JP3684499B2 - Method for producing polymer composite and molecular composite - Google Patents

Method for producing polymer composite and molecular composite Download PDF

Info

Publication number
JP3684499B2
JP3684499B2 JP18177099A JP18177099A JP3684499B2 JP 3684499 B2 JP3684499 B2 JP 3684499B2 JP 18177099 A JP18177099 A JP 18177099A JP 18177099 A JP18177099 A JP 18177099A JP 3684499 B2 JP3684499 B2 JP 3684499B2
Authority
JP
Japan
Prior art keywords
polymer
group
monomer
mol
polymerization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18177099A
Other languages
Japanese (ja)
Other versions
JP2001011189A (en
Inventor
薫 島村
内田  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP18177099A priority Critical patent/JP3684499B2/en
Publication of JP2001011189A publication Critical patent/JP2001011189A/en
Application granted granted Critical
Publication of JP3684499B2 publication Critical patent/JP3684499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyamides (AREA)
  • Graft Or Block Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、剛直高分子の力学的特性および前記ポリマーの三次元網目状化によるポリマー軸方向のヤング率特性を維持し、屈曲性高分子により成形性を改善した、三次元網目状剛直高分子および前記高分子にグラフト重合した屈曲性高分子よりなる高分子複合体および該高分子複合体の製造方法に関する。なお、剛直性高分子とは、折り畳み結晶を作れない高分子であり、屈曲性高分子とは公知の屈曲性の特性を持つ高分子を指す。
【0002】
【従来技術】
ポリパラフェニレンベンゾビスチアゾール(PBZT)、ポリパラフェニレンベンゾビスオキサゾール(PBO)又はポリパラフェニレンピロメリットイミド(PPPI)などの剛直高分子ポリマーは分子主鎖方向に400GPa以上の結晶ヤング率を示し、工業的にも大きく注目されている。しかしこのようなポリマーは分子主鎖に垂直な方向に弱いことが知られている。Dowellは、これらの剛直さに側鎖として同じくポリパラフェニレンテレフタルアミド(PPTA)、PBT、PBOなどのセグメントを導入したポリマーを考え、ヤング率が約2倍に向上することを理論的に予測し、“super−strong liquid−crystalline polymer”と称した〔F.Dowell,Mat.Res.Soc.Symp.Proc.,134,33(1989)〕。すなわち剛直高分子ポリマーを3次元的にすることによって、更に強度を高めようという試みを考えている。また、特開平7−133353号公報には前記剛直高分子ポリマーの側鎖にアセチレンを用いて隣接する分子主鎖同士を共有結合で結び、更にそれに垂直な方向にも共有結合を導入した3次元網目鎖構造を持つポリマーを設計し、高分子主鎖方向のヤング率および弾性率を向上したポリマーを得ることの可能性を開示している。
【0003】
屈曲性高分子、例えば脂肪族ポリアミド樹脂はフイルム、繊維、エンジニアリングプラスチックなど広く使用されている。これら成形物はガラス転移点が低いこと、耐熱性の不足などのために使用にあたっては、これら屈曲性高分子マトリックスに強化要素を加え複合化が行われている。しかし強化要素とマトリックス間の剥離が生じ、耐熱性、力学特性の劣化が生じ易い、そこでナイロン樹脂にポリ−p−フェニレンベンゾビスチアゾールやポリ−p−フェニレンテレフタルアミドのような剛直高分子を強化要素として加え、分子レベルで分散させ複合化するモレキュラーコンポジットの開発が試みられているが、成形時に相分離が生じるなど問題がある〔Polymer,28,2131(1987)参照〕。ところで、本発明者等は、前記剛直高分子ポリマーを、例えば2,5−ジアミノ−1,4−ベンゼン−ジチオール(DA)と前記DAに対してテレフタル酸(TPA)およびトリメシン酸(TMA)の和が67〜100モル%であり,かつTPAとTMAの和にたいするTMAの配合量が13〜100モル%の範囲でTPAとTMAを共縮合して網目構造物を合成した。そのものの見掛け密度は1.0g/cmであり、多官能成分を共重合しなかったものの1.57g/cmに比べて小さく、内部に微細な空隙を多く含むことをすでに報告している。また、得られたポリマーは室温から400℃まで吸熱および発熱ピークを示さなかった。すなわち、この温度範囲において融点を持たず、成形が難しいことが分かった。
【0004】
【発明が解決しようとする課題】
従って、本発明の課題は、剛直高分子に網目状構造を導入することによりヤング率および弾性率の向上することの効果を維持しつつ、成形性のよいポリマーを得る方法および前記方法により得られるポリマーを提供することである。
【0005】
【課題を解決するための手段】
本発明の第1は、2官能基重合成分と3官能基以上の重合成分の共重合反応において、3官能基以上の重合成分が2官能基重合成分と3官能基以上の重合成分の和に対して13モル%〜100モル%の範囲で共重合する過程において、ゲル化点以前で重合を停止し、屈曲性高分子を形成する単量体あるいはそのオリゴマーと反応する官能性基を有し、前記共重合モル%に対応する空隙を有する三次元網目状に発達した剛直性高分子を、屈曲性高分子を形成する単量体あるいはそのオリゴマーに溶解、膨潤あるいは分散させて重合させ、少なくとも屈曲性高分子の一部を剛直性高分子にグラフト重合させる剛直性高分子と屈曲性高分子からなる高分子複合体の製造方法であり、前記2官能性基重合成分は化学式(1)の群から選択される少なくとも1種を基本構造とした化学構造を有するか、あるいは化学式(2)の群から選択される少なくとも1種を基本とした化学構造を有するか、あるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであり、3官能基以上の重合成分は化学式(3)の群から選択される少なくとも1種を基本とした化学構造を有するかあるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであることを特徴とする剛直性高分子と屈曲性高分子からなる高分子複合体の製造方法である。
【0006】
【化4】

Figure 0003684499
【0007】
(Ar')単位は、化学式(2)の群から選択される少なくとも1種であり、
【0008】
【化5】
Figure 0003684499
【0009】
そして(C)単位は、化学式(3)の群から選択される少なくとも1種である。
【0010】
【化6】
Figure 0003684499
【0011】
そして、本発明の第2は、2官能基重合成分と3官能基以上の重縮合成分の共重合反応において、3官能基以上の重合成分が2官能基重合成分と3官能基以上の重合成分の和に対して13モル%〜100モル%の範囲で共重合中ゲル化点以前で重合を停止し、屈曲性高分子を形成する単量体あるいはそのオリゴマーと反応する官能性基を有し、前記共重合モル%に対応する空隙を有する三次元網目状に発達した剛直性高分子を、屈曲性高分子を形成する単量体にあるいはそのオリゴマー溶解、膨潤あるいは分散させ、前記単量体を重合させ、少なくとも屈曲性高分子の一部を剛直性高分子にグラフト重合させた剛直性高分子と屈曲性高分子からなる高分子複合体であり、前記2官能性基重合成分は前記化学式(1)の群から選択される少なくとも1種を基本構造とした化学構造を有するか、あるいは前記化学式(2)の群から選択される少なくとも1種を基本とした化学構造を有するか、あ るいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであり、3官能基以上の重合成分は前記化学式(3)の群から選択される少なくとも1種を基本とした化学構造を有するかあるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであることを特徴とする剛直性高分子と屈曲性高分子からなる高分子複合体であり、
更に好ましくは、三次元網目状剛直性高分子は2,5−ジアミノ−1,4−ベンゼン−ジチオール(DA)に前記DAに対してテレフタル酸(TPA)およびトリメシン酸(TMA)の和が67〜100モル%であり,かつTPAとTMAの和にたいするTMAの配合量が13〜100モル%の範囲でTPAとTMAを共縮合して得られたものであり、屈曲性高分子を形成する単量体はラクタムであることを特徴とする前記剛直高分子と屈曲性高分子からなる高分子複合体である。本発明者はゲル化点以前で重合を停止して得られた三次元網目状に発達した3官能基以上の共重合成分からの屈曲性高分子を生成する単量体と反応する官能性基を有した剛直性高分子を屈曲性高分子を生成する単量体に溶解、膨潤あるいは分散させ、これを重合させ、少なくとも屈曲性高分子の一部を剛直性高分子にグラフト重合させることにより、前記課題を解決したのである。
【0012】
【本発明の実施の態様】
本発明の高分子複合の製造方法を、パラフェニレンベンゾビスチアゾール(ZT)構造のみを持つ場合と、該構造を持たずベンゾビスチアゾールが三官能基を持つトリメチン酸とのみ結合した場合、およびその中間の組成からなる場合を例にして説明する。各成分の仕込量を表1に示した。重合溶媒としてポリリン酸(PPA)を用い、まず2,5−ジアミノ−1,4−ベンゼン−ジチオールジハイドロクロライド(DABDT)を加え、脱塩化水素を行った。DABDTに対して13〜67モル%のトリメシン酸(TMA)および80〜0%のテレフタル酸(TPA)を加え、100〜140度まで段階的に昇温した〔J.F.Wolfe et al.,Macromolecules,14,915(1981)、参照〕。トルクメーターで溶液粘度を測定しながら重合を行い、ゲル化による急激な粘度の上昇が始まる前に重合を停止した。得られた試料は粉末状で、粒径は数十〜数百ナノメーターであった。反応によって生じる結合を以下の式(2)に示す。式(2)において、DABDT100モルに対しTPAは0〜80モル%、TMAは67〜13モル%の配合比とすることができる、すなわち80〜0%とすることができる。
【0013】
【化7】
Figure 0003684499
【0014】
【表1】
Figure 0003684499
【0015】
〔ゲル化点:重合官能基を複数持つ多官能性モノマーの反応で、その中に3官能性以上の分子が含まれていると、3次元網目構造を持った高分子が生成する。ゲル化点とは、この3次元化し得る反応系内に、重合途中に不溶部分(ゲル部分)が成長増加し始める点であり、反応系の粘度が急上昇する点として認められる。(岩波「理化学辞典」第5版ケ172(第423ページ)参照〕。
【0016】
ゲル点以前で重合停止した三次元網目状に発達した剛直性高分子の化学構造の一例を以下に示す。ここでnは0〜8の範囲である。
【0017】
【化8】
Figure 0003684499
【0018】
前記ゲル化前で重合停止したPBZTの構造をモデル的に図解したものを図1(a)に示す(ここで◎はカルボキシル基である。)。これを重合性のモノマーである、例えばカプロラクタム○に溶解、膨潤、または分散した状態を(b)に示す。これを重合処理したものを(c)に示す(複合体1)。この過程で屈曲性高分子の一部は三次元網目状の剛直高分子にグラフト重合する。前記複合体1から剛直高分子にグラフトしていない6−ナイロンをギ酸を用いて抽出処理して6−ナイロンがPBZTにグラフトした構造のポリマー複合体(複合体2)を得る(D)。以上が本発明の、三次元網目構造を持つ剛直高分子に屈曲性高分子を生成する単量体をグラフト化した構造の複合高分子の構造及び該複合高分子の製造方法である。
【0019】
剛直高分子を溶解、膨潤あるいは分散するモノマーとしては、ε−カプロラクタムの他に、γ−ブチロラクタム、δ−バレロラクタム、ζ−エナントラクタム、η−カプリロラクタム、ω−ラウリルラクタムなどのラクタム類、ヘキサメチレンジアミンのアジピン酸塩、ヘキサメチレンジアミン酸のセバシン酸塩等のナイロン塩等を好ましい材料として挙げることができる。
【0020】
【実施例】
実施例11.剛直高分子ポリパラフェニレンベンゾビスチアゾール(PBZT)の製造の際、三官能性のトリメシン酸をDAに対して33モル%加えて重合を行った。テレフタル酸のDAに対する配合量は50モル%である。ゲル化点以前に重合を停止することにより三次元網目構造を持つ剛直高分子を得た。走査型電子顕微鏡観察によるとその粒径は数十〜数百nmであった。IR測定の結果、多量のCOOHを有することが確認された。2.得られた多官能性剛直高分子を1×10−3mmHgに減圧し12時間保持した後、110℃で融解したε−カプロラクタムを前記減圧を保持したまま滴下した。2時間程度その状態で保持した後、系内を常圧に戻した。続いてこれを250℃で4時間加熱することによりε−カプロラクタムを重合させた。得られた試料はPBZTからなる剛直高分子鎖が6−ナイロンからなる屈曲性高分子中に分子分散され、かつ屈曲性高分子の一部は剛直性高分子にグラフトした共重合体である。得られた試料をギ酸により洗浄し、取り除くことのできる6−ナイロンを全て取り除いた後においても剛直高分子とほぼ同量の6−ナイロンが残存した。このことから剛直高分子とナイロンとはグラフト共重合体を形成していることが分かる。
【0021】
A.前記で合成した高分子複合体の熱的性質 図2は、複合体のDSC測定結果である。グラフトされたナイロン6はその運動が制限されているため、DSC測定において融点を示さない(複合体2)。抽出処理前の複合体1では、剛直性高分子中の抽出できるナイロン6により融点が現れる(図2の複合体1)。融点温度、およびΔH(エンタルピー変化)はナイロン6の含有量により変化する(図3、図4)。前記で合成した高分子複合体の成形性を確認した。剛直高分子網目状微粉末と屈曲性高分子モノマー混合物の成形時の粘度はモノマー自体の粘度の1.2〜2.0倍と低い値を示した。B.成型物の力学的特性などを調べた。ゲル化前に重合を停止した剛直性高分子三次元網目状体に屈曲性モノマーをグラフト化した高分子複合体(複合体)からのロッドとナイロン6ホモポリマーからのロッドとの応力−ひずみ曲線から得られた物性値を表2に示す。弾性率、破断応力の大きな向上が見られる。
【0022】
【表2】
Figure 0003684499
【0023】
C.図5に示す粘弾性測定の結果から、ナイロン6のガラス転移温度以上では、ナイロン6の軟化に伴う貯蔵弾性率の低下が生じるが、その減少率は本発明の複合体においては小さくなる。(図5に両矢印で示した。)
【0024】
【発明の効果】
以上述べたように、本発明により、剛直高分子網目化構造によるヤング率および弾性率の向上の効果を維持しつつ、成形性のよいポリマーを得ることができるという優れた効果がもたらされる。
【図面の簡単な説明】
【図1】三次元網目構造を持つ多官能性剛直高分子に屈曲性高分子を生成する単量体をグラフト化した複合体の構造及び製造方法
【図2】ギ酸抽出前の複合体1及び抽出後の複合体2のDSC測定結果
【図3】ナイロン6の含有量とDSC曲線の関係
【図4】ナイロン6の含有量と融解温度(Tm)、ΔHとの関係
【図5】ナイロン6ホモポリマーと本発明の複合体の粘弾性測定結果[0001]
BACKGROUND OF THE INVENTION
The present invention maintains a mechanical property of a rigid polymer and a Young's modulus property in the axial direction of the polymer due to the three-dimensional networking of the polymer, and a three-dimensional networked rigid polymer having improved formability by a flexible polymer. The present invention also relates to a polymer composite comprising a flexible polymer graft-polymerized to the polymer and a method for producing the polymer composite. The rigid polymer is a polymer that cannot form a fold crystal, and the flexible polymer refers to a polymer having a known flexibility property.
[0002]
[Prior art]
Rigid polymer such as polyparaphenylenebenzobisthiazole (PBZT), polyparaphenylenebenzobisoxazole (PBO) or polyparaphenylenepyromellitimide (PPPI) shows a crystal Young's modulus of 400 GPa or more in the molecular main chain direction, It is also attracting much attention industrially. However, such polymers are known to be weak in the direction perpendicular to the molecular backbone. Dowell thinks about the polymer which introduces segments such as polyparaphenylene terephthalamide (PPTA), PBT, and PBO as side chains in the rigidity, and theoretically predicts that Young's modulus will be improved by about 2 times. , "Super-strong liquid-crystalline polymer" [F. Dowell, Mat. Res. Soc. Symp. Proc. , 134, 33 (1989)]. In other words, an attempt is being made to further increase the strength by making the rigid polymer polymer three-dimensional. Japanese Patent Laid-Open No. 7-133353 discloses a three-dimensional structure in which acetylene is used for the side chain of the rigid polymer polymer to connect adjacent molecular main chains with a covalent bond and a covalent bond is also introduced in a direction perpendicular thereto. It discloses the possibility of designing a polymer having a network chain structure and obtaining a polymer having an improved Young's modulus and elastic modulus in the polymer main chain direction.
[0003]
Flexible polymers such as aliphatic polyamide resins are widely used for films, fibers, engineering plastics and the like. These molded products have a low glass transition point, lack of heat resistance, etc., and are used for compounding by adding reinforcing elements to these flexible polymer matrices. However, peeling between the reinforcing element and the matrix occurs, and heat resistance and mechanical properties are likely to deteriorate. Therefore, nylon polymers are reinforced with rigid polymers such as poly-p-phenylenebenzobisthiazole and poly-p-phenylene terephthalamide. Although attempts have been made to develop molecular composites that are dispersed and compounded at the molecular level in addition to elements, there are problems such as phase separation during molding (see Polymer, 28, 2131 (1987)). By the way, the present inventors have used the above-mentioned rigid polymer as terephthalic acid (TPA) and trimesic acid (TMA) for 2,5-diamino-1,4-benzene-dithiol (DA) and DA. A network structure was synthesized by co-condensing TPA and TMA when the sum was 67 to 100 mol% and the blending amount of TMA with respect to the sum of TPA and TMA was 13 to 100 mol%. Apparent density of itself is 1.0 g / cm 3, but not by copolymerizing a polyfunctional component smaller than the 1.57 g / cm 3, has already reported that contains many fine voids therein . Further, the obtained polymer showed no endothermic or exothermic peak from room temperature to 400 ° C. That is, it has been found that the molding does not have a melting point in this temperature range and is difficult to mold.
[0004]
[Problems to be solved by the invention]
Therefore, the object of the present invention is obtained by a method for obtaining a polymer having good moldability while maintaining the effect of improving Young's modulus and elastic modulus by introducing a network structure into a rigid polymer, and the above method. It is to provide a polymer.
[0005]
[Means for Solving the Problems]
In the first aspect of the present invention, in the copolymerization reaction of a bifunctional polymerization component and a polymerization component having three or more functional groups, the polymerization component having three or more functional groups is the sum of the polymerization component having two or more functional groups and the polymerization component having three or more functional groups. On the other hand, in the process of copolymerization in the range of 13 mol% to 100 mol%, the polymerization is stopped before the gel point, and it has a functional group that reacts with a monomer that forms a flexible polymer or an oligomer thereof. , A rigid polymer developed in a three-dimensional network having voids corresponding to the copolymerization mol% is polymerized by dissolving, swelling or dispersing in a monomer or oligomer thereof forming a flexible polymer, A method for producing a polymer composite comprising a rigid polymer and a flexible polymer, wherein a part of the flexible polymer is graft-polymerized to the rigid polymer, wherein the bifunctional group polymerization component is represented by the chemical formula (1) At least selected from the group A monomer having a chemical structure based on at least one kind, a chemical structure based on at least one selected from the group of the chemical formula (2), or a combination thereof. Alternatively, an oligomer, and a polymerization component having three or more functional groups is a monomer or oligomer having a chemical structure based on at least one selected from the group of chemical formula (3) or a combination thereof. It is a method for producing a polymer composite comprising a rigid polymer and a flexible polymer.
[0006]
[Formula 4]
Figure 0003684499
[0007]
The (Ar ′) unit is at least one selected from the group of the chemical formula (2),
[0008]
[Chemical formula 5]
Figure 0003684499
[0009]
The unit (C) is at least one selected from the group of the chemical formula (3).
[0010]
[Chemical 6]
Figure 0003684499
[0011]
The second aspect of the present invention is that in the copolymerization reaction of a bifunctional polymerization component and a polycondensation component of 3 or more functional groups, a polymerization component of 3 or more functional groups is a polymerization component of 2 or more functional groups and a polymerization component of 3 or more functional groups. In the range of 13 mol% to 100 mol% with respect to the sum of the above, the polymerization is terminated before the gel point during the copolymerization, and has a functional group that reacts with the monomer or the oligomer forming the flexible polymer. A rigid polymer developed in a three-dimensional network having voids corresponding to the copolymerization mol% is dissolved in, or swelled or dispersed in, a monomer that forms a flexible polymer, or an oligomer thereof. Is a polymer composite composed of a rigid polymer and a flexible polymer obtained by graft-polymerizing at least a part of the flexible polymer to the rigid polymer, and the bifunctional group polymerization component has the chemical formula Less selected from group (1) Both either have a chemical structure of one basic structure, or either have a basic chemical structure at least one member selected from the group of the formula (2), Oh Rui chemical structure consisting of: Monomer of chemical structure which is a monomer or oligomer and has a chemical structure based on at least one selected from the group of chemical formula (3) or a combination thereof, wherein the polymerization component having three or more functional groups A polymer composite composed of a rigid polymer and a flexible polymer, characterized by being a body or an oligomer,
More preferably, in the three-dimensional network-like rigid polymer, the sum of terephthalic acid (TPA) and trimesic acid (TMA) to 67 is 2,5-diamino-1,4-benzene-dithiol (DA). It is obtained by co-condensation of TPA and TMA within a range of 13 to 100 mol% of TMA and the amount of TMA with respect to the sum of TPA and TMA. The polymer is a polymer composite comprising the rigid polymer and the flexible polymer, wherein the polymer is a lactam. The present inventor has a functional group that reacts with a monomer that forms a flexible polymer from a copolymerization component having three or more functional groups developed in a three-dimensional network obtained by stopping the polymerization before the gel point. By dissolving, swelling or dispersing a rigid polymer having a polymer in a monomer that forms a flexible polymer, polymerizing this, and graft-polymerizing at least a part of the flexible polymer to the rigid polymer The problem has been solved.
[0012]
[Embodiments of the present invention]
If the method for producing the polymer conjugates of the present invention, the case having only p-phenylene benzobisthiazole (B ZT) structure, benzobisthiazole without the structure is bonded only to the trimethine acid having a trifunctional group, A case where the composition is an intermediate composition will be described as an example. The amount of each component charged is shown in Table 1. Using polyphosphoric acid (PPA) as a polymerization solvent, first, 2,5-diamino-1,4-benzene-dithiol dihydrochloride (DABDT) was added to perform dehydrochlorination. 13-67 mol% of trimesic acid (TMA) and 80-0% of terephthalic acid (TPA) were added with respect to DABDT, and it heated up in steps to 100-140 degree | times [J. F. Wolfe et al. , Macromolecules, 14, 915 (1981), see]. Polymerization was carried out while measuring the solution viscosity with a torque meter, and the polymerization was stopped before a sudden increase in viscosity due to gelation began. The obtained sample was powdery and the particle size was several tens to several hundreds of nanometers. The bond produced by the reaction is shown in the following formula (2). In the formula (2), the TPA can be 0 to 80 mol% and the TMA can be 67 to 13 mol% with respect to 100 mol of DABDT, that is, 80 to 0%.
[0013]
[Chemical 7]
Figure 0003684499
[0014]
[Table 1]
Figure 0003684499
[0015]
[Geling point: When a polyfunctional monomer having a plurality of polymerized functional groups reacts with a molecule having three or more functional groups, a polymer having a three-dimensional network structure is formed. The gel point is a point where an insoluble part (gel part) starts to grow and increase during polymerization in the reaction system that can be three-dimensionalized, and is recognized as a point where the viscosity of the reaction system rapidly increases. (See Iwanami “Science and Chemistry Dictionary”, 5th edition 172 (page 423)).
[0016]
An example of the chemical structure of a rigid polymer developed in a three-dimensional network with polymerization terminated before the gel point is shown below. Here, n is in the range of 0-8.
[0017]
[Chemical 8]
Figure 0003684499
[0018]
A model illustration of the structure of PBZT that has been polymerized before the gelation is shown in FIG. 1A (where ◎ is a carboxyl group). A state in which this is dissolved, swollen or dispersed in a polymerizable monomer such as caprolactam ○ is shown in (b). A polymerized product is shown in (c) (Composite 1). In this process, a part of the flexible polymer is graft-polymerized to a three-dimensional network-like rigid polymer. 6-Nylon that is not grafted to the rigid polymer is extracted from the composite 1 with formic acid to obtain a polymer composite (composite 2) having a structure in which 6-nylon is grafted to PBZT (D). The above is the structure of a composite polymer having a structure in which a monomer that generates a flexible polymer is grafted to a rigid polymer having a three-dimensional network structure and a method for producing the composite polymer.
[0019]
As monomers that dissolve, swell or disperse rigid polymers, in addition to ε-caprolactam, lactams such as γ-butyrolactam, δ-valerolactam, ζ-enantolactam, η-caprolactam, ω-lauryllactam, Preferable materials include nylon salts such as hexamethylenediamine adipate and hexamethylenediamine acid sebacate.
[0020]
【Example】
Example 11 In the production of the rigid polymer polyparaphenylene benzobisthiazole (PBZT), polymerization was carried out by adding 33 mol% of trifunctional trimesic acid to DA. The blending amount of terephthalic acid with respect to DA is 50 mol%. A rigid polymer with a three-dimensional network structure was obtained by stopping the polymerization before the gel point. According to the observation with a scanning electron microscope, the particle size was several tens to several hundreds nm. As a result of IR measurement, it was confirmed to have a large amount of COOH. 2. The obtained polyfunctional rigid polymer was depressurized to 1 × 10 −3 mmHg and held for 12 hours, and then ε-caprolactam melted at 110 ° C. was added dropwise while maintaining the reduced pressure. After maintaining in that state for about 2 hours, the system was returned to normal pressure. Subsequently, ε-caprolactam was polymerized by heating it at 250 ° C. for 4 hours. In the obtained sample, a rigid polymer chain made of PBZT is molecularly dispersed in a flexible polymer made of 6-nylon, and a part of the flexible polymer is a copolymer grafted on the rigid polymer. The obtained sample was washed with formic acid to remove all the 6-nylon that can be removed, and the same amount of 6-nylon as the rigid polymer remained. This indicates that the rigid polymer and nylon form a graft copolymer.
[0021]
A. FIG. 2 shows DSC measurement results of the composite. Grafted nylon 6 does not show a melting point in the DSC measurement (complex 2) because of its limited movement. In the composite 1 before the extraction treatment, the melting point appears due to the extractable nylon 6 in the rigid polymer (complex 1 in FIG. 2). Melting | fusing point temperature and (DELTA) H (enthalpy change) change with content of nylon 6 (FIG. 3, FIG. 4). The moldability of the polymer composite synthesized above was confirmed. The viscosity during molding of the rigid polymer network fine powder and the flexible polymer monomer mixture was as low as 1.2 to 2.0 times the viscosity of the monomer itself. B. The mechanical properties of the moldings were investigated. Stress-strain curve between a rod from a polymer composite (composite) in which a flexible monomer is grafted to a rigid polymer three-dimensional network whose polymerization was stopped before gelation and a rod from a nylon 6 homopolymer The physical property values obtained from Table 2 are shown in Table 2. Great improvement in elastic modulus and breaking stress is observed.
[0022]
[Table 2]
Figure 0003684499
[0023]
C. From the results of the viscoelasticity measurement shown in FIG. 5, when the temperature is higher than the glass transition temperature of nylon 6, the storage elastic modulus is lowered due to the softening of nylon 6, but the reduction rate is small in the composite of the present invention. (Indicated by double arrows in FIG. 5)
[0024]
【The invention's effect】
As described above, the present invention brings about an excellent effect that a polymer with good moldability can be obtained while maintaining the effect of improving the Young's modulus and elastic modulus by the rigid polymer network structure.
[Brief description of the drawings]
FIG. 1 shows the structure of a complex obtained by grafting a monomer that generates a flexible polymer to a polyfunctional rigid polymer having a three-dimensional network structure, and a manufacturing method thereof. FIG. Results of DSC measurement of composite 2 after extraction [FIG. 3] Relationship between nylon 6 content and DSC curve [FIG. 4] Relationship between nylon 6 content, melting temperature (Tm), ΔH [FIG. 5] Nylon 6 Measurement results of viscoelasticity of homopolymer and composite of the present invention

Claims (3)

2官能基重合成分と3官能基以上の重合成分の共重合反応において、3官能基以上の重合成分が2官能基重合成分と3官能基以上の重合成分の和に対して13モル%〜100モル%の範囲で共重合する過程において、ゲル化点以前で重合を停止し、屈曲性高分子を形成する単量体あるいはそのオリゴマーと反応する官能性基を有し、前記共重合モル%に対応する空隙を有する三次元網目状に発達した剛直性高分子を、屈曲性高分子を形成する単量体あるいはそのオリゴマーに溶解、膨潤あるいは分散させて重合させ、少なくとも屈曲性高分子の一部を剛直性高分子にグラフト重合させる剛直性高分子と屈曲性高分子からなる高分子複合体の製造方法であり、前記2官能性基重合成分は化学式(1)の群から選択される少なくとも1種を基本構造とした化学構造を有するか、あるいは化学式(2)の群から選択される少なくとも1種を基本とした化学構造を有するか、あるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであり、3官能基以上の重合成分は化学式(3)の群から選択される少なくとも1種を基本とした化学構造を有するかあるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであることを特徴とする剛直性高分子と屈曲性高分子からなる高分子複合体の製造方法
Figure 0003684499
(Ar')単位は、化学式(2)の群から選択される少なくとも1種であり、
Figure 0003684499
そして(C)単位は、化学式(3)の群から選択される少なくとも1種である。
Figure 0003684499
In the copolymerization reaction of a bifunctional polymerization component and a polymerization component having 3 or more functional groups, the polymerization component having 3 or more functional groups is from 13 mol% to 100 mol based on the sum of the bifunctional polymerization component and the polymerization component having 3 or more functional groups. In the process of copolymerization in the range of mol%, the polymerization is stopped before the gel point, and has a functional group that reacts with the monomer or oligomer forming the flexible polymer, and the copolymerization mol% A rigid polymer developed into a three-dimensional network having a corresponding void is polymerized by dissolving, swelling or dispersing in the monomer or oligomer thereof forming the flexible polymer, and at least a part of the flexible polymer is polymerized. Is a method for producing a polymer composite comprising a rigid polymer and a flexible polymer, wherein the bifunctional group polymerization component is at least one selected from the group of the chemical formula (1). Seeds are the basic structure Or a chemical structure monomer or oligomer having a chemical structure based on at least one selected from the group of the chemical formula (2), or a combination thereof. The polymerization component having a functional group or higher is a monomer or oligomer having a chemical structure based on at least one selected from the group of the chemical formula (3) or a combination thereof. A method for producing a polymer composite comprising a rigid polymer and a flexible polymer .
Figure 0003684499
The (Ar ′) unit is at least one selected from the group of the chemical formula (2),
Figure 0003684499
The unit (C) is at least one selected from the group of the chemical formula (3).
Figure 0003684499
2官能基重合成分と3官能基以上の重縮合成分の共重合反応において、3官能基以上の重合成分が2官能基重合成分と3官能基以上の重合成分の和に対して13モル%〜100モル%の範囲で共重合中ゲル化点以前で重合を停止し、屈曲性高分子を形成する単量体あるいはそのオリゴマーと反応する官能性基を有し、前記共重合モル%に対応する空隙を有する三次元網目状に発達した剛直性高分子を、屈曲性高分子を形成する単量体にあるいはそのオリゴマー溶解、膨潤あるいは分散させ、前記単量体を重合させ、少なくとも屈曲性高分子の一部を剛直性高分子にグラフト重合させた剛直性高分子と屈曲性高分子からなる高分子複合体であり、前記2官能性基重合成分は前記化学式(1)の群から選択される少なくとも1種を基本構造とした化学構造を有するか、あるいは前記化学式(2)の群から選択される少なくとも1種を基本とした化学構造を有するか、あるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであり、3官能基以上の重合成分は前記化学式(3)の群から選択される少なくとも1種を基本とした化学構造を有するかあるいはそれらの組み合わせからなる化学構造の単量体あるいはオリゴマーであることを特徴とする剛直性高分子と屈曲性高分子からなる高分子複合体。In the copolymerization reaction of the bifunctional polymerization component and the polycondensation component of 3 or more functional groups, the polymerization component of 3 or more functional groups is 13 mol% to the sum of the bifunctional polymerization component and the polymerization component of 3 or more functional groups. In the range of 100 mol%, the polymerization is terminated before the gel point during the copolymerization, and has a functional group that reacts with the monomer or oligomer that forms the flexible polymer, and corresponds to the copolymerization mol%. A rigid polymer developed in the form of a three-dimensional network having voids is dissolved, swelled or dispersed in a monomer that forms a flexible polymer, or an oligomer thereof, and the monomer is polymerized, so that at least the flexible polymer A polymer composite composed of a rigid polymer and a flexible polymer obtained by graft-polymerizing a part of the polymer to a rigid polymer, and the bifunctional group polymerization component is selected from the group of the chemical formula (1) At least one kind of basic structure A monomer or oligomer having a chemical structure or having a chemical structure based on at least one selected from the group of the above chemical formula (2), or a combination thereof; The polymerization component of the group or more is a monomer or oligomer having a chemical structure based on at least one selected from the group of the chemical formula (3) or a combination thereof. A polymer composite consisting of a rigid polymer and a flexible polymer. 三次元網目状剛直性高分子は2,5−ジアミノ−1,4−ベンゼン−ジチオール(DA)に前記DAに対してテレフタル酸(TPA)およびトリメシン酸(TMA)の和が67〜100モル%であり,かつTPAとTMAの和にたいするTMAの配合量が13モル%〜100モル%の範囲でTPAとTMAを共縮合して得られたものであり、屈曲性高分子を形成する単量体はラクタムであることを特徴とする請求項2に記載の剛直高分子と屈曲性高分子からなる高分子複合体。The three-dimensional network-like rigid polymer is 2,5-diamino-1,4-benzene-dithiol (DA) and the sum of terephthalic acid (TPA) and trimesic acid (TMA) is 67 to 100 mol% with respect to the DA. A monomer that is obtained by co-condensation of TPA and TMA when the blending amount of TMA in the range of 13 mol% to 100 mol% is the sum of TPA and TMA, and forms a flexible polymer 3. A polymer composite comprising a rigid polymer and a flexible polymer according to claim 2, wherein is a lactam.
JP18177099A 1999-06-28 1999-06-28 Method for producing polymer composite and molecular composite Expired - Fee Related JP3684499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18177099A JP3684499B2 (en) 1999-06-28 1999-06-28 Method for producing polymer composite and molecular composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18177099A JP3684499B2 (en) 1999-06-28 1999-06-28 Method for producing polymer composite and molecular composite

Publications (2)

Publication Number Publication Date
JP2001011189A JP2001011189A (en) 2001-01-16
JP3684499B2 true JP3684499B2 (en) 2005-08-17

Family

ID=16106591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18177099A Expired - Fee Related JP3684499B2 (en) 1999-06-28 1999-06-28 Method for producing polymer composite and molecular composite

Country Status (1)

Country Link
JP (1) JP3684499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929574B2 (en) * 2004-10-04 2012-05-09 Jnc株式会社 Polythiazole, thin film thereof and method for forming thin film
JP2009001316A (en) * 2007-06-22 2009-01-08 Hellermann Tyton Co Ltd Transparent and high strength fastening band, fastening band kit, head for fastening band and strap for fastening band
RU2618493C1 (en) * 2016-03-28 2017-05-03 Российская Федерация от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Method of obtaining radioactive coating

Also Published As

Publication number Publication date
JP2001011189A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR100355649B1 (en) Process for preparing polyamide and said polyamide and composition containing said polyamide
EP2726537B1 (en) Branched polyamide with different blocks
Zhou et al. Role of reactive compatibilization in preparation of nanosilica/polypropylene composites
KR102206790B1 (en) Method for increasing fatigue resistance of polyamides
JP3684499B2 (en) Method for producing polymer composite and molecular composite
JPS61200123A (en) Manufacture of cocondensated polyamide
JP2004519532A (en) Method for producing meltable polyester
US6353052B1 (en) Amide-type polymer/silicone polymer blends and processes of making the same
JP2007231156A (en) Polyether ester amide elastomer resin composition and its manufacturing method
JPH0948915A (en) Curable resin composition, molded product thereof and production thereof
Hong et al. Semicrystalline-glassy multiblock copolymers via mechanochemical synthesis toward tough poly (lactide)
JP2004506079A (en) Copolyamides and compositions based on copolyamides
JPH08302185A (en) Polymer blend comprising aromatic polyamide and soluble polyamide
Joachim et al. Prospects and challenges of reactive processing
KR20000045849A (en) Polyamide composition and production method thereof
TWI795339B (en) Polyamide foam molded body and method for manufacturing the same
CN115768816A (en) High melting temperature soluble semi-crystalline polyamides
Phromsopha et al. IMPROVEMENT IN MECHANICAL PROPERTIES OF FLEXIBLE POLY (L-LACTIDE)-b-POLYETHYLENE GLYCOL-b-POLY (L-LACTIDE) BIOPLASTIC BY MELT BLENDING WITH BORON NITRIDE
JPH0124404B2 (en)
JPH07216222A (en) Continuous production of polyamide composition
JPH05345856A (en) Compound polymer, its production and its molded article
JP2649193B2 (en) Method for producing molecular composite material using aromatic heterocyclic random copolymer
JP2022530004A (en) Copolyamide obtained from 4- (aminomethyl) benzoic acid
TW202415716A (en) Polyamide foam molded body and method for manufacturing the same
CN113336980A (en) Self-reinforcing and toughening polyamide material and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees