric layer 6 provided by a thick film printing method or the like. Yes. A phosphor 7 is applied to the inner surfaces of the front plate 2, the rear plate 3, and the side plate 9, and a mixed gas of xenon-argon-neon is sealed in the discharge space 8 in the sealed container 1 as a discharge gas. The size of the light emitting surface is, for example, 52 mm to 40 mm when used for a backlight for a 2.5 inch liquid crystal. At this time, the distance between the electrodes is about 54 mm, and the height of the discharge space 8 is 1.8 mm. Further, when used for a backlight for a 5-inch liquid crystal, it is 105 mm to 75 mm. At this time, the distance between the electrodes is about 80 mm and the height of the discharge space 8 is 2.4 mm.
[0013]
In the driving method of the flat light source according to this embodiment, a rectangular wave is applied to the discharge electrodes 4 and 5 to cause discharge.
[0014]
FIG. 2 is a diagram showing an example of a rectangular wave voltage waveform. For example, a rectangular wave or a substantially rectangular wave voltage 11 having a voltage of Vs and −Vs around 0 V is applied to the discharge electrode 4, and the discharge electrode 5. Are discharged by applying a voltage 12 of a rectangular wave or a substantially rectangular wave having a polarity opposite to that of 11 at the same frequency.
In this way, a discharge is generated in the discharge space 8, the phosphor 7 is excited by the ultraviolet rays generated by the discharge and emits light, and the light is emitted outside through the front plate 10.
When the drive voltage waveform described above is used, a voltage twice as high as Vs is applied between the discharge electrodes 4 and 5, so that the output voltage per circuit is low and the circuit configuration is simplified. As in the above-described embodiment, a rectangular wave voltage may be applied to both electrodes, or may be applied to one electrode and discharged.
FIG. 3 is a diagram showing another driving waveform. For example, −Vh is applied to the electrode 4.
A voltage 11 having a voltage pulse of 5 is applied, and the other electrode 5 is discharged by applying a voltage 12 having the same voltage pulse as 11 and a voltage pulse -Vh having a half-cycle phase shift. If the pulse width W1 and the rest period W2 are set to the same time width, the voltage waveform including the voltage 11 and the voltage 12 becomes a rectangular wave, and the rectangular wave is driven. The frequency can be used from 10 kHz to 100 kHz.
Since the above-described flat light source is a capacitive load, the charge moves with application of voltage and accumulates in the dielectric layer 6 on the electrode to become wall charges. When the external electric field and the electric field due to the wall charge become equal, the movement of the wall charge stops and the current also stops. As described above, since the discharge of the flat light source according to the present configuration is dominated by the wall charges, the conventional flat light source has a large amount of the wall charges when driven by a rectangular wave, causing discharge contraction.
FIG. 4 is a characteristic diagram showing the relationship between the width W of the discharge electrodes 4 and 5 and the stable operating frequency region when a rectangular wave is applied to a flat light source for discharge.
As shown in the figure, as the width W of the discharge electrodes 4 and 5 is reduced, the discharge can be performed without contracting the discharge with a high-frequency rectangular wave. In order to control the wall charges, the electrode width W and the driving frequency may be selected as a stable operation region, and a flat light source with high efficiency and high brightness can be obtained in the stable operation region of FIG.
In rectangular wave lighting, when the width W of the discharge electrode is 4 mm or more, the discharge contracts regardless of the frequency and flat light emission does not occur. In addition, from about 4 mm to about 2 mm, the light can be lit with a rectangular wave, but the lit frequency is low and is in the audible frequency range. In this frequency range, a sound can be heard when lit. For example, if a flat light source is used for the backlight of a portable device, an abnormal sound can be heard in this frequency range, so that it cannot be used. The electrode width W is 1.8
When it is less than mm, the lighting frequency is about 17 kHz and exceeds the audible frequency range, so there is no abnormal noise and it can be used.
When the electrode width W is narrower than 0.2 mm, the wall charge accumulated in the dielectric layer becomes too small, and a high voltage needs to be applied in order to obtain high luminance. In addition, when the electrode is formed by, for example, a thick film printing method or the like, if the line width is thinner than 0.2 mm, disconnection or line width unevenness may occur. For these reasons, the width W of the discharge electrode is a practical width of 0.2 mm or more.
From the above results, if the width W of the discharge electrode is between 0.2 mm and 1.8 mm, a flat light source that can be driven by a rectangular wave can be obtained.
[0015]
In the above-described embodiment, an example of a mixed gas of rare gas as a discharge gas has been described. However, similar results can be obtained even when mercury is sealed.
[0016]
The length of the discharge electrode is substantially the same as the total length of the side of the discharge space 8 in the above embodiment, but is not limited to this, and may be slightly shorter, and may be formed longer than the side of the discharge space to the sealed portion. May be. In addition, the discharge electrode becomes longer as the light emitting surface becomes larger, but if the discharge electrode becomes too long, the discharge current increases and the current capacity of the drive circuit increases. If the current capacity of the drive circuit increases, problems such as heat dissipation and high costs will arise. In this case, if the discharge electrode is divided into an appropriate number, the current per electrode will decrease, so the circuit will be reduced. Can be small.
In addition, the discharge electrodes 4 and 5 may use a transparent conductive film such as an ITO film or a nesa film. Further, by covering the surface of the dielectric layer 6 with a protective layer (not shown) such as MgO, the operating voltage can be reduced and the sputtering can be reduced, and a long-life flat plate light source can be obtained.
[0017]
As described above in detail, the flat light source according to the present invention is characterized in that it can be lit with a rectangular wave, maintains high luminance, high luminous efficiency, and stable planar light emission. Further, when the flat light source according to the present invention is used as, for example, a light source for a backlight of a liquid crystal display device, a backlight having a high luminance and a long life can be obtained.
[0018]
【The invention's effect】
According to the present invention, even if xenon or a mixed gas of xenon and other rare gas is used as the sealing gas, it can be lit with a rectangular wave, has high brightness, high luminous efficiency, stable discharge, and good uniformity in flat discharge. A light source is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flat light source according to the present invention.
FIG. 2 is a drive voltage waveform of a flat light source.
FIG. 3 is another drive voltage waveform of the flat light source.
FIG. 4 is a characteristic diagram showing the relationship between electrode width and frequency.
FIG. 5 is a cross-sectional perspective view showing a conventional flat light source.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sealed container 2 ... Front plate 3 ... Back plate 9 ... Side plate 4, 5 ... Discharge electrode 11, 12 ... Drive voltage waveform 6 ... Dielectric layer 7 ... Phosphor 8 ... Discharge space .

Claims (9)

透光性を有する前面板と絶縁基板とを組み合わせて扁平状の放電空間を有する密閉容器を構成し、前記前面板の内面に一対の放電電極を設け、前記放電電極の表面を覆って誘電体層を設け、前記密閉容器の内部に放電ガスを封入した平板型光源において、前記放電電極に矩形波を印加して放電させること、および前記放電電極の幅を0.2mm以上1.8m以下にしたことを特徴とする平板型光源。A light-transmitting front plate and an insulating substrate are combined to form a sealed container having a flat discharge space, a pair of discharge electrodes are provided on the inner surface of the front plate, and the surface of the discharge electrode is covered with a dielectric. In a flat light source in which a discharge gas is sealed inside the sealed container , a rectangular wave is applied to the discharge electrode for discharge , and the width of the discharge electrode is 0.2 mm to 1.8 m A flat light source characterized by that. 前記放電ガスとしてキセノンあるいはキセノンと他の希ガスを混合したガスを用いたことを特徴とする請求項1に記載の平板型光源。The flat light source according to claim 1, wherein xenon or a gas obtained by mixing xenon and another rare gas is used as the discharge gas. 前記放電ガスとして水銀と希ガスを封入したことを特徴とする請求項1に記載の平板型光源。The flat light source according to claim 1, wherein mercury and a rare gas are enclosed as the discharge gas. 前記密閉容器の内面に蛍光体を設けたことを特徴とする請求項1から請求項3のいずれかに記載の平板型光源。The flat light source according to any one of claims 1 to 3, wherein a phosphor is provided on an inner surface of the sealed container. 前記放電電極を前記放電空間の辺の長さ方向ほぼ全長に渡って設けたことを特徴とする請求項1から請求項のいずれかに記載の平板型光源。The flat plate light source according to any one of claims 1 to 4 , wherein the discharge electrode is provided over substantially the entire length of the side of the discharge space. 前記放電電極としてITO膜またはネサ膜の透明導電膜を用いたことを特徴とする請求項1から請求項のいずれかに記載の平板型光源。Plate type light source according to any one of claims 1 to 5, characterized in that a transparent conductive film of ITO film or nesa film as the discharge electrode. 前記誘電体層の表面に保護膜を設けたことを特徴とする請求項1から請求項のいずれかに記載の平板型光源。The flat light source according to any one of claims 1 to 6 , wherein a protective film is provided on a surface of the dielectric layer. 請求項1から請求項のいずれかに記載の平板型光源を用いて照明するよう構成したことを特徴とする照明装置。An illumination device configured to illuminate using the flat light source according to any one of claims 1 to 7 . 請求項1から請求項のいずれかに記載の平板型光源をバックライトとして用いたことを特徴とする液晶表示装置。The liquid crystal display device characterized by using a plate type light source according as a backlight of claims 1 to claim 7.
JP2001051370A 2001-02-27 2001-02-27 Flat light source Expired - Fee Related JP3685073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051370A JP3685073B2 (en) 2001-02-27 2001-02-27 Flat light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051370A JP3685073B2 (en) 2001-02-27 2001-02-27 Flat light source

Publications (2)

Publication Number Publication Date
JP2002251982A JP2002251982A (en) 2002-09-06
JP3685073B2 true JP3685073B2 (en) 2005-08-17

Family

ID=18912166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051370A Expired - Fee Related JP3685073B2 (en) 2001-02-27 2001-02-27 Flat light source

Country Status (1)

Country Link
JP (1) JP3685073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917644B1 (en) * 2008-01-31 2009-09-17 주식회사 삼화양행 Planar light-source driving circuit using bi-polar pulse edge firing method
KR100927140B1 (en) * 2008-03-11 2009-11-18 재단법인서울대학교산학협력재단 Mercury surface light source structure, its driving method, surface light source device driving method

Also Published As

Publication number Publication date
JP2002251982A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
US6917354B2 (en) Fluorescent lamp, fluorescent lamp unit, liquid crystal display device, and method of emitting light
JP4593293B2 (en) Surface light source device and liquid crystal display device having the same
US7427977B2 (en) Lamp driving device for liquid crystal display device
JP2000082441A (en) Flat plate light source
JP2007087900A (en) Back light system
JP3685073B2 (en) Flat light source
JP3026416B2 (en) Flat light source
JP2000011958A (en) Plate-type light source and liquid crystal display device thereof
JP3714404B2 (en) Flat light source
JP3722025B2 (en) Flat discharge light source
JPH10222083A (en) Flat board type source of light and liquid crystal display thereof
JP3633227B2 (en) Discharge device, illumination device, and liquid crystal display device
JP2000323100A (en) Flat light source and liquid crystal display device using it
JP3627553B2 (en) Discharge device
JP3622572B2 (en) Flat light source
JP2000208103A (en) Flat light source and liquid crystal display device using it
KR100406780B1 (en) Plane light generator
JPH11144678A (en) Flat light source and liquid crystal display apparatus using it
JPH0950785A (en) Flat-panel fluorescent tube and lighting method thereof
JP2000208101A (en) Flat light source and liquid crystal display device using it
JPH1131591A (en) Method and device for driving discharge device, lighting system, and liquid crystal display device
JP2004241387A (en) Plasma display panel
JP2000149869A (en) Flat plate type light source, information instrument and liquid crystal display device
JP2000011950A (en) Flat-type light source
TWI320124B (en) Flat fluorescent lamp and driving method thereof, and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees