JP3684596B2 - Ruled polyester film - Google Patents

Ruled polyester film Download PDF

Info

Publication number
JP3684596B2
JP3684596B2 JP22196594A JP22196594A JP3684596B2 JP 3684596 B2 JP3684596 B2 JP 3684596B2 JP 22196594 A JP22196594 A JP 22196594A JP 22196594 A JP22196594 A JP 22196594A JP 3684596 B2 JP3684596 B2 JP 3684596B2
Authority
JP
Japan
Prior art keywords
ruled line
film
ruled
line processed
processed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22196594A
Other languages
Japanese (ja)
Other versions
JPH0885148A (en
Inventor
明 高橋
清 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP22196594A priority Critical patent/JP3684596B2/en
Publication of JPH0885148A publication Critical patent/JPH0885148A/en
Application granted granted Critical
Publication of JP3684596B2 publication Critical patent/JP3684596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、化粧箱、食品容器、液体容器、雑貨品容器等に用いられる折箱等に使用される罫線加工されたポリエステルフィルムに関し、詳細には、罫線加工部分の折り曲げ易さ、強度維持および機械加工性が良好であると共に、外観的にも優れた折箱等に用いることのできる罫線加工されたポリエステルフィルムに関するものである。
【0002】
【従来の技術】
折箱とは、平面状の厚紙材を切り抜き加工もしくは罫線加工し、それによって形成された切り抜き部もしくは罫線部の形状に沿って厚紙材を折り曲げ、組立てることによって形成された剛性構造体のことである。この折箱は通常、印刷された板材に、切り抜き加工と罫線加工を同時に行う、いわゆる「打ち抜き工程」を施した後、「むしり工程」及びサックマシン等による「製函工程」を経て形成されるものである。
【0003】
上記折箱等に使用される材料としては、熱可塑性樹脂によるシート材が広く用いられており、その様な例として例えば、ポリプロピレン(以下PPと略す)、ポリ塩化ビニル(以下PVCと略す)、未延伸ポリエチレンテレフタレート(以下A−PETと略す)等が挙げられる。これらのシート材は柔らかくて加工し易いという利点がある反面、耐熱性に劣る、剛性が得られ難いという欠点があった。更にPVCの場合には、焼却時に有毒ガスが発生するという問題があり、A−PETでは、表面の耐溶剤性が劣るために印刷加工等の表面処理が困難である等の問題があった。
【0004】
この様な問題を抱える上記シート材に代わる材料として、二軸延伸ポリエチレンテレフタレートフィルム(以下OESと略す)が挙げられる。OESは、剛性や耐熱性に優れる反面、その高剛性のために罫線加工が困難で、罫線部の折り曲げ性が不充分であるという問題があり、加圧・加熱方式等の罫線加工によって無理に罫線を入れようとすると、切断したり、サックマシンによる組立て加工を施す場合には組立て不良等の障害が発生する。
【0005】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、罫線部での安定した加工性と折り曲げ性に優れると共に強度も維持することができ、サックマシンによる組立て加工も可能な罫線加工されたポリエステルフィルムを提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決することのできた本発明の罫線加工されたポリエステルフィルムとは、ポリエチレンテレフタレートを主たる構成成分とする二軸延伸ポリエステルフィルムを罫線加工したフィルムにおいて、上記罫線加工が超音波加工によって行われるものであり、該罫線加工部の変形深さが、非罫線加工部のフィルムの厚みに対して30〜200%であり、かつ、当該罫線加工部の強度(ASTM D882−67T、20℃×65%RHの雰囲気下)が10〜20kg/mm 2 あることに要旨を有するものである。
【0007】
上記フィルムが、ポリエチレンテレフタレート層とポリエステル層(但し、ポリエチレンテレフタレートからなる層を除く)からなるもの、及び空洞を含有するものは、本発明の好ましい実施態様である。
【0008】
上記超音波加工によって罫線加工されたフィルムは、該フィルムの裏面側の変形を伴うことが好ましい。
また、上記罫線加工によって形成された罫線は、フィルムの進行方向に対して連続的に形成されることが好ましい。
【0009】
【作用】
本発明の罫線加工されたポリエステルフィルムは、ポリエチレンテレフタレートを主たる構成成分とする二軸延伸ポリエステルフィルムを罫線加工したフィルムにおいて、
(1)超音波加工によって罫線加工を行うこと、および
(2)上記罫線加工によって形成された罫線加工部の変形深さが、非罫線加工部のフィルムの厚みに対して30〜200%であり、かつ、当該罫線加工部の強度(ASTM D882−67T、20℃×65%RHの雰囲気下)が10〜20kg/mm 2 あることに特徴を有するものである。
【0010】
この様に本発明では、上記ポリエステルフィルムを超音波振動により罫線加工を行うことに第1の特徴を有する。上述した様に、従来の罫線加工(例えば、加圧、加熱方式による罫線加工等)では、特にOESではその剛性のために、罫線加工部分の折り曲げ性や加工性が不充分であった。これに対して本発明の様に、超音波振動による罫線加工を施したポリエステルフィルムは、該罫線加工装置の先端刃と接触する部分のみが局所的に振動加熱されるため、ポリエチレンテレフタレートの溶融が容易である等の理由により、該罫線加工部分には、PVC、A−PET等の材料を用いた場合と同程度の優れた折り曲げ性および加工性を付与することができ、サックマシンによる組立て加工も良好である。
【0011】
本発明に用いられる超音波加工装置は、超音波発振器による電気振動を振動子による機械振動に変換し、振動を増幅させるホーンを備えた装置であり、布、フィルム材等を連続的にシール処理、溶断処理、ソーイング処理する場合等に通常用いられるものである。上記電気振動の変換方法には電歪式(変換効率:約90%)と磁歪式(変換効率:約50%)があり、本発明ではいずれの方法をも選択し得るが、変換効率、装置のコンパクト性等の観点から言えば、電歪式を用いることが好ましい。
【0012】
超音波加工装置を作動させるにあたって、その振動条件は以下の通りである。振動数は、好ましくは毎秒1万回〜6万回であり、より好ましくは1万5千回〜4万回である。毎秒1万回未満では振動エネルギーが不足し、罫線加工を施すことができない。一方、毎秒6万回を超えると振幅が不足し、増幅ホーンの大型化を招くため、実用的でない。
振動子による振幅は、上述した好ましい範囲の振動数に応じて、2〜20μmの範囲で適宜選択するとよい。
【0013】
振動増幅用のブースターおよびホーンによる振幅の拡大倍率は、通常1〜10倍であることが推奨される。1倍未満では振幅が不足し、一方、10倍を超えると、ホーンの大型化を招くため実用的でない。ホーン先端部における振幅は、実用上、最終的に10〜100μmであることが推奨される。
【0014】
上記超音波加工によって罫線を形成するためには、ホーンの先端形状と、フィルムを挟んだ受治具の形状が特に重要である。ホーンの先端と受治具面の形状の組み合わせは、一方が凸状で、一方が平坦または凹状である組み合わせが推奨される。通常は、ホーンの先端側を凸状にし、受治具側を平坦または凹状にして用いられるが、勿論この逆であっても構わない。
凸状および凹状の寸法は、フィルムの罫線深さや罫線幅に応じて適宜選択することができる。
【0015】
上記凸状先端部は、角を滑らかに落とした形状であることが好ましい。角を落とす方法としては特に限定されず、またその程度は通常の面取り程度でよい。角度が90度以下のエッジが存在すると、罫線部の切れ、ひび割れ、罫線両端部へのバリ立ちが過大に生じてしまい、実用的でない。
【0016】
凹状先端と平坦状先端の形状は、フィルムへの罫線の深さに応じて適宜選択することができる。罫線の深さがフィルム厚みの60%未満の場合には、平坦状先端でも構わないが、60%以上の場合には凹状先端が好ましい。凹状先端とすることによって、フィルムの切断を防ぎながら、罫線加工を深く施すことができる。
上記超音波加工は、その原理から言えば点加工が好ましいが、打ち抜き同時罫線入れ等に示される複数線による面加工を排除するものではない。
【0017】
本発明の第2の特徴は、上記超音波加工によって形成された罫線加工部の変形深さが、非罫線加工部のフィルムの厚みに対して30〜200%であることである。
上記罫線加工部のフィルムの変形深さが30%未満では、罫線部の折り曲げ性が劣り、サックマシン機で折り箱を形成することは事実上困難となる。一方、変形深さが200%を超えると、罫線部方向への寸法変化が大きくなり、同時に複数本の罫線加工を行うことが困難となること、および罫線加工部分のフィルムの厚みが不足するため、折り箱の強度不足を招く等の問題がある。
【0018】
ここで、罫線加工部分におけるフィルムの厚みは、元の厚みに対して20〜90%であることが好ましく、40〜80%に維持することがより好ましい。元の厚みに対して20%未満では強度が不足し、一方90%を超えると加工が事実上困難である。
【0019】
上述した従来の罫線加工方法によっても上記範囲の罫線加工部の変性深さは得られるが、その場合には、該罫線加工部のフィルム引き込みが大きく、フィルム幅が減少してしまう、平面性が悪化する等の問題が起こる。これに対して、本発明の場合にはこの様な問題を招くことなく、罫線加工部の変形深さを上記範囲内とすることができるので、この観点からも非常に優れた方法と言えるのである。
【0020】
次に、本発明に用いられる材料について説明する。
本発明に用いられるポリエステルフィルムとは、ポリエチレンテレフタレートを主たる構成成分とするものであり、具体的には、エチレンテレフタレート単位を90モル%以上含有するものである。その様な例としては、例えばポリエチレンテレフタレートのみを単独に含有するものであってもよいし、また、単一の共重合レジンを用いたものでも、2種以上の共重合物もしくはホモポリエステルの混合物を用いることも可能である。この様なフィルムは、上述した様に元々優れた耐熱性および機械的強度を有しているものである。
このうち、上記共重合物は、ジオール成分とジカルボン酸成分とから形成され得る。
【0021】
上記ジオール成分としては、エチレングリコール、プロピレングリコール、ブタンジオール、ポリアルキレングリコール、ペンタエリストール、ジエチレングリコール、ポリオキシアルキレングリコール等が挙げられる。
また、上記ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸等が挙げられる。
【0022】
好ましくは、ジオール成分がエチレングリコールで、ジカルボン酸成分がテレフタル酸およびイソフタル酸である共重合体が用いられ、より好ましくは、テレフタル酸/イソフタル酸の混合比が60/40〜95/5モル%比である混合物を用いる。ジカルボン酸成分中におけるテレフタル酸のモル%比が95%を超えると、共重合による改質効果が得られず、一方、60%未満になると製膜工程での安定性、フィルムの取り扱い性等が低下する。
【0023】
本発明のフィルムは、上記ポリエチレンテレフタレート層とポリエステル層(但し、ポリエチレンテレフタレートからなる層を除く)からなる積層物であってもよい。具体的には、ポリエチレンテレフタレート層と共重合ポリエステル層との積層物等が挙げられ、あるいは共重合ポリエステル層を中間層とし、該中間層の両側にポリエチレンテレフタレート層が積層された3層構造の積層物であっても良い。
本発明に用いられる上記積層フィルムの製造方法としては、特に限定されるものではなく、既知の多層共押し出し法、ドライラミネート法等が用いられる。
【0024】
上記空洞を含有するフィルムは、ポリエステルに、該ポリエステルに非相溶の熱可塑性樹脂を混合した重合体混合物を少なくとも1軸に配向することによって得られる微細な空洞を含有するものであり、延伸ボイドにより作られることが好ましい。ここで上記ポリエステルとは、好ましくはポリエチレンテレフタレート単位を70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上含有するものを指す。また、上記ポリエステルに非相溶の熱可塑性樹脂とは、例えばポリスチレン系樹脂、ポリオレフィン系樹脂、ポリアクリル系樹脂等が挙げられるが、特にポリスチレン系樹脂;ポリメチルペンテン、ポリプロピレン等のポリオレフィン系樹脂が好ましい。ここで空洞含有率は、ポリエステル層の最表面から3μmまでの範囲に含まれる空洞含有率として8体積%以下であることが好ましく、一方、フィルム全体の平均空洞含有率として10体積%以上で、且つ50体積%以下であることが好ましい。
【0025】
これらのフィルムには、必要に応じて他の粒子成分、顔料成分、抗酸化剤、紫外線吸収剤等を適宜添加・配合してもよく、その含有量は用途に応じて適宜選択される。
また、これらのフィルム表面には必要に応じて表面加工層、表面塗工層、表面蒸着層、他材料とのラミネート層を設けてもよい。
【0026】
本発明のフィルムの厚みは50〜500μmが好ましく、100〜250μmがより好ましい。上記フィルムの厚みが50μmより薄い場合には、剛性不足のため十分な折り曲げ性が得られにくい。一方、500μmより厚い場合には、フィルムの剛性が高くなり過ぎる結果、罫線部を折り曲げた際にフィルムの割れが生じる等の問題がある。
本発明によって得られる罫線は、フィルムの進行方向に対して連続的に形成されたものであることが好ましい。
【0027】
以下実施例を挙げて本発明をさらに詳細に説明するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に包含される。
【0028】
【実施例】
以下の実施例および比較例に用いた罫線加工方法および下記項目の測定法は次の通りである。
A.罫線加工方法
(i )超音波振動による罫線加工方法
使用機器:精電舎電子工業株式会社(SONOPET 1200B型)
出力:1200W,振動数:19.15KHz
ホーンの押し圧:約25kg,静止間隙:約150μm
ホーンの先端形状:0.3〜1.0mm厚カット刃
受け治具:V字溝付き(巾:0.7〜2mm,開き角:60度)
加工速度:3m/min
(ii)電熱加熱刃による罫線加工方法
加熱温度:160℃
加熱刃に5kg荷重の圧力を加えて加工した。
加工速度:3m/min
加熱刃形状:上[45度角回転刃],下[60度角溝付き刃]
【0029】
B:測定項目
(1)罫線加工部分の変形深さの測定
カッター刃を用いて、フィルムの罫線加工部分を厚み:約1mmにスライスする。次に、該スライス部分を横に倒した状態で光学顕微鏡で観察(倍率:50〜400倍)し、該形成部分の変形深さ量を読み取った。
【0030】
(2)罫線加工部分の折り曲げ性の測定
フィルム罫線加工部分から両端に20mm離れた部分を固定し、罫線を挟んで90度の角度になるよう折り曲げて、該罫線加工部分の折り曲げ性を評価した。その判定基準は以下の通りである。
○:罫線加工部分にエッジが生じ、曲がり位置が安定する。
×:罫線加工部分にエッジが生じず、そのため罫線からずれた位置で折り曲が
る可能性がある。
【0031】
(3)罫線加工部分の強度測定
罫線加工部分が中央に位置するよう採集した試料を用い、ASTMD882〜67Tの測定方法に準じて、20℃×65%RH下の雰囲気下で、該罫線加工部分の強度(kg/mm2 )を測定した。
【0032】
(4)罫線加工によるフィルムの幅収縮性の測定
フィルム中に予め設定しておいた2本の標線間に、罫線加工を施すことによって5本の罫線を入れ、罫線加工によるフィルムの幅収縮性を目視で観察して、下記の基準により評価した。
○:フィルムの幅方向の寸法変化なし。
×:フィルムの幅方向への収縮(縮み)が見られる。
【0033】
(5)罫線部の外観性(美観性)
罫線部の外観を目視で観察し、フィルムを折り曲げた際にその表面にクラック等のひび割れが生じるかを調べた。
○:クラックの発生がなく、外観的に優れている。
×:クラックの発生があり、美的外観性に劣る。
【0034】
実施例1
ポリエチレンテレフタレート二軸延伸フィルム[東洋紡製E5001(厚み:250μm)]を用い、超音波振動による罫線加工を施した後、上記(1)〜(5)の各項目を測定した。得られた結果を表1に示すと共に、図1にその罫線加工部分の断面図を示す。
【0035】
【表1】

Figure 0003684596
【0036】
本実施例で得られた罫線部の変形深さは約100μmで、非罫線加工部のフィルムの厚みに対して40%であった(本発明の範囲内)。従って、折り曲げ性も良好であり、フィルムの幅収縮性もなく、外観的にも優れていた。さらに、罫線部の強度も、単位断面積当りの値に換算すると非罫線部並の強度を有するものであった。
【0037】
実施例2
延伸ボイド空隙含有ポリエステル系二軸延伸フィルム[東洋紡製クリスパーGタイプ(厚み:250μm)]を用い、実施例1と同様にして罫線加工を施した後、各項目を測定した。得られた結果を表1に併記すると共に、図2にその罫線加工部分の断面図を示す。
【0038】
表1から明らかな様に、本実施例で得られた罫線部の変形深さは約130μmで、非罫線加工部のフィルムの厚みに対して50%(本発明の範囲内)となり、実施例1よりも罫線加工部の折り曲げ性が更に良好であることが分かった。また受け治具側に約30μmのふくらみが生じたが、本実施例の様に空隙含有フィルムを用いた場合には、罫線側のみならず反対側への折り曲げ性も良好であり、非常に優れた折り曲げ性を有することが分かった。その他、フィルムの幅収縮性もなく、外観的にも優れていた。
【0039】
実施例3
まず、実施例1で用いたフィルム(厚さ:25μm)の片面に下記接着剤を厚み:4μmに塗布しておいた。次に、実施例2で用いたフィルム(厚さ:188μm)を中間層とし、該フィルムの両面に、上記実施例1のフィルムを下記に記載のドライラミネート処理法で貼り合わせることにより、3層構造の積層フィルムを得た。
接着剤の組成
バイロン(東洋紡) :100部
コロネートL(日本ポリウレタン社) : 5部
Ucat SA−102(サンアボット社): 0.1部
ドライラミネート処理法
加熱ロール(140℃)
圧力:約20kg/cm2
速度:4m/min
【0040】
この積層フィルムを実施例1と同様に罫線加工し、上記項目を測定した。得られた結果を表1に併記すると共に、図3にその罫線加工部分の断面図を示す。
表1から明らかな様に、得られた罫線部の変形深さは約100μmで、非罫線加工部のフィルムの厚みに対して約40%(本発明の範囲内)となり、折り曲げ性は良好であった。さらに、フィルムの幅収縮性もなく、外観的にも優れたものであった。
【0041】
実施例4
実施例2で用いたフィルムを用い、実施例1と同様に罫線加工を施した後、上記項目を測定した。得られた結果を表1に併記する。
表1から明らかな様に、得られた罫線加工部の変形深さは約400μmで、非罫線加工部のフィルムの厚みに対して160%であり(本発明の範囲内)、折り曲げ性は良好であった。さらに、フィルムの幅収縮性もなく、外観的にも優れたものであった。
【0042】
比較例1
電熱加熱刃による罫線加工を施したこと以外は実施例1と同様に罫線加工した後、上記項目を測定した。得られた結果を表1に併記すると共に、図4にその罫線加工部分の断面図を示す。
【0043】
表1から明らかな様に、得られた罫線部の変形深さは約50μmであり、非罫線加工部のフィルムの厚みに対して20%であった(本発明の範囲外)。そのため、罫線加工部の折り曲げ性が悪く、罫線通りに折り曲げることができなかった。変形深さの向上をねらって、加工圧力を高めたり、加熱温度を高めたりしたものの、逆にフィルム幅の減少や罫線部にクラック等のひび割れが生じ、安定した加工性を得ることはできなかった。
【0044】
比較例2
実施例2で用いたフィルムを用い、比較例1と同様に罫線加工を施した後、上記項目を測定した。得られた結果を表1に併記すると共に、図5にその罫線加工部分の断面図を示す。
【0045】
表1から明らかな様に、得られた罫線加工部の変形深さは約300μmで、非罫線加工部のフィルムの厚みに対して120%であり(本発明の範囲内)、外観は裏側に200μm盛り上がる形状となった。この様に罫線加工部の折り曲げ性は良好であったが、罫線部へのフィルム引き込みが大きく、フィルムが幅方向に収縮してフィルム幅が減少した。フィルム幅を固定した形でさらに罫線加工を施すと、罫線加工部の変形深さは約50μmとなり[非罫線加工部のフィルムの厚みに対して20%(本発明の範囲外)]、罫線部の折り曲げ性は悪くなった。
【0046】
比較例3
実施例1で用いたフィルムを用い、実施例1と同様に罫線加工を施した後、上記項目を測定した。得られた結果を表1に併記する。
表1から明らかな様に、得られた罫線加工部の変形深さは約50μmで、非罫線加工部のフィルムの厚みに対して20%(本発明の範囲外)であったため、折り曲げ性が悪く、罫線通りに折り曲げることができなかった。
【0047】
比較例4
実施例1で用いたフィルムを用い、比較例1と同様に罫線加工を施した後、上記項目を測定した。得られた結果を表1に併記する。
表1から明らかな様に、得られた罫線加工部の変形深さは約75μmで、非罫線加工部のフィルムの厚みに対して30%(本発明の範囲内)であり、折り曲げ性は良好であったものの、フィルムの幅収縮性が悪かった。
【0048】
【発明の効果】
本発明の罫線加工されたポリエステルフィルムは上記の様に構成されているので、従来罫線加工が充分に得られず、特にサックマシンによる組立て加工が困難であったポリエチレンテレフタレート二軸延伸フィルム等のポリエステルフィルムに対して、罫線加工部での強度を保持したまま、優れた折り曲げ性を付与することができる。
【0049】
従って本発明のフィルムを用いれば、機械加工が可能なため製造コストを削減することができると共に、ポリエステルフィルムの特性を生かした新たなパッケージ用途への展開をも図ることができる。
【図面の簡単な説明】
【図1】実施例1のポリエステルフィルムにおける罫線加工部分の断面図を示す。
【図2】実施例2のポリエステルフィルムにおける罫線加工部分の断面図を示す。
【図3】実施例3のポリエステルフィルムにおける罫線加工部分の断面図を示す。
【図4】比較例1のポリエステルフィルムにおける罫線加工部分の断面図を示す。
【図5】比較例2のポリエステルフィルムにおける罫線加工部分の断面図を示す。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a ruled line polyester film used for a folding box used for a cosmetic box, a food container, a liquid container, a miscellaneous goods container, and the like. The present invention relates to a polyester film having a ruled line which can be used for a folded box having excellent workability and excellent appearance.
[0002]
[Prior art]
A folded box is a rigid structure formed by cutting or rubbing a flat cardboard material, bending the cardboard material along the shape of the cutout or ruled line formed thereby, and assembling it. . This folded box is usually formed on a printed board material after performing a so-called “punching process” in which a cutting process and a ruled line process are performed simultaneously, followed by a “making process” and a “box making process” by a sack machine or the like. It is.
[0003]
As a material used for the folding box or the like, a sheet material made of a thermoplastic resin is widely used, and examples of such materials include polypropylene (hereinafter abbreviated as PP), polyvinyl chloride (hereinafter abbreviated as PVC), and unexposed. Examples thereof include stretched polyethylene terephthalate (hereinafter abbreviated as A-PET). These sheet materials have the advantage of being soft and easy to process, but have the disadvantages of poor heat resistance and difficulty in obtaining rigidity. Furthermore, in the case of PVC, there is a problem that toxic gas is generated at the time of incineration, and in the case of A-PET, there is a problem that surface treatment such as printing is difficult due to poor solvent resistance of the surface.
[0004]
A biaxially stretched polyethylene terephthalate film (hereinafter abbreviated as OES) is an example of a material that can replace such a sheet material having such problems. OES is excellent in rigidity and heat resistance, but its high rigidity makes it difficult to make a ruled line, and there is a problem that the bendability of the ruled line part is insufficient. If a ruled line is to be inserted, a failure such as an assembly failure occurs when cutting or assembly processing by a sack machine is performed.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the purpose thereof is a ruled line process that is excellent in stable processability and bendability at the ruled line part, can maintain strength, and can be assembled by a sack machine. A polyester film is provided.
[0006]
[Means for Solving the Problems]
The ruled line processed polyester film of the present invention that has solved the above problems is a film obtained by ruled biaxially stretched polyester film mainly composed of polyethylene terephthalate, and the ruled line processing is performed by ultrasonic processing. The deformation depth of the ruled line processed portion is 30 to 200% with respect to the film thickness of the non-ruled line processed portion , and the strength of the ruled line processed portion (ASTM D882-67T, 20 ° C. × 65 It has a gist that it is 10-20 kg / mm 2 in an atmosphere of% RH .
[0007]
It is a preferred embodiment of the present invention that the film consists of a polyethylene terephthalate layer and a polyester layer (excluding a layer made of polyethylene terephthalate) and a film containing voids.
[0008]
The film that has been ruled by the ultrasonic processing is preferably accompanied by deformation on the back side of the film.
Moreover, it is preferable that the ruled line formed by the said ruled line process is continuously formed with respect to the advancing direction of a film.
[0009]
[Action]
The ruled lined polyester film of the present invention is a film obtained by ruled biaxially stretched polyester film mainly composed of polyethylene terephthalate,
(1) Ruled line processing is performed by ultrasonic processing, and (2) The deformation depth of the ruled line processed portion formed by the ruled line processing is 30 to 200% with respect to the film thickness of the non-ruled line processed portion . and, it has the characteristics that the intensity of the ruled line processing unit (ASTM D882-67T, under an atmosphere of RH 20 ℃ × 65%) is 10-20 kg / mm 2.
[0010]
As described above, the present invention has a first feature in that the polyester film is subjected to ruled line processing by ultrasonic vibration. As described above, in conventional ruled line processing (for example, ruled line processing by pressure, heating method, etc.), especially in OES, the bendability and workability of the ruled line processed portion are insufficient due to its rigidity. On the other hand, as in the present invention, the polyester film that has been subjected to ruled line processing by ultrasonic vibration is locally vibrated and heated only at the part in contact with the leading edge of the ruled line processing apparatus. For the reason that it is easy, the ruled line processed portion can be provided with excellent bendability and workability comparable to the case of using materials such as PVC and A-PET, and can be assembled by a sack machine. Is also good.
[0011]
The ultrasonic processing apparatus used in the present invention is an apparatus provided with a horn that converts electrical vibration generated by an ultrasonic oscillator into mechanical vibration generated by a vibrator and amplifies the vibration. It is usually used for fusing, sawing, and the like. There are electrostriction type (conversion efficiency: about 90%) and magnetostriction type (conversion efficiency: about 50%) as the above-mentioned electric vibration conversion methods, and any method can be selected in the present invention. From the standpoint of compactness, it is preferable to use an electrostrictive type.
[0012]
In operating the ultrasonic machining apparatus, the vibration conditions are as follows. The frequency is preferably 10,000 to 60,000 times per second, more preferably 15,000 to 40,000 times. If it is less than 10,000 times per second, vibration energy is insufficient and ruled line processing cannot be performed. On the other hand, if it exceeds 60,000 times per second, the amplitude becomes insufficient and the amplification horn becomes large, which is not practical.
The amplitude by the vibrator may be appropriately selected in the range of 2 to 20 μm according to the above-described preferable range of vibration frequency.
[0013]
It is recommended that the magnification of the amplitude by the booster and horn for vibration amplification is usually 1 to 10 times. If it is less than 1 time, the amplitude is insufficient. On the other hand, if it exceeds 10 times, the size of the horn is increased, which is not practical. It is recommended that the amplitude at the tip of the horn is finally 10 to 100 μm practically.
[0014]
In order to form a ruled line by the ultrasonic processing, the shape of the tip of the horn and the shape of the receiving jig with the film sandwiched are particularly important. As the combination of the shape of the horn tip and the receiving jig surface, a combination in which one is convex and one is flat or concave is recommended. Usually, the front end side of the horn is made convex, and the receiving jig side is made flat or concave, but of course the reverse is also possible.
The convex and concave dimensions can be appropriately selected according to the ruled line depth and the ruled line width of the film.
[0015]
It is preferable that the convex tip portion has a shape in which corners are smoothly dropped. The method of dropping the corner is not particularly limited, and the degree thereof may be a normal chamfering degree. If there is an edge with an angle of 90 degrees or less, the cut of a ruled line portion, cracks, and burr at both ends of the ruled line are excessively generated, which is not practical.
[0016]
The shapes of the concave tip and the flat tip can be appropriately selected according to the depth of the ruled line on the film. When the depth of the ruled line is less than 60% of the film thickness, a flat tip may be used, but when it is 60% or more, a concave tip is preferable. By using the concave tip, it is possible to deeply perform ruled line processing while preventing the film from being cut.
The ultrasonic processing is preferably point processing in terms of its principle, but does not exclude surface processing by a plurality of lines shown in simultaneous punching and the like.
[0017]
The second feature of the present invention is that the deformation depth of the ruled line processed portion formed by the ultrasonic processing is 30 to 200% with respect to the film thickness of the non-ruled line processed portion.
When the deformation depth of the film in the ruled line processed portion is less than 30%, the bendability of the ruled line portion is inferior, and it is practically difficult to form a folded box with a sack machine. On the other hand, when the deformation depth exceeds 200%, the dimensional change in the direction of the ruled line portion becomes large, it becomes difficult to simultaneously process a plurality of ruled lines, and the film thickness of the ruled line processed portion is insufficient. There is a problem that the strength of the folded box is insufficient.
[0018]
Here, the thickness of the film in the ruled line processed portion is preferably 20 to 90%, more preferably 40 to 80% with respect to the original thickness. If the thickness is less than 20% of the original thickness, the strength is insufficient. On the other hand, if it exceeds 90%, the processing is practically difficult.
[0019]
The above-described conventional ruled line processing method can also provide a modified depth of the ruled line processed part within the above range, but in that case, the film drawing of the ruled line processed part is large, the film width is reduced, and the flatness is reduced. Problems such as worsening occur. On the other hand, in the case of the present invention, the deformation depth of the ruled line processed portion can be set within the above range without incurring such a problem. is there.
[0020]
Next, materials used in the present invention will be described.
The polyester film used in the present invention contains polyethylene terephthalate as a main constituent, and specifically contains 90 mol% or more of ethylene terephthalate units. As such examples, for example, those containing only polyethylene terephthalate alone, or those using a single copolymer resin, a mixture of two or more copolymers or homopolyesters may be used. It is also possible to use. Such a film originally has excellent heat resistance and mechanical strength as described above.
Among these, the copolymer may be formed from a diol component and a dicarboxylic acid component.
[0021]
Examples of the diol component include ethylene glycol, propylene glycol, butanediol, polyalkylene glycol, pentaerythritol, diethylene glycol, and polyoxyalkylene glycol.
Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and the like.
[0022]
Preferably, a copolymer in which the diol component is ethylene glycol and the dicarboxylic acid component is terephthalic acid and isophthalic acid is used. More preferably, the terephthalic acid / isophthalic acid mixing ratio is 60/40 to 95/5 mol%. Use a mixture that is a ratio. When the molar ratio of terephthalic acid in the dicarboxylic acid component exceeds 95%, the modification effect by copolymerization cannot be obtained. On the other hand, when it is less than 60%, the stability in the film forming process, the handleability of the film, etc. descend.
[0023]
The film of the present invention may be a laminate comprising the above polyethylene terephthalate layer and a polyester layer (excluding a layer made of polyethylene terephthalate). Specific examples include a laminate of a polyethylene terephthalate layer and a copolymer polyester layer, or a laminate having a three-layer structure in which a copolymer polyester layer is an intermediate layer and polyethylene terephthalate layers are laminated on both sides of the intermediate layer. It may be a thing.
The method for producing the laminated film used in the present invention is not particularly limited, and a known multilayer coextrusion method, dry lamination method, or the like is used.
[0024]
The film containing voids contains fine voids obtained by orienting a polymer mixture obtained by mixing polyester with an incompatible thermoplastic resin in at least one axis, and is a stretched void. It is preferable that it is made by. Here, the polyester preferably refers to those containing 70 mol% or more of polyethylene terephthalate units, more preferably 80 mol% or more, and still more preferably 90 mol% or more. Examples of the thermoplastic resin incompatible with the polyester include polystyrene resins, polyolefin resins, polyacrylic resins, etc., and polystyrene resins; particularly polyolefin resins such as polymethylpentene and polypropylene. preferable. Here, the void content is preferably 8% by volume or less as the void content included in the range from the outermost surface of the polyester layer to 3 μm, while the average void content of the entire film is 10% by volume or more, And it is preferable that it is 50 volume% or less.
[0025]
In these films, other particle components, pigment components, antioxidants, ultraviolet absorbers and the like may be appropriately added and blended as necessary, and the content thereof is appropriately selected according to the use.
Moreover, you may provide the laminated layer with a surface processing layer, a surface coating layer, a surface vapor deposition layer, and another material as needed on the surface of these films.
[0026]
50-500 micrometers is preferable and, as for the thickness of the film of this invention, 100-250 micrometers is more preferable. When the thickness of the film is less than 50 μm, it is difficult to obtain sufficient bendability due to insufficient rigidity. On the other hand, when it is thicker than 500 μm, there is a problem that the film is cracked when the ruled line portion is bent as a result of the film becoming too rigid.
The ruled line obtained by the present invention is preferably formed continuously with respect to the traveling direction of the film.
[0027]
The present invention will be described in more detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications may be made without departing from the spirit of the present invention. Included in the range.
[0028]
【Example】
The ruled line processing method used in the following examples and comparative examples and the measurement methods of the following items are as follows.
A. Ruled line processing method (i) Ruled line processing method using ultrasonic vibration Equipment used: Seidensha Electronics Industry Co., Ltd. (SONOPET 1200B type)
Output: 1200W, Frequency: 19.15KHz
Horn pressure: approx. 25 kg, static gap: approx. 150 μm
Horn tip shape: 0.3 to 1.0 mm thick cut blade receiving jig: V-shaped groove (width: 0.7 to 2 mm, opening angle: 60 degrees)
Machining speed: 3m / min
(Ii) Ruled line processing method with electric heating blade Heating temperature: 160 ° C
The heating blade was processed by applying a pressure of 5 kg load.
Machining speed: 3m / min
Heating blade shape: Upper [45 degree angle rotating blade], Lower [60 degree angle grooved blade]
[0029]
B: Measurement item (1) Measurement of deformation depth of ruled line processed portion Using a cutter blade, the ruled line processed portion of the film is sliced to a thickness of about 1 mm. Next, the sliced portion was laid sideways and observed with an optical microscope (magnification: 50 to 400 times), and the deformation depth of the formed portion was read.
[0030]
(2) Measurement of the bendability of the ruled line processed part A part 20 mm away from both ends of the film ruled line fixed was fixed and bent at a 90 degree angle across the ruled line, and the bendability of the ruled line processed part was evaluated. . The judgment criteria are as follows.
○: An edge is generated in the ruled line processed portion, and the bending position is stabilized.
X: An edge does not occur in the ruled line processed portion, and therefore there is a possibility that the sheet is bent at a position deviated from the ruled line.
[0031]
(3) Strength measurement of ruled line processed part Using a sample collected so that the ruled line processed part is located in the center, according to the measurement method of ASTM D882-67T, the ruled line processed part in an atmosphere under 20 ° C. × 65% RH Strength (kg / mm 2 ) was measured.
[0032]
(4) Measurement of width shrinkage of film by ruled line processing Five ruled lines are put between two marked lines set in advance in the film, and the width of the film is reduced by ruled line processing. The properties were visually observed and evaluated according to the following criteria.
○: No dimensional change in the width direction of the film.
X: Shrinkage (shrinkage) in the width direction of the film is observed.
[0033]
(5) Appearance of the ruled line part (aesthetic appearance)
The appearance of the ruled line portion was visually observed, and it was examined whether cracks such as cracks were generated on the surface when the film was bent.
○: No crack is generated and the appearance is excellent.
X: Cracks are generated and the aesthetic appearance is poor.
[0034]
Example 1
A polyethylene terephthalate biaxially stretched film [Toyobo E5001 (thickness: 250 μm)] was used to perform ruled line processing by ultrasonic vibration, and then the items (1) to (5) were measured. The obtained results are shown in Table 1, and FIG. 1 shows a sectional view of the ruled line processed portion.
[0035]
[Table 1]
Figure 0003684596
[0036]
The deformation depth of the ruled line portion obtained in this example was about 100 μm, which was 40% with respect to the film thickness of the non-ruled line processed portion (within the scope of the present invention). Therefore, the bendability was good, the film was not shrinkable in width, and the appearance was excellent. Further, the strength of the ruled line portion was equivalent to that of the non-ruled line portion when converted to a value per unit cross-sectional area.
[0037]
Example 2
Using a stretched void void-containing polyester biaxially stretched film [Crisper G type (thickness: 250 μm) manufactured by Toyobo Co., Ltd.], each line was subjected to ruled line processing in the same manner as in Example 1, and then each item was measured. The obtained results are also shown in Table 1, and FIG. 2 shows a sectional view of the ruled line processed portion.
[0038]
As is apparent from Table 1, the deformation depth of the ruled line portion obtained in this example is about 130 μm, which is 50% (within the scope of the present invention) with respect to the film thickness of the non-ruled line processed part. It was found that the bendability of the ruled line processed part was better than 1. In addition, a bulge of about 30 μm was generated on the receiving jig side, but when a void-containing film was used as in this example, the folding property not only on the ruled line side but also on the opposite side was good and very excellent. It was found to have a bendability. In addition, there was no width shrinkability of the film and the appearance was excellent.
[0039]
Example 3
First, the following adhesive was applied to one side of the film (thickness: 25 μm) used in Example 1 to a thickness: 4 μm. Next, the film (thickness: 188 μm) used in Example 2 was used as an intermediate layer, and the film of Example 1 was bonded to both sides of the film by the dry laminating method described below to form three layers. A laminated film with a structure was obtained.
Composition of adhesive Byron (Toyobo): 100 parts Coronate L (Nippon Polyurethane Co., Ltd.): 5 parts Ucat SA-102 (San Abbott): 0.1 parts Dry laminating heating roll (140 ° C.)
Pressure: about 20 kg / cm 2
Speed: 4m / min
[0040]
The laminated film was ruled in the same manner as in Example 1 and the above items were measured. The obtained results are also shown in Table 1, and FIG. 3 shows a sectional view of the ruled line processed portion.
As is clear from Table 1, the deformation depth of the obtained ruled line part is about 100 μm, which is about 40% (within the scope of the present invention) with respect to the film thickness of the non-ruled line processed part, and the bendability is good. there were. Furthermore, the film had no width shrinkability and was excellent in appearance.
[0041]
Example 4
Using the film used in Example 2, the above items were measured after ruled line processing as in Example 1. The obtained results are also shown in Table 1.
As is clear from Table 1, the deformation depth of the obtained ruled line processed portion is about 400 μm, which is 160% of the film thickness of the non-ruled line processed portion (within the scope of the present invention), and the bendability is good. Met. Furthermore, the film had no width shrinkability and was excellent in appearance.
[0042]
Comparative Example 1
The above items were measured after ruled lines in the same manner as in Example 1 except that the ruled lines were processed with an electric heating blade. The obtained results are also shown in Table 1, and FIG. 4 shows a sectional view of the ruled line processed portion.
[0043]
As is apparent from Table 1, the deformation depth of the obtained ruled line portion was about 50 μm, which was 20% with respect to the film thickness of the non-ruled line processed portion (outside the scope of the present invention). For this reason, the bendability of the ruled line processed portion is poor, and it has not been possible to bend according to the ruled line. Although the processing pressure was increased or the heating temperature was increased with the aim of improving the deformation depth, the film width was reduced and cracks such as cracks occurred on the ruled line, and stable processability could not be obtained. It was.
[0044]
Comparative Example 2
Using the film used in Example 2, the above items were measured after ruled line processing as in Comparative Example 1. The obtained results are also shown in Table 1, and FIG. 5 shows a sectional view of the ruled line processed portion.
[0045]
As is clear from Table 1, the deformation depth of the obtained ruled line processed part is about 300 μm, 120% with respect to the film thickness of the non-ruled line processed part (within the scope of the present invention), and the appearance is on the back side. The shape was raised by 200 μm. In this way, the bendability of the ruled line processed part was good, but the film was drawn into the ruled line part greatly, and the film contracted in the width direction to reduce the film width. When the crease line is further processed with the film width fixed, the deformation depth of the crease line processed part is about 50 μm [20% of the film thickness of the non-crease line processed part (out of the scope of the present invention)]. The bendability of was worse.
[0046]
Comparative Example 3
Using the film used in Example 1, ruled lines were applied in the same manner as in Example 1, and then the above items were measured. The obtained results are also shown in Table 1.
As is apparent from Table 1, the deformation depth of the obtained ruled line processed portion was about 50 μm and was 20% (out of the scope of the present invention) with respect to the film thickness of the non-ruled line processed portion. Unfortunately, it could not be folded along the ruled lines.
[0047]
Comparative Example 4
Using the film used in Example 1, the above items were measured after ruled line processing as in Comparative Example 1. The obtained results are also shown in Table 1.
As is clear from Table 1, the deformation depth of the obtained ruled line processed portion is about 75 μm, 30% (within the scope of the present invention) with respect to the film thickness of the non-ruled line processed portion, and the bendability is good. However, the width shrinkability of the film was poor.
[0048]
【The invention's effect】
Since the ruled-line processed polyester film of the present invention is configured as described above, the polyester film such as a polyethylene terephthalate biaxially stretched film, which has been difficult to assemble in a conventional sack machine, has not been sufficiently obtained. An excellent bendability can be imparted to the film while maintaining the strength at the ruled line processed portion.
[0049]
Therefore, if the film of the present invention is used, it is possible to reduce the manufacturing cost because it can be machined, and it is also possible to develop a new packaging application utilizing the characteristics of the polyester film.
[Brief description of the drawings]
1 is a cross-sectional view of a ruled line processed portion in a polyester film of Example 1. FIG.
2 shows a cross-sectional view of a ruled line processed portion in the polyester film of Example 2. FIG.
3 is a cross-sectional view of a ruled line processed portion in the polyester film of Example 3. FIG.
4 is a cross-sectional view of a ruled line processed portion in the polyester film of Comparative Example 1. FIG.
5 is a cross-sectional view of a ruled line processed portion in a polyester film of Comparative Example 2. FIG.

Claims (4)

ポリエチレンテレフタレートを主たる構成成分とする二軸延伸ポリエステルフィルムを罫線加工したフィルムにおいて、
前記罫線加工が超音波加工によって行われるものであり、
該フィルムにおける罫線加工部の変形深さが、非罫線加工部のフィルムの厚みに対して30〜200%であり、かつ、当該罫線加工部の強度(ASTM D882−67T、20℃×65%RHの雰囲気下)が10〜20kg/mm 2 あることを特徴とする罫線加工されたポリエステルフィルム。
In a film obtained by ruling a biaxially stretched polyester film containing polyethylene terephthalate as a main constituent,
The ruled line processing is performed by ultrasonic processing,
The deformation depth of the ruled line processed portion in the film is 30 to 200% with respect to the film thickness of the non-ruled line processed portion , and the strength of the ruled line processed portion (ASTM D882-67T, 20 ° C. × 65% RH). polyester film under atmosphere) is ruled processed characterized in that it is a 10-20 kg / mm 2.
前記フィルムが、ポリエチレンテレフタレート層とポリエステル層(但し、ポリエチレンテレフタレートからなる層を除く)からなるものである請求項1に記載の罫線加工されたポリエステルフィルム。  The ruled line-finished polyester film according to claim 1, wherein the film comprises a polyethylene terephthalate layer and a polyester layer (excluding a layer made of polyethylene terephthalate). 前記フィルムが空洞を含有するものである請求項1または2に記載の罫線加工されたポリエステルフィルム。  The ruled-line processed polyester film according to claim 1 or 2, wherein the film contains a cavity. 前記罫線加工がフィルムの裏面側の変形を伴うものである請求項1〜3のいずれかに記載の罫線加工されたポリエステルフィルム。  The ruled line processed polyester film according to any one of claims 1 to 3, wherein the ruled line processing involves deformation on the back side of the film.
JP22196594A 1994-09-16 1994-09-16 Ruled polyester film Expired - Lifetime JP3684596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22196594A JP3684596B2 (en) 1994-09-16 1994-09-16 Ruled polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22196594A JP3684596B2 (en) 1994-09-16 1994-09-16 Ruled polyester film

Publications (2)

Publication Number Publication Date
JPH0885148A JPH0885148A (en) 1996-04-02
JP3684596B2 true JP3684596B2 (en) 2005-08-17

Family

ID=16774944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22196594A Expired - Lifetime JP3684596B2 (en) 1994-09-16 1994-09-16 Ruled polyester film

Country Status (1)

Country Link
JP (1) JP3684596B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007115166A (en) * 2004-09-23 2008-10-27 МидУэствейко Копэрейшн (US) METHOD FOR FORMING A CONTAINER PREPARATION (OPTIONS)
US8864017B2 (en) 2011-10-13 2014-10-21 Orbis Corporation Plastic corrugated container with improved fold lines and method and apparatus for making same
US11643242B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Air vent for welded portion in plastic corrugated material, and process for forming welded portion
US10829265B2 (en) 2013-12-24 2020-11-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
EP3865415B1 (en) 2013-12-24 2024-07-17 Orbis Corporation Manufacturing process of a blank for forming a plastic corrugated container
US10625916B2 (en) 2013-12-24 2020-04-21 Orbis Corporation Plastic corrugated container with soft score line
US10654635B2 (en) 2014-08-08 2020-05-19 Bemis Company, Inc. Transparent retail bag-in-box package
CA3052706C (en) 2017-02-21 2024-01-09 Menasha Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11072140B2 (en) 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes

Also Published As

Publication number Publication date
JPH0885148A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3684596B2 (en) Ruled polyester film
JP3221945B2 (en) Heat-sealable coextruded liquid crystal polymer film
KR20040091573A (en) Coextruded, Heatsealable and Peelable Polyester Film having Easy Peelability, Process for its Production and its Use
EP3297817A1 (en) Honeycomb core with hierarchical cellular structure
WO2006061168B1 (en) Small container made from thermoplastic sheet materials
JP2007331389A (en) Double-layer plate with processed end part and method for manufacturing the same
KR20040091576A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
US20050139415A1 (en) Acoustical substrate suitable for fabrication into a three dimensional product
JP4774601B2 (en) Laminated material for paper containers
JP2002178450A (en) Lid material for ptp packaging
KR950013711A (en) Laminated Carrier Film for Ceramic Green Sheet
JP2002219782A (en) Laminated material for paper container
DE69103046T2 (en) Hot glue process.
JP2002264237A (en) Easily tearing packaging material and easily opening packaging bag
JPH037788A (en) Tacky tape
KR910006350B1 (en) Method and apparatus for laminating flexible printed cicuits
JP3817164B2 (en) Folded ruled sheet
JP3618641B2 (en) Polyester resin composition and use thereof
JPH04267732A (en) Manufacture of paper container for liquid with aroma retaining capability
JP3097998B2 (en) card case
JP2005324805A (en) Laminated material with easy-to-cut property and packaging bag
JPH06155690A (en) Method of lamination
JP2006015675A (en) Laminated polyester film for building material
JPS6224526Y2 (en)
JPH0732560A (en) Multi-ply polyester sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term