JP3685000B2 - Hot metal desiliconization method - Google Patents

Hot metal desiliconization method Download PDF

Info

Publication number
JP3685000B2
JP3685000B2 JP2000135858A JP2000135858A JP3685000B2 JP 3685000 B2 JP3685000 B2 JP 3685000B2 JP 2000135858 A JP2000135858 A JP 2000135858A JP 2000135858 A JP2000135858 A JP 2000135858A JP 3685000 B2 JP3685000 B2 JP 3685000B2
Authority
JP
Japan
Prior art keywords
hot metal
oxygen source
desiliconization
supply rate
silicon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000135858A
Other languages
Japanese (ja)
Other versions
JP2001316711A (en
Inventor
利夫 高岡
由枝 河合
良輝 菊地
涼 川畑
敦 渡辺
真一 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000135858A priority Critical patent/JP3685000B2/en
Publication of JP2001316711A publication Critical patent/JP2001316711A/en
Application granted granted Critical
Publication of JP3685000B2 publication Critical patent/JP3685000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転炉精錬に供する溶銑の珪素含有量を低減するために行われる、溶銑の脱珪方法に関するものである。
【0002】
【従来の技術】
高炉から出銑される溶銑は、炭素、珪素、マンガン、燐、硫黄等を含有し、その含有量は高炉での製造条件により変動する。一方、最終製品の物理的性質及び用途によっては、上記の各元素は有害元素となるため、各元素の含有量を溶銑段階において減少させる、所謂、溶銑の予備処理が行われている。そのうち、溶銑の脱燐を目的とする予備処理を行う場合には、少ない石灰使用量で且つ効率的に脱燐処理を行うために、脱燐処理の前に脱珪処理が行われる場合がある。
【0003】
この脱珪処理は、高炉鋳床の樋や溶銑を収容した取鍋及びトーピードカー等において実施されており、従来、種々の方法が提案されている。例えば、特公昭57−54524号公報(以下「先行技術1」と記す)には、脱珪剤である酸素源として気体酸素源と固体酸素源とを用い、溶銑の珪素含有量が高い範囲では気体酸素源の添加割合を高くし、逆に、珪素含有量が少ない範囲では固体酸素源の添加割合を高くして行う脱珪方法が開示されている。特公昭61−10528号公報(以下「先行技術2」と記す)には、Fe23 を主成分とする脱珪剤を溶銑湯面より2m以上の深さで不活性ガスと共に吹き込んで行う脱珪方法が開示されている。又、特公平5−55564号公報(以下「先行技術3」と記す)には、固体の酸化鉄とCaOとを含む粉体を、酸素富化ガスを搬送ガスとして溶銑の湯面下に吹き込んで行う脱珪方法が開示されている。
【0004】
尚、これらの先行技術にも示されるように、溶銑の脱珪処理においては、O2 ガス等の気体酸素源と、鉄鉱石やミルスケール等の固体酸素源との2種類の酸素源が脱珪剤として使用されており、そして、気体酸素源による脱珪反応は発熱反応であり、又、固体酸素源による脱珪反応は吸熱反応であるので、一般的に、これらは目標とする溶銑温度に応じてその比率を変えて使用されている。
【0005】
【発明が解決しようとする課題】
ところで、環境保護の観点から、廃棄物となるスラグの発生量を極小化することが要求されている。脱珪工程及び脱燐工程からなる予備処理において、スラグを極小化するためには、脱燐工程前の溶銑の珪素含有量をできるだけ低くし、脱燐反応に必要な石灰量を削減することが必要である。脱燐工程においては脱燐効率の向上のため、一般にスラグの塩基度(CaO/SiO2 )を2以上にする必要があり、そのため、溶銑中珪素の酸化により生成するSiO2 に見合った量のCaOを添加する必要があり、従って、溶銑の珪素含有量が低いほど、CaO添加量は少なくて済み、発生スラグ量も少なくなるので、脱珪工程においては珪素含有量を極力下げることが望ましい。
【0006】
しかしながら、先行技術1、先行技術2、及び先行技術3の方法により、溶銑中珪素を0.10質量%(以下「%」と記す)以下まで脱珪すると、添加した脱珪剤と溶銑中の炭素とが反応して脱炭反応が起こり、溶銑の炭素含有量が低下してしまう。溶銑中の炭素は後工程である転炉精錬での熱源として重要であり、溶銑の炭素含有量が低下することにより転炉でのスクラップ添加量やマンガン鉱石添加量が制限され、生産性及び製造コストに悪影響を与える。
【0007】
更に、先行技術1及び先行技術2では、脱炭反応により発生するCOガスによりスラグがフォーミングし、溶銑を収容した容器からスラグが溢れ出て、脱珪操業が大幅に阻害される。先行技術3では、CaOを添加しているのでスラグの塩基度が上昇し、スラグのフォーミングが抑制されるが、CaO添加による製造コストの上昇は避けることができず、又、スラグの発生量が増加するという問題点もある。
【0008】
本発明は上記事情に鑑みなされたもので、その目的とするところは、脱珪剤による溶銑の脱炭反応を抑えると共に、スラグ発生量を増やすことなくスラグのフォーミングを抑え、溶銑中の珪素含有量が0.10%以下の範囲まで安定して脱珪することができる溶銑の脱珪方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者等は上記課題を解決するために鋭意検討を重ねた。先ず、溶銑の珪素含有量が0.10%以下の範囲において、溶銑に酸素源を添加することにより起こる種々の化学反応を熱力学的に検討した。その結果、溶銑の珪素含有量が0.10%以下になると、熱力学の平衡計算から求められる優先脱珪条件を離脱し、下記の(1)式に示す脱珪反応から下記の(2)式に示す脱炭反応へと主反応が移行する。そして、この場合、それまでと同じ供給速度で酸素源を添加し続けると、(2)式の脱炭反応の進行により、溶銑中の炭素が減少すると共に発生するCOガスによりスラグのフォーミングが発生するとの知見を得た。
【0010】
【数1】

Figure 0003685000
【0011】
【数2】
Figure 0003685000
【0012】
この観点から前述の先行技術1〜3を検証すると、先行技術1〜3では、溶銑の珪素含有量に関わらず酸素源の供給速度が一定であるため、珪素含有量が0.10%以下の範囲では脱炭反応が起こり、CaOを添加しない先行技術1及び先行技術2では脱炭反応で発生するCOガスによりスラグのフォーミングに至ったものと考えられる。
【0013】
そこで、本発明者等は後述する実施例に示す脱珪処理設備を用いて、溶銑の珪素含有量が0.05%になるまで脱珪処理する際に、溶銑の珪素含有量が0.10%になった時点から酸素源供給速度をそれまでの酸素源供給速度の50%まで低減する試験を実施し、酸素源供給速度が溶銑の脱炭反応に及ぼす影響を調査した。試験では、気体酸素源としての工業用純酸素を上吹き酸素ランスから吹き付けると共に、固体酸素源としてのミルスケールを窒素を搬送ガスとして溶銑中に吹き込み添加した。そして、溶銑の珪素含有量が0.10%になった時点で純酸素及びミルスケールの供給量をそれぞれ同一の割合で減少させた。脱炭量は、脱珪処理前及び脱珪処理後の溶銑中炭素含有量を分析して求めた。
【0014】
図1にその調査結果を示す。図1に示すように、酸素源供給速度を変更せずに供給した場合には溶銑の炭素含有量は脱珪処理前後で0.8%減少したが、酸素源供給速度の低下に伴い脱炭量が抑制され、酸素源供給速度をそれまでの70%以下とすることで、脱炭量は0.10%以下に抑えられ、実操業上問題のないレベルまで抑制できるとの知見を得た。
【0015】
又、溶銑の珪素含有量が0.10%以下の範囲において、脱珪剤として気体酸素源を使用した場合と固体酸素源を使用した場合とで、脱炭反応に及ぼす影響を比較検討した。その結果、溶銑の珪素含有量が0.10%以下の範囲では脱珪剤として使用する酸素源を気体酸素源のみにすることで、脱炭反応を抑制できることが分かった。即ち、気体酸素源による脱珪反応は下記の(3)式で表され、気体酸素源が常に供給されている状態、換言すれば酸素分圧が確保されている状態では、(3)式の反応が下記の(4)式の反応及び(5)式の反応よりも熱力学的に優先して起こり、その結果、(2)式及び(4)式に示す脱炭反応が抑制されるとの知見を得た。
【0016】
【数3】
Figure 0003685000
【0017】
【数4】
Figure 0003685000
【0018】
【数5】
Figure 0003685000
【0019】
本発明は上記知見に基づきなされたもので、発明による溶銑の脱珪方法は、溶銑に酸素源を供給して溶銑を脱珪する方法であって、気体酸素源及び固体酸素源を合わせた酸素源の供給速度を酸素純分に換算して溶銑トン当たり0.05〜1.0Nm 3 /minの範囲で脱珪処理を開始し、溶銑の珪素含有量が0.10質量%以下になった時点から、供給する酸素源を気体酸素源のみとするとともに、溶銑への酸素源供給速度をそれまでの酸素源供給速度の70%以下として、脱珪処理における溶銑の脱炭量を0.10質量%以下に抑えることを特徴とするものである。
【0022】
本発明では、溶銑の珪素含有量が0.10%になった時点で溶銑への酸素源供給速度をそれまでの供給速度より低減させるので、脱珪剤による脱炭反応を抑制することができる。酸素源供給速度をそれまでの供給速度の70%以下とすることで更に効率よく脱炭反応を抑制することができる。その結果、脱炭反応によるCOガスの発生も極めて少なくすることができるので、CaO等のフラックスを添加することなくスラグのフォーミングを抑えることができる。
【0023】
【発明の実施の形態】
以下、本発明を添付図面を参照して説明する。図2は本発明を実施した溶銑の脱珪処理設備の概略図である。
【0024】
図2において、高炉(図示せず)から出銑された溶銑2を収容した取鍋型の溶銑保持容器5は、台車6に搭載されて脱珪処理設備1に搬入されている。脱珪処理設備1には、上吹き酸素ランス7とインジェクションランス8とが設置されており、上吹き酸素ランス7及びインジェクションランス8は、溶銑保持容器5内を上下移動可能となっている。上吹き酸素ランス7からは工業用純酸素等の気体酸素源を脱珪剤として溶銑2に吹き付けることができる。
【0025】
インジェクションランス8は貯蔵タンク9及び貯蔵タンク10と接続されており、貯蔵タンク9に収容された固体酸素源3及び貯蔵タンク10に収容された生石灰4を、窒素を搬送ガスとして溶銑2中に吹き込み添加することができる。固体酸素源3は脱珪剤として添加するものであり、鉄鉱石やミルスケール等を用いれば良い。生石灰4は生成するスラグの塩基度を調整するためのものであるが、本発明においては生石灰4は必ずしも必要なものではなく、反応状況に応じてスラグ量が多くならない程度に適宜添加すれば良い。又、生石灰4の替わりに他のフラックスを添加しても良い。尚、貯蔵タンク9内の固体酸素源3及び貯蔵タンク10内の生石灰4は、それぞれ独立に添加量及び添加時間を制御して吹き込むことができるようになっており、又、インジェクションランス8から窒素のみを吹き込み、溶銑2を攪拌することもできる。
【0026】
更に、脱珪処理設備1には、ホッパー11、12と、原料搬送装置13と、シュート14とからなる原料供給設備が設置されており、この原料供給設備を用いて、ホッパー11内の固体酸素源3及びホッパー12内の生石灰4を溶銑保持容器5内に上置き添加することもできるようになっている。
【0027】
次に、このような構成の脱珪処理設備1を用いた本発明による溶銑2の脱珪方法を説明する。溶銑保持容器5内に収容された溶銑2に、気体酸素源を上吹きランス7を介して溶銑2の湯面に向けて連続的に吹き付けて供給するか、又は、固体酸素源3をシュート14を介して連続的あるいは断続的に上置き添加するか、若しくは、固体酸素源3をインジェクションランス8を介して連続的に溶銑2中に吹き込み添加する。更に、これらの2以上の組み合わせにより酸素源を溶銑2に供給しても良い。
【0028】
このようにして脱珪剤を溶銑2に添加し、前述の(1)式及び(3)式に示す脱珪反応を起こさせる。インジェクションランス8から固体酸素源3を吹き込まない場合にも、溶銑2を攪拌して脱珪反応を促進させるために、インジェクションランス8から窒素等の不活性ガスを吹き込み、溶銑2を攪拌することが好ましい。生石灰4を添加する場合には、脱珪処理の開始前又は開始時点に上置き添加しても、脱珪処理中にインジェクションランス8から吹き込み添加してもどちらでも良い。
【0029】
この時、気体酸素源及び固体酸素源3を合わせた酸素源の供給速度は、酸素純分に換算して溶銑トン当たり0.05〜1.0Nm3 /minの範囲に設定して、脱珪反応を開始することが好ましい。この場合、0.05Nm3 /min未満では脱珪反応に時間がかかり過ぎ、一方、1.0Nm3 /minを越えるとダスト発生量が大幅に増大するからである。そして、溶銑2の珪素含有量が0.10%以下になるまで、この条件の範囲で脱珪反応を続行する。
【0030】
溶銑2の珪素含有量が0.10%以下になったなら、酸素源供給速度をそれまでの酸素源供給速度よりも低下させ、その条件で酸素源を供給して脱珪処理を継続する。前述したように、酸素源供給速度をそれまでの酸素源供給速度の70%以下に低下させることが好ましく、酸素源供給速度を低下させた後は固体酸素源3の供給を停止して気体酸素源のみを供給することが更に好ましい。溶銑2の珪素含有量が0.10%になる時点は、溶銑2から分析用試料を採取して確認しても良く、又、溶銑2の攪拌動力や送酸条件等によって決まる脱珪酸素効率と、酸素源供給速度と、溶銑2の初期珪素含有量とから計算によって求めても良い。そして、溶銑2の珪素含有量を目的とする値まで脱珪するに必要な量の酸素源を添加したならば、脱珪処理を終了する。
【0031】
このようにして溶銑2の脱珪処理を行うことで、脱珪剤による溶銑2の脱炭反応を抑えて、溶銑2中の珪素含有量が0.10%以下の範囲まで安定して脱珪することができる。又、脱炭反応によるCOガスの発生量が少なくなるので、CaO等のフラックスを添加しなくてもスラグのフォーミングを抑えることができ、その結果、スラグ発生量を増大させることなく脱珪することができる。
【0032】
尚、上記説明は取鍋型の溶銑保持容器5を用いた場合を説明したが、溶銑保持容器5は上記の取鍋型に限るものではなくトーピードカーであっても、又、上下吹き機能を有する転炉型精錬炉であっても、本発明は上記に準じて何ら支障なく実施できる。但し、転炉型精錬炉の場合には、インジェクションランス8の代りに底吹きガスを用い、固体酸素源3及び生石灰4等の原料は、全てを上置き添加や投射としても、一部又は全部を底吹きとしてもどちらでも良い。更に、脱珪処理設備1の各装置も上記に限るものではなく、その機能が上記の説明を満足するものであればどのような型式としても良い。
【0033】
【実施例】
図2に示す脱珪処理設備を用いて、高炉から出銑された135トンの溶銑を脱珪処理した実施例を説明する。本実施例においては処理条件を統一するために、脱珪処理前の溶銑の温度を1350℃に調整すると共に、珪素含有量を0.2%近傍に、又炭素含有量を4.5%近傍に調整した。
【0034】
溶銑の珪素含有量が0.10%を越える範囲の酸素源供給速度は次のようにした。即ち、比較例1及び実施例では、気体酸素源として工業用純酸素を1500Nm3 /hrで上吹き酸素ランスから連続的に吹き付けると共に、固体酸素源としてミルスケールを120kg/minでシュートから連続的に上置き添加した。実施例では、酸素源として気体酸素源のみを用い、工業用純酸素を2500Nm3/hrで上吹き酸素ランスから連続的に吹き付けた。
【0035】
この操業条件では、溶銑の珪素含有量が0.10%となる時点は脱珪処理開始後8分経過した時点であることが計算により求められたので、脱珪処理開始から8分経過後以降の酸素源供給速度は次のようにした。即ち、比較例1では工業用純酸素の量を1000Nm3 /hrに低減すると共に、ミルスケールの上置き添加量を80kg/minに低減した。実施例では、工業用純酸素の量はそのままにして、ミルスケールの上置き添加を停止した。実施例では、工業用純酸素の量を1500Nm3/hrに低減した。
【0036】
又、比較のために、溶銑の珪素含有量が0.10%を越える範囲の酸素源供給速度は比較例1及び実施例と同一にし、溶銑の珪素含有量が0.10%以下の範囲もそのままの酸素源供給速度で脱珪した従来例1と、溶銑の珪素含有量が0.10%を越える範囲の酸素源供給速度は実施例と同一にし、溶銑の珪素含有量が0.10%以下の範囲もそのままの酸素源供給速度で脱珪した従来例2とを行い比較した。尚、従来例1及び従来例2における溶銑の温度及び成分は、比較例1及び実施例1〜と同一に調整した。表1に比較例1、実施例1〜及び従来例1〜2の操業条件を示す。尚、全ての比較例、実施例及び従来例において、インジェクションランスから240Nm3 /hrで窒素を吹き込み、溶銑を攪拌した。
【0037】
【表1】
Figure 0003685000
【0038】
そして、溶銑の珪素含有量が0.05%になるまで脱珪した。脱珪処理後、溶銑から分析用試料を採取して炭素含有量を分析し、脱珪処理前に採取した試料の炭素含有量と比較して、脱珪処理における脱炭量を測定した。表1に溶銑の珪素含有量及び炭素含有量を合わせて示す。
【0039】
表1に示すように、比較例1、実施例、及び実施例では脱炭量が0.10%以下であり、後工程の転炉操業で問題にならない範囲に脱炭量を抑えることができた。一方、従来例1及び従来例2では脱炭量は0.8%程度と大きく、後工程の転炉精錬では熱源としての炭素が不足し、発熱用に土壌黒鉛を使わざるを得なかった。
【0040】
【発明の効果】
本発明では、溶銑の珪素含有量が0.10%以下になった時点で溶銑への酸素源供給速度をそれまでの供給速度より低下して脱珪処理するので、脱珪剤による溶銑の脱炭反応を抑えると共に、石灰等の添加によりスラグ発生量を増やすことなくスラグのフォーミングを抑え、溶銑中の珪素含有量が0.10%以下の範囲まで安定して脱珪することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】溶銑の珪素含有量が0.10%以下の範囲の酸素源供給速度を低減させ、この酸素源供給速度が溶銑の脱炭量に及ぼす影響を調査した結果を示す図である。
【図2】本発明を実施した溶銑の脱珪処理設備の概略図である。
【符号の説明】
1 脱珪処理設備
2 溶銑
3 固体酸素源
4 生石灰
5 溶銑保持容器
6 台車
7 上吹き酸素ランス
8 インジェクションランス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal desiliconization method performed to reduce the silicon content of hot metal used for converter refining.
[0002]
[Prior art]
The hot metal discharged from the blast furnace contains carbon, silicon, manganese, phosphorus, sulfur and the like, and the content varies depending on the production conditions in the blast furnace. On the other hand, depending on the physical properties and applications of the final product, each of the above elements becomes a harmful element, so a so-called hot metal pretreatment is performed to reduce the content of each element in the hot metal stage. Among them, when performing preliminary treatment for the purpose of dephosphorization of hot metal, desiliconization may be performed before dephosphorization in order to efficiently perform dephosphorization with a small amount of lime. .
[0003]
This desiliconization treatment is carried out in a ladle, a torpedo car, etc. containing blast furnace cast iron and hot metal, and various methods have been proposed in the past. For example, Japanese Examined Patent Publication No. 57-54524 (hereinafter referred to as “prior art 1”) uses a gaseous oxygen source and a solid oxygen source as an oxygen source as a desiliconizing agent, and in a range where the silicon content of the hot metal is high. A desiliconization method is disclosed in which the addition ratio of the gaseous oxygen source is increased, and conversely, the addition ratio of the solid oxygen source is increased within a range where the silicon content is low. In Japanese Examined Patent Publication No. 61-10528 (hereinafter referred to as “Prior Art 2”), a desiliconizing agent mainly composed of Fe 2 O 3 is blown with an inert gas at a depth of 2 m or more from the molten metal surface. A desiliconization method is disclosed. In Japanese Patent Publication No. 5-55564 (hereinafter referred to as “prior art 3”), powder containing solid iron oxide and CaO is blown into the hot metal surface of the hot metal using oxygen-enriched gas as a carrier gas. Is disclosed.
[0004]
As shown in these prior arts, in the hot metal desiliconization process, two types of oxygen sources, a gaseous oxygen source such as O 2 gas and a solid oxygen source such as iron ore and mill scale, are desorbed. Since the desiliconization reaction using a gaseous oxygen source is an exothermic reaction and the desiliconization reaction using a solid oxygen source is an endothermic reaction, these are generally the target hot metal temperatures. The ratio is changed according to the usage.
[0005]
[Problems to be solved by the invention]
By the way, from the viewpoint of environmental protection, there is a demand for minimizing the amount of waste slag generated. In order to minimize the slag in the pretreatment consisting of the desiliconization step and the dephosphorization step, the silicon content of the hot metal before the dephosphorization step should be made as low as possible to reduce the amount of lime necessary for the dephosphorization reaction. is necessary. In the dephosphorization process, in order to improve the dephosphorization efficiency, it is generally necessary to set the basicity of the slag (CaO / SiO 2 ) to 2 or more. Therefore, an amount suitable for the SiO 2 produced by the oxidation of silicon in the hot metal CaO needs to be added. Therefore, the lower the silicon content in the hot metal, the smaller the amount of CaO added and the smaller the amount of generated slag. Therefore, it is desirable to reduce the silicon content as much as possible in the desiliconization step.
[0006]
However, when silicon in the molten iron is desiliconized to 0.10 mass% (hereinafter referred to as “%”) or less by the methods of the prior art 1, the prior art 2, and the prior art 3, the added desiliconizing agent and the molten iron Carbon reacts with it to cause a decarburization reaction, and the carbon content of the hot metal decreases. Carbon in the hot metal is important as a heat source for converter refining, which is a subsequent process, and by reducing the carbon content of the hot metal, the amount of scrap and manganese ore added in the converter is limited, resulting in productivity and manufacturing. Adversely affect costs.
[0007]
Furthermore, in the prior art 1 and the prior art 2, the slag is formed by the CO gas generated by the decarburization reaction, the slag overflows from the container containing the molten iron, and the desiliconization operation is greatly hindered. In the prior art 3, since CaO is added, the basicity of slag is increased and slag forming is suppressed, but an increase in production cost due to the addition of CaO cannot be avoided, and the amount of slag generated is small. There is also the problem of increasing.
[0008]
The present invention has been made in view of the above circumstances, and its object is to suppress the decarburization reaction of the hot metal by the desiliconizing agent, suppress the formation of slag without increasing the amount of slag generation, and contain silicon in the hot metal. An object of the present invention is to provide a hot metal desiliconization method capable of stably desiliconizing the amount to a range of 0.10% or less.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies in order to solve the above problems. First, in the range where the silicon content of the hot metal is 0.10% or less, various chemical reactions caused by adding an oxygen source to the hot metal were studied thermodynamically. As a result, when the silicon content of the hot metal becomes 0.10% or less, the preferential desiliconization condition obtained from the thermodynamic equilibrium calculation is removed, and the following (2) from the desiliconization reaction shown in the following equation (1) The main reaction shifts to the decarburization reaction shown in the formula. In this case, if the oxygen source is continuously added at the same supply rate as before, the decarburization reaction of formula (2) causes the carbon in the hot metal to decrease and the slag to form due to the generated CO gas. I got the knowledge.
[0010]
[Expression 1]
Figure 0003685000
[0011]
[Expression 2]
Figure 0003685000
[0012]
When the above prior arts 1 to 3 are verified from this viewpoint, in the prior arts 1 to 3, since the supply rate of the oxygen source is constant regardless of the silicon content of the hot metal, the silicon content is 0.10% or less. It is considered that the decarburization reaction occurred in the range, and in the prior art 1 and the prior art 2 in which no CaO was added, the slag was formed by the CO gas generated by the decarburization reaction.
[0013]
Therefore, the present inventors use a silicon removal treatment facility shown in the examples described later to perform silicon removal until the silicon content in the hot metal reaches 0.05%, so that the silicon content in the hot metal is 0.10. A test was conducted to reduce the oxygen source supply rate to 50% of the oxygen source supply rate up to that point, and the influence of the oxygen source supply rate on the decarburization reaction of hot metal was investigated. In the test, industrial pure oxygen as a gaseous oxygen source was blown from the top blowing oxygen lance, and mill scale as a solid oxygen source was blown into the molten iron using nitrogen as a carrier gas. Then, when the silicon content of the hot metal reached 0.10%, the supply amounts of pure oxygen and mill scale were reduced at the same rate. The amount of decarburization was determined by analyzing the carbon content in the hot metal before the desiliconization treatment and after the desiliconization treatment.
[0014]
FIG. 1 shows the results of the investigation. As shown in FIG. 1, when the oxygen source supply rate was supplied without change, the carbon content of the hot metal decreased by 0.8% before and after the desiliconization treatment. However, as the oxygen source supply rate decreased, decarburization occurred. The amount of decarburization was controlled and the oxygen source supply rate was set to 70% or less, so that the amount of decarburization was suppressed to 0.10% or less, and it was obtained that it was possible to suppress to a level where there was no problem in actual operation. .
[0015]
In addition, when the silicon content of the hot metal was 0.10% or less, the effects on the decarburization reaction were compared between the case of using a gaseous oxygen source as a desiliconizing agent and the case of using a solid oxygen source. As a result, it was found that the decarburization reaction can be suppressed by using only the gaseous oxygen source as the oxygen source used as the desiliconizing agent when the silicon content of the hot metal is 0.10% or less. That is, the desiliconization reaction by the gaseous oxygen source is expressed by the following formula (3). In a state where the gaseous oxygen source is always supplied, in other words, in a state where the oxygen partial pressure is secured, the formula (3) When the reaction takes place thermodynamically prior to the reaction of the following formula (4) and the formula (5), as a result, the decarburization reaction shown in the formulas (2) and (4) is suppressed. I got the knowledge.
[0016]
[Equation 3]
Figure 0003685000
[0017]
[Expression 4]
Figure 0003685000
[0018]
[Equation 5]
Figure 0003685000
[0019]
The present invention has been made on the basis of the above knowledge, and the hot metal desiliconization method according to the present invention is a method of supplying an oxygen source to the hot metal to desiliconize the hot metal, and combines a gaseous oxygen source and a solid oxygen source. 0.05 to 1.0 Nm 3 per ton of hot metal in terms of oxygen source supply rate converted to pure oxygen Demineralization treatment is started in the range of / min, and the oxygen source to be supplied is only a gaseous oxygen source from the time when the silicon content of the hot metal becomes 0.10% by mass or less, and the oxygen source supply rate to the hot metal Is 70% or less of the oxygen source supply rate so far, and the amount of decarburization of the hot metal in the desiliconization treatment is suppressed to 0.10% by mass or less .
[0022]
In the present invention, when the silicon content of the hot metal reaches 0.10%, the oxygen source supply rate to the hot metal is reduced from the supply rate up to that time, so that the decarburization reaction by the desiliconizing agent can be suppressed. . The decarburization reaction can be suppressed more efficiently by setting the oxygen source supply rate to 70% or less of the supply rate up to that time. As a result, the generation of CO gas due to the decarburization reaction can be extremely reduced, so that the formation of slag can be suppressed without adding a flux such as CaO.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the accompanying drawings. FIG. 2 is a schematic view of a hot metal desiliconization processing facility embodying the present invention.
[0024]
In FIG. 2, a ladle type hot metal holding container 5 containing hot metal 2 discharged from a blast furnace (not shown) is mounted on a carriage 6 and carried into a desiliconization processing facility 1. An upper blown oxygen lance 7 and an injection lance 8 are installed in the desiliconization processing equipment 1, and the upper blown oxygen lance 7 and the injection lance 8 can move up and down in the hot metal holding container 5. From the top blowing oxygen lance 7, a gaseous oxygen source such as industrial pure oxygen can be sprayed onto the hot metal 2 as a desiliconizing agent.
[0025]
The injection lance 8 is connected to the storage tank 9 and the storage tank 10, and the solid oxygen source 3 stored in the storage tank 9 and the quick lime 4 stored in the storage tank 10 are blown into the hot metal 2 using nitrogen as a carrier gas. Can be added. The solid oxygen source 3 is added as a desiliconizing agent, and iron ore, mill scale, or the like may be used. Although quicklime 4 is for adjusting the basicity of the slag to produce | generate, quicklime 4 is not necessarily required in this invention, What is necessary is just to add suitably to such an extent that the amount of slag does not increase according to the reaction condition. . Further, instead of the quicklime 4, other flux may be added. The solid oxygen source 3 in the storage tank 9 and the quick lime 4 in the storage tank 10 can be blown independently with the addition amount and the addition time controlled, and the injection lance 8 is supplied with nitrogen. It is also possible to stir the hot metal 2 by blowing only.
[0026]
Further, the desiliconization processing facility 1 is provided with a raw material supply facility comprising hoppers 11 and 12, a raw material transfer device 13, and a chute 14, and solid oxygen in the hopper 11 is used by using this raw material supply facility. The quick lime 4 in the source 3 and the hopper 12 can also be added on top of the hot metal holding container 5.
[0027]
Next, the desiliconization method of the hot metal 2 according to the present invention using the desiliconization processing equipment 1 having such a configuration will be described. The hot metal 2 accommodated in the hot metal holding container 5 is supplied by continuously blowing a gaseous oxygen source toward the molten metal surface of the hot metal 2 through the upper blowing lance 7 or the solid oxygen source 3 is chute 14. The solid oxygen source 3 is continuously blown into the molten iron 2 through the injection lance 8 continuously or intermittently. Further, an oxygen source may be supplied to the hot metal 2 by a combination of two or more of these.
[0028]
In this way, the desiliconization agent is added to the hot metal 2 to cause the desiliconization reaction shown in the above formulas (1) and (3). Even when the solid oxygen source 3 is not blown from the injection lance 8, an inert gas such as nitrogen is blown from the injection lance 8 to stir the hot metal 2 in order to stir the hot metal 2 and promote the desiliconization reaction. preferable. When the quicklime 4 is added, it may be added before or at the start of the desiliconization treatment, or may be blown from the injection lance 8 during the desiliconization treatment.
[0029]
At this time, the supply rate of the oxygen source including the gaseous oxygen source and the solid oxygen source 3 is set in a range of 0.05 to 1.0 Nm 3 / min per ton of hot metal in terms of pure oxygen, It is preferred to start the reaction. In this case, if it is less than 0.05 Nm 3 / min, it takes too much time for the desiliconization reaction. On the other hand, if it exceeds 1.0 Nm 3 / min, the amount of dust generated is greatly increased. And desiliconization reaction is continued in the range of this condition until the silicon content of the hot metal 2 becomes 0.10% or less.
[0030]
When the silicon content of the hot metal 2 becomes 0.10% or less, the oxygen source supply rate is lowered from the previous oxygen source supply rate, the oxygen source is supplied under the conditions, and the desiliconization process is continued. As described above, it is preferable to reduce the oxygen source supply rate to 70% or less of the previous oxygen source supply rate. After the oxygen source supply rate is reduced, the supply of the solid oxygen source 3 is stopped and the gaseous oxygen More preferably, only the source is supplied. The time when the silicon content of the hot metal 2 reaches 0.10% may be confirmed by collecting an analytical sample from the hot metal 2, and the desiliconization oxygen efficiency determined by the stirring power of the hot metal 2, the acid feed conditions, etc. It may be obtained by calculation from the oxygen source supply rate and the initial silicon content of the hot metal 2. When the amount of oxygen source necessary for desiliconization of the silicon content of the hot metal 2 to the target value is added, the desiliconization process is terminated.
[0031]
By carrying out the desiliconization treatment of the hot metal 2 in this way, the decarburization reaction of the hot metal 2 by the desiliconizing agent is suppressed, and the silicon content in the hot metal 2 is stably desiliconized to a range of 0.10% or less. can do. In addition, since the amount of CO gas generated by the decarburization reaction is reduced, slag forming can be suppressed without adding a flux such as CaO. As a result, desiliconization can be performed without increasing the amount of slag generated. Can do.
[0032]
In addition, although the said description demonstrated the case where the ladle type hot metal holding | maintenance container 5 was used, the hot metal holding | maintenance container 5 is not restricted to said ladle type | mold, Even if it is a torpedo car, it has an up-and-down blowing function. Even if it is a converter type refining furnace, this invention can be implemented according to the above without any trouble. However, in the case of a converter-type smelting furnace, a bottom blowing gas is used instead of the injection lance 8, and the raw materials such as the solid oxygen source 3 and the quicklime 4 are all added or projected in part or in whole. Either can be used as a bottom spray. Furthermore, each apparatus of the desiliconization processing equipment 1 is not limited to the above, and any type may be used as long as its function satisfies the above description.
[0033]
【Example】
An embodiment in which 135 tons of molten iron discharged from a blast furnace is desiliconized using the desiliconization processing facility shown in FIG. 2 will be described. In this example, in order to unify the processing conditions, the temperature of the hot metal before desiliconization is adjusted to 1350 ° C., the silicon content is close to 0.2%, and the carbon content is close to 4.5%. Adjusted.
[0034]
The oxygen source supply rate in the range where the silicon content of the hot metal exceeded 0.10% was as follows. That is, in Comparative Example 1 and Example 1 , industrial pure oxygen was continuously blown from the top blown oxygen lance at 1500 Nm 3 / hr as the gaseous oxygen source, and the mill scale was continuously taken from the chute at 120 kg / min as the solid oxygen source. Was added on top. In Example 2 , only a gaseous oxygen source was used as the oxygen source, and industrial pure oxygen was continuously blown from the top blowing oxygen lance at 2500 Nm 3 / hr.
[0035]
Under these operating conditions, it was calculated by calculation that the time when the silicon content of the hot metal reached 0.10% was 8 minutes after the start of the desiliconization treatment. The oxygen source supply rate was as follows. That is, in Comparative Example 1, the amount of industrial pure oxygen was reduced to 1000 Nm 3 / hr, and the addition amount on the mill scale was reduced to 80 kg / min. In Example 1 , the addition of the mill scale was stopped while the amount of industrial pure oxygen remained unchanged. In Example 2 , the amount of industrial pure oxygen was reduced to 1500 Nm 3 / hr.
[0036]
For comparison, the oxygen source supply rate in the range where the silicon content of the hot metal exceeds 0.10% is the same as in Comparative Example 1 and Example 1, and the silicon content of the hot metal is in the range of 0.10% or less. However, the conventional example 1 in which silicon was desiliconized at the same oxygen source supply rate and the oxygen source supply rate in the range where the silicon content of hot metal exceeded 0.10% were the same as those in Example 2, and the silicon content of hot metal was 0. Comparison was made with the conventional example 2 in which the silicon was desiliconized at the oxygen source supply rate in the range of 10% or less. In addition, the temperature and component of the hot metal in Conventional Example 1 and Conventional Example 2 were adjusted to be the same as those in Comparative Example 1 and Examples 1-2 . Comparative Example Table 1 1 shows the operating conditions of Example 1-2 and Conventional Example 1-2. In all comparative examples, examples, and conventional examples, nitrogen was blown from the injection lance at 240 Nm 3 / hr, and the hot metal was stirred.
[0037]
[Table 1]
Figure 0003685000
[0038]
And it desiliconized until the silicon content of the hot metal became 0.05%. After the desiliconization treatment, an analytical sample was collected from the hot metal to analyze the carbon content, and compared with the carbon content of the sample collected before the desiliconization treatment, the decarburization amount in the desiliconization treatment was measured. Table 1 also shows the silicon content and carbon content of the hot metal.
[0039]
As shown in Table 1, the decarburization amount is 0.10% or less in Comparative Example 1, Example 1 , and Example 2 , and the decarburization amount is suppressed to a range that does not cause a problem in the subsequent converter operation. I was able to. On the other hand, in conventional example 1 and conventional example 2, the amount of decarburization was as large as about 0.8%, and in the post-process converter refining, carbon as a heat source was insufficient, and soil graphite had to be used for heat generation.
[0040]
【The invention's effect】
In the present invention, when the silicon content of the hot metal becomes 0.10% or less, the oxygen source supply rate to the hot metal is reduced below the supply rate so far, so that the desiliconization treatment is performed. Suppresses charcoal reaction, suppresses slag formation without increasing slag generation by adding lime, etc., and can stably desiliconize silicon content in hot metal to 0.10% or less. A beneficial effect is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of investigating the influence of the oxygen source supply rate on the decarburization amount of hot metal by reducing the oxygen source supply rate when the silicon content of the hot metal is 0.10% or less.
FIG. 2 is a schematic view of hot metal desiliconization processing equipment embodying the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Desiliconization processing equipment 2 Hot metal 3 Solid oxygen source 4 Quicklime 5 Hot metal holding container 6 Carriage 7 Top blown oxygen lance 8 Injection lance

Claims (1)

溶銑に酸素源を供給して溶銑を脱珪する方法であって、気体酸素源及び固体酸素源を合わせた酸素源の供給速度を酸素純分に換算して溶銑トン当たり0.05〜1.0Nm 3 /minの範囲で脱珪処理を開始し、溶銑の珪素含有量が0.10質量%以下になった時点から、供給する酸素源を気体酸素源のみとするとともに、溶銑への酸素源供給速度をそれまでの酸素源供給速度の70%以下として、脱珪処理における溶銑の脱炭量を0.10質量%以下に抑えることを特徴とする溶銑の脱珪方法。A method of desiliconizing hot metal by supplying an oxygen source to the hot metal, wherein the supply rate of the oxygen source including the gaseous oxygen source and the solid oxygen source is converted to pure oxygen and 0.05 to 1. 0 Nm 3 Demineralization treatment is started in the range of / min, and the oxygen source to be supplied is only a gaseous oxygen source from the time when the silicon content of the hot metal becomes 0.10% by mass or less, and the oxygen source supply rate to the hot metal Is 70% or less of the oxygen source supply rate until then, and the amount of decarburization of the hot metal in the desiliconization treatment is suppressed to 0.10% by mass or less .
JP2000135858A 2000-05-09 2000-05-09 Hot metal desiliconization method Expired - Fee Related JP3685000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135858A JP3685000B2 (en) 2000-05-09 2000-05-09 Hot metal desiliconization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135858A JP3685000B2 (en) 2000-05-09 2000-05-09 Hot metal desiliconization method

Publications (2)

Publication Number Publication Date
JP2001316711A JP2001316711A (en) 2001-11-16
JP3685000B2 true JP3685000B2 (en) 2005-08-17

Family

ID=18643884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135858A Expired - Fee Related JP3685000B2 (en) 2000-05-09 2000-05-09 Hot metal desiliconization method

Country Status (1)

Country Link
JP (1) JP3685000B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981248B2 (en) * 2004-11-15 2012-07-18 Jfeスチール株式会社 Hot metal processing method

Also Published As

Publication number Publication date
JP2001316711A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
US9920390B2 (en) Method for preliminary treatment of molten iron
JP5954551B2 (en) Converter steelmaking
RU2006101983A (en) METHOD AND INSTALLATION FOR PRODUCING ALLOYED METAL MELT
EP0222397B1 (en) Method for melting and reducing chrome ore
JP5408379B2 (en) Hot metal pretreatment method
JP4984946B2 (en) Hot metal pretreatment method
US4392886A (en) Method of recovering CO-rich exhaust gas in refining of metal
JP3685000B2 (en) Hot metal desiliconization method
JP4192503B2 (en) Manufacturing method of molten steel
JP4701752B2 (en) Hot metal pretreatment method
JP5487870B2 (en) Low nitrogen steel manufacturing method
JP2001131625A (en) Dephosphorizing method of molten iron using converter
KR20130075278A (en) Method of dephosphorizing ferromanganese
JPH083612A (en) Method for refining clean steel
JPH083613A (en) Iron-making and steelmaking method
JPH07252518A (en) Method for raising temperature of molten steel and temperature raising agent
JPH0413404B2 (en)
JPH09316519A (en) Method for reforming smelting slag
JP3975869B2 (en) Hot metal desiliconization method
KR100226928B1 (en) The manufacturing method of low sulpher contained molten metal
GB2103648A (en) Gasification of carbonaceous materials
JPH03277709A (en) Production of molten steel
JPH03277710A (en) Iron-making method with smelting reduction
KR19980037270A (en) Refining method of ultra low carbon ultra low nitrogen steel
JPS628488B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3685000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees