JP3682334B2 - Spring constant switching structure - Google Patents

Spring constant switching structure Download PDF

Info

Publication number
JP3682334B2
JP3682334B2 JP03734496A JP3734496A JP3682334B2 JP 3682334 B2 JP3682334 B2 JP 3682334B2 JP 03734496 A JP03734496 A JP 03734496A JP 3734496 A JP3734496 A JP 3734496A JP 3682334 B2 JP3682334 B2 JP 3682334B2
Authority
JP
Japan
Prior art keywords
spring
spring constant
spring element
cylinder
suspension spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03734496A
Other languages
Japanese (ja)
Other versions
JPH09207536A (en
Inventor
忠 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP03734496A priority Critical patent/JP3682334B2/en
Publication of JPH09207536A publication Critical patent/JPH09207536A/en
Application granted granted Critical
Publication of JP3682334B2 publication Critical patent/JP3682334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、ばね定数の切換構造に関し、特に、車両に搭載の油圧緩衝器に併設される懸架ばねにおけるばね定数の切換構造の改良に関する。
【0002】
【従来技術とその課題】
周知のように、例えば、車両に搭載の油圧緩衝器に併設される懸架ばねにおけるばね定数は、車両における乗り心地や操縦性を改善する上からは、車両が走行する路面の状況や車両の走行姿勢に応じて、例えば、大小に切り換えられるのが好ましい。
【0003】
そこで、この要請に応じるべく、従来から種々の提案があるが、例えば、特開昭60−94810号公報には、油圧緩衝器に介装される懸架ばねの間に上下動可能に配在したプレートと、プレートの上下に直列に配置した二本のコイルスプリングからなると共に、プレートの上下動の可不可が選択されることで、二本のコイルスプリングの一方あるいは両方の伸縮が選択的に可能とされて、懸架ばねにおけるばね定数を大小に切り換える構成が提案されている。
【0004】
即ち、該提案にあっては、上記懸架ばねに加えて、上記プレートに連設されて油圧緩衝器の伸縮に伴う変位を検出する検知手段と、該検知手段からの入力信号を演算処理等して所定の信号を出力するコントローラと、該コントローラからの出力信号でプレートを介して上記二本のコイルスプリングの一方あるいは両方の伸縮を選択的に可能にする調整機構と、を有する構成が開示されている。
【0005】
それ故、該提案にあっては、検知手段及びコントローラを介してであるが、車両における車高の状況に応じる調整機構の作動によって、懸架ばねを構成する二本のコイルスプリングの一方あるいは両方の伸縮が選択的に可能とされることになり、言わば、自動的に懸架ばねにおけるばね定数を大小に切り換えることが可能になる。
【0006】
しかしながら、該提案にあっては、その構成において、プレートを有する懸架ばねに加えて、検知手段,コントローラ及び調整機構の装備が必須になり、全体として所謂大掛りとなり、例えば、車両に搭載される油圧緩衝器に併設される場合に、油圧緩衝器の車両への搭載性を悪化し易くなると共に、所謂コストの低廉化を困難にし、その汎用性の向上を期待できなくする不具合が指摘される。
【0007】
また、該提案にあっては、調整機構が開閉弁付きの油圧シリンダ機構とされるが、開閉弁の切換作動は瞬時に実現されるから、油圧シリンダにおける油圧変動が瞬時に発現され、この影響が懸架ばねにおける切り換えられたばね定数に反映されることになり、従って、例えば、車両における乗り心地や操縦性を改善する際のフィーリングが悪化され易くなる不具合が指摘される。
【0008】
そして、上記開閉弁の切換作動による影響を排除するには、該開閉弁を細かく切換作動等するための更なる制御が必要になり、その結果、全体として一層大掛りになり、例えば、上記した車両への搭載性を一層悪化させ易くすると共に、コストの低廉化を一層期待できなくする不具合を招くことになる。
【0009】
この発明は、前記した事情を鑑みて創案されたもので、その目的とするところは、全体としてコンパクト化による省スペースを可能にすると共にコストの低廉化を可能にし、例えば、油圧緩衝器に併設される懸架ばねにおけるばね定数を切り換えることによって車両における乗り心地や操縦性を改善する際に、車両への搭載性を悪化させないのは勿論のこと、ばね定数の切り換えが振動周波数に応じて自動的に行われるとし、さらに、その際にフィーリングの悪化を招来させないようにするのに最適となるばね定数の切換構造を提供することである。
【0010】
【課題を解決するための手段】
上記した目的を達成するために、この発明の一つの手段は、油圧緩衝器に並列に配置した車体側懸架ばね要素及び車軸側懸架ばね要素と、車体側懸架ばね要素と車軸側懸架ばね要素との間に配置したばね定数切換手段とを有してなるばね定数の切換構造において、油圧緩衝器はシリンダ体と、シリンダ体内に移動自在に挿入したロッド体と、ロッド体の上端に連設した上方ばね受と、シリンダ体の下端側に連設した下方ばね受とを備え、上記ばね定数切換手段がシリンダ体の外周に固設したピストンと、シリンダ体の外周とピストンの外周に摺動自在に収装したシリンダ部材と、シリンダ部材内にピストンで区画された伸側油室及び圧側油室と、ピストン又はロッド体に開穿されて伸側油室と圧側油室を連通する流路と,流路中に配在した絞りとからなり、車体側懸架ばね要素を上記上方ばね受と上記シリンダ部材との間に介在させ、車軸側懸架ばね要素を下方ばね受とシリンダ部材との間に介在させたことを特徴とする。
【0011】
同じく,他の手段は、油圧緩衝器に並列に配置した車体側懸架ばね要素及び車軸側懸架ばね要素と、車体側懸架ばね要素と車軸側ばね要素との間に配置したばね定数切換手段とを有してなるばね定数の切換構造において、油圧緩衝器はシリンダ体と、シリンダ体内に移動自在に挿入したロッド体と、ロッド体の上端に連設した上方ばね受と、シリンダ体の下端側に連設した下方ばね受とを備え、上記ばね定数切換手段がロッド体の外周に固設したピストンと、ロッド体の外周とピストンの外周に摺動自在に収装したシリンダ部材と、シリンダ部材内にピストンで区画された伸側油室及び圧側油室と、ピストン又はロッド体に開穿されて伸側油室と圧側油室を連通する流路と,流路中に配在した絞りとからなり、車体側懸架ばね要素を上記上方ばね受と上記シリンダ部材との間に介在させ、車軸側懸架ばね要素を下方ばね受とシリンダ部材との間に介在させたことを特徴とする。
【0012】
【発明の実施の形態】
以下、図示したところに基づいてこの発明を説明するが、この発明のばね定数の切換構造は、基本的には、図1乃至図2に示すように、車体側懸架ばね要素1と、車軸側懸架ばね要素2と、ばね定数切換手段3と、を有する構成とされている。
【0013】
即ち、図1に示す実施の形態に係わるばね定数の切替構造は、油圧緩衝器SAに並列に配置した車体側懸架ばね要素1及び車軸側懸架ばね要素2と、車体側懸架ばね要素1と車軸側懸架ばね要素2との間に配置したばね定数切換手段3とを有してなるものである。そして、油圧緩衝器SAはシリンダ体4と、シリンダ体4内に移動自在に挿入したロッド体5と、ロッド体5の上端に連設した上方ばね受51と、シリンダ体5の下端側に連設した下方ばね受41とを備え、上記ばね定数切換手段3がシリンダ体4の外周に固設したピストン34と、シリンダ体4の外周とピストン体34の外周に摺動自在に収装したシリンダ部材31と、シリンダ部材31内にピストン34で区画された伸側油室R1及び圧側油室R2と、ピストン34又はロッド体5に開穿されて伸側油室R1と圧側油室R2を連通する流路Lと,流路L中に配在した絞り33とからなり、車体側懸架ばね要素1を上記上方ばね受51と上記シリンダ部材31との間に介在させ、車軸側懸架ばね要素2を下方ばね受41とシリンダ部材31との間に介在させたものである。
【0014】
同じく、図2に示す実施の形態に係わるばね定数の切替構造は、上記と同じく、油圧緩衝器SAに並列に配置した車体側懸架ばね要素1及び車軸側懸架ばね要素2と、車体側懸架ばね要素1と車軸側ばね要素2との間に配置したばね定数切換手段3とを有してなるもであり、油圧緩衝器SAはシリンダ体4と、シリンダ体4内に移動自在に挿入したロッド体5と、ロッド体5の上端に連設した上方ばね受51と、シリンダ体5の下端側に連設した下方ばね受41とを備え、上記ばね定数切換手段がロッド体5の外周に固設したピストン34と、シリンダ体4の外周とピストン体34の外周に摺動自在に収装したシリンダ部材31と、シリンダ部材31内にピストン34で区画された伸側油室R1及び圧側油室R2と、ピストン34又はロッド体5に開穿されて伸側油室R1と圧側油室R2を連通する流路Lと,流路L中に配在した絞り33とからなり、車体側懸架ばね要素1を上記上方ばね受51と上記シリンダ部材31との間に介在させ、車軸側懸架ばね要素2を下方ばね受41とシリンダ部材31との間に介在させたものである。
【0015】
上記各実施の形態において、各絞り33は、シリンダ部材31内におけるシリンダ体4又はロッド体5の振動周波数が低周波数領域にあるときには作動油の通過を許容するに対して、シリンダ部材31内におけるロッド部材32の振動周波数が高周波数領域にあるときには作動油の通過を阻止するように設定されている。
【0016】
以下詳し句説明する。図1及び図2は、上記したばね定数の切換構造を油圧緩衝器SAに合体させる態様に具現化した場合の実施の形態を示すものであって、図1に示す実施の形態では、ばね定数切換手段3が油圧緩衝器SAを構成するシリンダ体4部分に具現化され、図2に示す実施の形態では、ばね定数切換手段3が油圧緩衝器SAを構成するロッド体5部分に具現化されるとしたものである。
【0017】
即ち、図1に示す実施の形態にあっては、コイルスプリングからなる車体側懸架ばね要素1の上端がロッド体5の上端に連設の上方ばね受51に係止されると共に、同じくコイルスプリングからなる車軸側懸架ばね要素2の下端がシリンダ体4の下端側に連設の下方ばね受41に担持される一方で、ばね定数切換手段3を構成するシリンダ部材31がシリンダ体4の外周に摺動可能に保持されてなるとする。
【0018】
そして、該シリンダ部材31が上端に車体側懸架ばね要素1の下端を担持し、かつ、下端に車軸側懸架ばね要素2の上端を係止するとして、シリンダ体4が両ロッド型のロッド部材32に代替えされてなるとしている。
【0019】
また、この場合に、シリンダ部材31内に伸側油室R1及び圧側油室R2を区画するピストン34がシリンダ体4の外周に固設されてなるとし、該ピストン34に絞り33が配在されている。
【0020】
そして、振動周波数が低周波数領域にある場合には、絞り33が作動油の通過を許容するから、伸側油室R1及び圧側油室R2の広狭が可能になり、シリンダ部材31が摺動してばね定数切換手段3の伸縮が可能となる。
【0021】
従って、該シリンダ部材31に連結されている車体側懸架ばね要素1の伸縮が可能となり、その結果、車体側懸架ばね要素1及び車軸側懸架ばね要素2がそれぞれ伸縮されることになり、車体側懸架ばね要素1及び車軸側懸架ばね要素2からなる懸架ばねのばね定数が小さいものとされることになる。
【0022】
一方、上記振動周波数が高周波数領域にあるときには、絞り33が作動油の通過を阻止するから、伸側油室R1及び圧側油室R2の広狭が不能になり、シリンダ部材31が摺動せず、ばね定数切換手段3の伸縮が不能になる。
【0023】
そして、このとき、ばね定数切換手段3の伸縮不能化、即ち、ブロック化によって、車軸側懸架ばね要素2のみの伸縮が可能となり、その結果、懸架ばねのばね定数が大きいものとされることになる。
【0024】
従って、上記のばね定数の切換構造によれば、例えば、車両が大きいうねりの舗装路面を比較的に低速傾向で走行するような場合に、荷重の変化速度、即ち、作動油の流速も小さくて、振動周波数も低周波数領域にあるから、ばね定数切換手段3の伸縮が可能とされて、結果として、小さいばね定数になり、車両における乗り心地が改善されることになる。
【0025】
また、例えば、車両が細かい凹凸が連続する路面を比較的に高速傾向で走行するような場合には、荷重の変化速度、即ち、作動油の流速も大きく、振動周波数も高周波数領域にあるから、ばね定数切換手段3の伸縮が不能とされて、結果として、大きいばね定数になり、車両における操縦性が改善されることになる。
【0026】
そして、上記のばね定数の切換構造によれば、ばね定数の大小の切換のタイミングを絞り33の設定如何で、例えば、絞り33がオリフィスからなるとき、該オリフィスの径の設定如何で、また、絞り33が可変型とされるときに、適宜の手段で作動油の流量を強制的に変更する等、によって、任意の路面を走行する車両の状況に応じて任意に懸架ばねにおけるばね定数を大小に切り換えることが可能になる。
【0027】
また、絞り33の設定如何で、該絞り33における作動油の通過の可不可、即ち、ばね定数切換手段3の伸縮の可能性が振動周波数の増大と共に減少することから、ばね定数切換手段3の伸縮の可不可が突然に発現されるのを阻止できることになり、ばね定数を大小に切り換える際にショックが招来されなくなって、車両における乗り心地や操縦性を改善する際のフィーリングの悪化を招来させないことが可能になる。
【0028】
図1の実施の形態にあっては、ばね定数切換手段3が油圧緩衝器SAに一体に設けられているから、所謂コンパクト化が可能になり、省スペースによって、車両への搭載性を向上させることになる。
【0029】
一方、図2に示す実施の形態にあっては、コイルスプリングからなる車体側懸架ばね要素1の上端がロッド体5の上端に連設の上方ばね受51に係止されると共に、同じくコイルスプリングからなる車軸側懸架ばね要素2の下端がシリンダ体4の下端側に連設の下方ばね受41に担持される一方で、ばね定数切換手段3を構成するシリンダ部材31がロッド体5の外周に摺動可能に保持されてなるとする。
【0030】
そして、該シリンダ部材31が外周に形成されたばね受部31aで車体側懸架ばね要素1の下端を担持すると共に車軸側懸架ばね要素2の上端を係止して、ロッド体5が両ロッド型のロッド部材32に代替えされてなるとしている。
【0031】
また、この場合に、シリンダ部材31内に伸側油室R1及び圧側油室R2を区画するピストン34がロッド体5の外周に固設されてなるとし、該ピストン34に絞り33が配在されてなるとしている。
【0032】
それ故、この実施の形態にあっては、ばね定数切換手段3が油圧緩衝器SAに一体に設けられて所謂コンパクト化が可能になるのは勿論であるが、ばね定数切換手段3の配設位置が油圧緩衝器SAにおけるロッド体5部分とされるので、上記した図1に示す実施の形態の場合に比較して、より一層の省スペース化が可能になり、車両への搭載性が一層向上されることになる。絞り33の作用効果は図1の実施の形態の場合と同じである。
【0033】
図3は、ばね定数切換手段3が油圧緩衝器SAにおけるロッド体5部分に具現化される(図2参照)と共に、絞り33が可変型とされ、かつ、該可変型の絞り33がロッド体5内に配在されてなる場合の具体的な実施の形態を示すもので、以下には、この実施の形態について少し説明する。
【0034】
先ず、ばね定数切換手段3を構成するシリンダ部材31は、ロッド体5の外周に摺動可能に介装され、該シリンダ部材31内にはロッド体5の外周に固設されたピストン34が収装され、該ピストン34によってシリンダ部材31内に伸側油室R1と圧側油室R2とを区画している。
【0035】
そして、該伸側油室R1と圧側油室R2は、ロッド体5に開穿した流路Lによって相互に連通可能とされているが、該流路L中にはロータリバルブ52が回動可能に配在されていて、該ロータリバルブ52の回動によって該ロータリバルブ52に開穿の流路面積が大小異なる複数の絞り孔52a,52bの選択されたいずれかを介して連通可能とされている。
【0036】
また、ロータリバルブ52にはコントロールロッド53が連結されており、該コントロールロッド53の上端は、ロッド体5の上端に連設のブラケット54の内側に配在の駆動アクチュエータ55に連結されている。
【0037】
尚、上記コントロールロッド53は、ロッド体5の上端から下方側にかけての軸芯部にスペーサ56及びシール57の介在下に配在されている。
【0038】
また、図示しないが、シリンダ部材31とロッド体5の上端に連設の上方ばね受51との間及びシリンダ部材31とシリンダ体4の下端側に連設の下方ばね受41との間には、車体側懸架ばね要素1と車軸側懸架ばね要素2が介装されていること勿論である。
【0039】
それ故、この実施の形態にあっては、ばね定数切換手段3が油圧緩衝器SAにおけるロッド体5部分とされて前記したコンパクト化や省スペース化が可能になるのは勿論のこと、結果としてばね定数を切り換える絞り33が可変型とされることで、任意の路面を走行する車両の状況に応じて任意に懸架ばねにおけるばね定数を大小に切り換えることが可能になる。
【0040】
【発明の効果】
以上のように、この発明にあっては、ばね定数切換手段が油圧緩衝器のシリンダ体又はロッド体に一体に設けられているから、所謂コンパクト化が可能になり、省スペースによって、車両への搭載性を向上させることになる。
同じく、ばね定数の切換構造が車体側懸架ばね要素と車軸側懸架ばね要素との間に伸縮の可不可を可能にするばね定数切換手段を有してなるとするから、その他の構成を要せずしてばね定数の大小の切り換えを実現し得ることになり、従って、全体としてコンパクト化による省スペースを可能にすると共にコストの低廉化を可能にすることになる。
【0041】
このとき、ばね定数切換手段は、絞りによる絞り効果によって伸縮の可不可を可能にするように構成されるから、例えば、絞りの径の設定如何で、また、絞りが可変型に設定されるときに、適宜の手段で作動油の流量を強制的に変更する等、によって、ばね定数の大小の切り換えのタイミングを任意に設定できることになる。
【0042】
また、特に、絞りにおける作動油の通過の可否、即ち、ばね定数切換手段の伸縮の可不可が振動周波数の増大と共に減少することから、ばね定数切換手段の伸縮の可不可が突然に発現されるのを阻止できることになり、ばね定数を大小に切り換える際にショックが招来されなくなって、車両における乗り心地や操縦性を改善する際のフィーリングの悪化が危惧されないことになる。
【0043】
その結果、この発明によれば、全体としてコンパクト化による省スペースを可能にすると共にコストの低廉化を可能にして、大きいうねりの舗装路面を比較的に低速傾向で走行するような場合に、懸架ばねにおけるばね定数を小さくして車両における乗り心地を改善し、車両が細かい凹凸が連続する路面を比較的に高速傾向で走行するような場合に懸架ばねにおけるばね定数を大きくして、車両における操縦性を改善し、しかも、その際のばね定数の切り換えのタイミングが自動設定であり、また、切り換えも突然に発現されないからフィーリングの悪化を招来させない利点がある。
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係わるばね定数の切替構造の縦断正面図である。
【図2】 他の実施の形態に係わるばね定数の切替構造の縦断正面図である。
【図3】 他の実施の形態に係わるばね定数の切替構造の縦断正面図である。
【符号の説明】
SA 油圧緩衝器
1 車体側懸架ばね要素
2 車軸側懸架ばね要素
3 ばね定数切替手段
4 シリンダ体4
5 ロッド体5
51 上方ばね受51
41 下方ばね受41
33 絞り
34 ピストン34
31 シリンダ部材31
R1 伸側油室R1
R2 圧側油室R2
L 流路L
[0001]
[Industrial application fields]
The present invention relates to a spring constant switching structure, and more particularly to an improvement of a spring constant switching structure in a suspension spring provided in a hydraulic shock absorber mounted on a vehicle.
[0002]
[Prior art and its problems]
As is well known, for example, the spring constant of a suspension spring provided in a hydraulic shock absorber mounted on a vehicle improves the ride comfort and maneuverability of the vehicle. For example, it is preferable to switch between large and small according to the posture.
[0003]
In order to meet this demand, there have been various proposals. For example, in Japanese Patent Application Laid-Open No. 60-94810, the suspension spring is disposed so as to be movable up and down between the suspension springs. It consists of a plate and two coil springs arranged in series above and below the plate, and by selecting whether the plate can be moved up or down, one or both of the two coil springs can be selectively expanded or contracted. Therefore, a configuration has been proposed in which the spring constant of the suspension spring is switched between large and small.
[0004]
That is, in the proposal, in addition to the suspension spring, detection means connected to the plate for detecting displacement accompanying expansion and contraction of the hydraulic shock absorber, and an input signal from the detection means are subjected to arithmetic processing and the like. And a controller that selectively outputs one or both of the two coil springs via a plate by an output signal from the controller. ing.
[0005]
Therefore, in the proposal, although it is via the detection means and the controller, one or both of the two coil springs constituting the suspension spring are activated by the operation of the adjusting mechanism according to the vehicle height situation in the vehicle. Expansion and contraction is selectively enabled, that is, it becomes possible to automatically switch the spring constant of the suspension spring between large and small.
[0006]
However, in the proposal, in the configuration, in addition to the suspension spring having a plate, the detection means, the controller, and the adjustment mechanism are essential, so that the whole is a so-called overhang, for example, mounted on a vehicle. When it is attached to the hydraulic shock absorber, it is easy to deteriorate the mounting property of the hydraulic shock absorber on the vehicle, and it is difficult to reduce the cost, and it is difficult to expect improvement in its versatility. .
[0007]
In this proposal, the adjusting mechanism is a hydraulic cylinder mechanism with an on-off valve. However, since the switching operation of the on-off valve is realized instantaneously, the hydraulic pressure fluctuation in the hydraulic cylinder is instantly expressed, and this influence Is reflected in the switched spring constant of the suspension spring, and thus, for example, a problem that the feeling when improving the riding comfort and maneuverability in the vehicle is easily deteriorated is pointed out.
[0008]
Further, in order to eliminate the influence of the switching operation of the on-off valve, further control for finely switching the on-off valve is required, and as a result, the overall operation becomes even larger. In addition to facilitating the mounting on the vehicle, it causes a problem that the cost cannot be further reduced.
[0009]
The present invention was devised in view of the above-described circumstances, and the object of the present invention is to enable space saving by reducing the size as a whole and to reduce the cost. For example, it is provided in a hydraulic shock absorber. Switching the spring constant of the suspension spring to improve the riding comfort and controllability of the vehicle does not deteriorate the mountability to the vehicle, and the switching of the spring constant is automatically performed according to the vibration frequency. Further, it is to provide a spring constant switching structure which is optimal for preventing the deterioration of the feeling at that time.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, one means of the present invention includes a vehicle body side suspension spring element and an axle side suspension spring element arranged in parallel with a hydraulic shock absorber, a vehicle body side suspension spring element, and an axle side suspension spring element. In the spring constant switching structure having the spring constant switching means disposed between the cylinder, the hydraulic shock absorber is connected to the cylinder body, the rod body movably inserted into the cylinder body, and the upper end of the rod body. An upper spring bearing and a lower spring bearing connected to the lower end side of the cylinder body, the spring constant switching means being fixed to the outer circumference of the cylinder body; and the outer circumference of the cylinder body and the outer circumference of the piston are slidable A cylinder member housed in the cylinder, an extension side oil chamber and a pressure side oil chamber partitioned by a piston in the cylinder member, and a flow path that is opened in the piston or rod body and communicates the extension side oil chamber and the pressure side oil chamber. , Restriction placed in the flow path Consists of a, the vehicle body-side suspension spring element is interposed between the upper spring receiver and the cylinder member, characterized in that the axle-side suspension spring element is interposed between the lower spring receiver and the cylinder member.
[0011]
Similarly, the other means includes a vehicle body side suspension spring element and an axle side suspension spring element arranged in parallel with the hydraulic shock absorber, and a spring constant switching means arranged between the vehicle body side suspension spring element and the axle side spring element. In the spring constant switching structure, the hydraulic shock absorber has a cylinder body, a rod body that is movably inserted into the cylinder body, an upper spring receiver that is connected to the upper end of the rod body, and a lower end side of the cylinder body. A piston member in which the spring constant switching means is fixed to the outer periphery of the rod body, a cylinder member slidably mounted on the outer periphery of the rod body and the outer periphery of the piston, An expansion-side oil chamber and a compression-side oil chamber that are partitioned by a piston, a flow path that is opened in the piston or rod body and communicates with the expansion-side oil chamber and the compression-side oil chamber, and a restriction disposed in the flow path. If the vehicle body side suspension spring element is An axle suspension spring element is interposed between the lower spring receiver and the cylinder member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. The spring constant switching structure of the present invention basically has a vehicle body side suspension spring element 1 and an axle side as shown in FIGS. The suspension spring element 2 and the spring constant switching means 3 are provided.
[0013]
In other words, the spring constant switching structure according to the embodiment shown in FIG. 1 includes the vehicle body side suspension spring element 1 and the axle side suspension spring element 2 arranged in parallel with the hydraulic shock absorber SA, the vehicle body side suspension spring element 1 and the axle. Spring constant switching means 3 disposed between the side suspension spring elements 2 is provided. The hydraulic shock absorber SA is connected to the cylinder body 4, the rod body 5 movably inserted into the cylinder body 4, an upper spring receiver 51 provided continuously with the upper end of the rod body 5, and the lower end side of the cylinder body 5. A lower spring bearing 41 provided, and a piston 34 in which the spring constant switching means 3 is fixed to the outer periphery of the cylinder body 4, and a cylinder slidably disposed on the outer periphery of the cylinder body 4 and the outer periphery of the piston body 34 The member 31, the extension side oil chamber R1 and the pressure side oil chamber R2 defined by the piston 34 in the cylinder member 31, and the piston 34 or the rod body 5 are opened to communicate the extension side oil chamber R1 and the pressure side oil chamber R2. And a throttle 33 disposed in the flow path L. The vehicle body side suspension spring element 1 is interposed between the upper spring receiver 51 and the cylinder member 31, and the axle side suspension spring element 2 is disposed. The lower spring bearing 41 and the cylinder member 31 In which is interposed between the.
[0014]
Similarly, the spring constant switching structure according to the embodiment shown in FIG. 2 includes the vehicle body side suspension spring element 1 and the axle side suspension spring element 2 arranged in parallel with the hydraulic shock absorber SA, and the vehicle body side suspension spring. The hydraulic shock absorber SA includes a cylinder body 4 and a rod that is movably inserted into the cylinder body 4. The spring constant switching means 3 is disposed between the element 1 and the axle-side spring element 2. A body 5, an upper spring receiver 51 connected to the upper end of the rod body 5, and a lower spring receiver 41 connected to the lower end side of the cylinder body 5, and the spring constant switching means is fixed to the outer periphery of the rod body 5. The provided piston 34, the cylinder member 31 slidably disposed on the outer periphery of the cylinder body 4 and the outer periphery of the piston body 34, the extension side oil chamber R1 and the pressure side oil chamber partitioned by the piston 34 in the cylinder member 31 R2 and piston 34 or rod 5 and a flow path L communicating with the extension side oil chamber R1 and the pressure side oil chamber R2, and a throttle 33 disposed in the flow path L, and the vehicle body side suspension spring element 1 is connected to the upper spring receiver 51. The axle suspension spring element 2 is interposed between the lower spring receiver 41 and the cylinder member 31.
[0015]
In each of the embodiments described above, each throttle 33 allows the hydraulic oil to pass when the vibration frequency of the cylinder body 4 or the rod body 5 in the cylinder member 31 is in the low frequency region, whereas in the cylinder member 31 When the vibration frequency of the rod member 32 is in a high frequency region, the hydraulic oil is set to be blocked.
[0016]
The phrase will be explained in detail below. FIG. 1 and FIG. 2 show an embodiment in which the above-described spring constant switching structure is embodied in a mode in which it is combined with the hydraulic shock absorber SA. In the embodiment shown in FIG. The switching means 3 is embodied in the cylinder body 4 constituting the hydraulic shock absorber SA. In the embodiment shown in FIG. 2, the spring constant switching means 3 is embodied in the rod body 5 constituting the hydraulic shock absorber SA. It is a thing.
[0017]
That is, in the embodiment shown in FIG. 1, the upper end of the vehicle body side suspension spring element 1 made of a coil spring is locked to the upper spring receiver 51 connected to the upper end of the rod body 5, and the coil spring is also the same. The lower end of the axle-side suspension spring element 2 is supported by a lower spring receiver 41 connected to the lower end side of the cylinder body 4, while the cylinder member 31 constituting the spring constant switching means 3 is disposed on the outer periphery of the cylinder body 4. It is assumed that it is slidably held.
[0018]
The cylinder member 31 carries the lower end of the vehicle body side suspension spring element 1 at the upper end and the upper end of the axle side suspension spring element 2 is engaged with the lower end. It has been replaced by.
[0019]
Further, in this case, it is assumed that the piston 34 that partitions the expansion side oil chamber R1 and the pressure side oil chamber R2 is fixedly provided on the outer periphery of the cylinder body 4 in the cylinder member 31, and the throttle 33 is disposed on the piston 34. ing.
[0020]
When the vibration frequency is in the low frequency region, the restrictor 33 allows the hydraulic oil to pass, so that the expansion side oil chamber R1 and the pressure side oil chamber R2 can be widened and the cylinder member 31 slides. The spring constant switching means 3 can be expanded and contracted.
[0021]
Accordingly, the vehicle body side suspension spring element 1 connected to the cylinder member 31 can be expanded and contracted. As a result, the vehicle body side suspension spring element 1 and the axle side suspension spring element 2 are expanded and contracted, respectively. The spring constant of the suspension spring composed of the suspension spring element 1 and the axle-side suspension spring element 2 is small.
[0022]
On the other hand, when the vibration frequency is in the high frequency range, the throttle 33 prevents the hydraulic oil from passing through. Therefore, the expansion-side oil chamber R1 and the compression-side oil chamber R2 cannot be widened and the cylinder member 31 does not slide. The expansion and contraction of the spring constant switching means 3 becomes impossible.
[0023]
At this time, by making the spring constant switching means 3 inextensible or non-extensible, that is, by making it into a block, only the axle-side suspension spring element 2 can be expanded and contracted. As a result, the spring constant of the suspension spring is increased. Become.
[0024]
Therefore, according to the switching structure of the spring constant described above, for example, when the vehicle travels on a paved road surface with a large undulation at a relatively low speed tendency, the load changing speed, that is, the flow speed of the hydraulic oil is small. Since the vibration frequency is also in the low frequency region, the spring constant switching means 3 can be expanded and contracted. As a result, the spring constant becomes small and the riding comfort in the vehicle is improved.
[0025]
Also, for example, when the vehicle travels on a road surface with continuous fine irregularities at a relatively high speed, the load changing speed, that is, the flow rate of hydraulic oil is large, and the vibration frequency is in the high frequency range. The expansion and contraction of the spring constant switching means 3 is disabled, and as a result, the spring constant becomes large and the maneuverability in the vehicle is improved.
[0026]
According to the above-described spring constant switching structure, the timing of switching the magnitude of the spring constant depends on the setting of the restrictor 33, for example, when the restrictor 33 comprises an orifice, the setting of the diameter of the orifice, When the throttle 33 is variable, the spring constant of the suspension spring is arbitrarily increased or decreased according to the situation of the vehicle traveling on an arbitrary road surface by forcibly changing the flow rate of hydraulic oil by an appropriate means. It becomes possible to switch to.
[0027]
Further, depending on the setting of the throttle 33, the possibility of passage of hydraulic oil through the throttle 33, that is, the possibility of expansion and contraction of the spring constant switching means 3 decreases with an increase in the vibration frequency. It is possible to prevent sudden expansion / contraction, and no shock is caused when switching the spring constant between large and small, resulting in deterioration of feeling when improving riding comfort and maneuverability in the vehicle. It is possible not to let it.
[0028]
In the embodiment of FIG. 1, since the spring constant switching means 3 is provided integrally with the hydraulic shock absorber SA, so-called compactness is possible, and space-saving improves the mountability to the vehicle. It will be.
[0029]
On the other hand, in the embodiment shown in FIG. 2, the upper end of the vehicle body side suspension spring element 1 formed of a coil spring is locked to the upper spring receiver 51 connected to the upper end of the rod body 5, and the coil spring is also the same. The lower end of the axle-side suspension spring element 2 is carried by a lower spring receiver 41 connected to the lower end side of the cylinder body 4, while the cylinder member 31 constituting the spring constant switching means 3 is disposed on the outer periphery of the rod body 5. It is assumed that it is slidably held.
[0030]
Then, the cylinder member 31 supports the lower end of the vehicle body side suspension spring element 1 with the spring receiving portion 31a formed on the outer periphery and engages the upper end of the axle side suspension spring element 2, so that the rod body 5 is a double rod type. It is assumed that the rod member 32 is substituted.
[0031]
Further, in this case, it is assumed that the piston 34 that partitions the expansion side oil chamber R1 and the pressure side oil chamber R2 is fixed to the outer periphery of the rod body 5 in the cylinder member 31, and the throttle 33 is arranged on the piston 34. It is supposed to become.
[0032]
Therefore, in this embodiment, the spring constant switching means 3 is provided integrally with the hydraulic shock absorber SA, so that so-called downsizing is possible. Since the position is the rod body 5 portion in the hydraulic shock absorber SA, it is possible to further reduce the space and further mountability to the vehicle as compared with the embodiment shown in FIG. Will be improved. The effect of the aperture 33 is the same as in the embodiment of FIG.
[0033]
In FIG. 3, the spring constant switching means 3 is embodied in the rod body 5 portion of the hydraulic shock absorber SA (see FIG. 2), the throttle 33 is variable, and the variable throttle 33 is rod body. 5 shows a specific embodiment in the case where it is distributed within 5, and in the following, this embodiment will be described a little.
[0034]
First, the cylinder member 31 constituting the spring constant switching means 3 is slidably interposed on the outer periphery of the rod body 5, and the piston 34 fixed on the outer periphery of the rod body 5 is accommodated in the cylinder member 31. The piston 34 partitions the expansion side oil chamber R1 and the pressure side oil chamber R2 in the cylinder member 31.
[0035]
The extension side oil chamber R1 and the pressure side oil chamber R2 can communicate with each other by a flow path L opened in the rod body 5, and a rotary valve 52 can be rotated in the flow path L. The rotation of the rotary valve 52 allows the rotary valve 52 to communicate with each other through a selected one of a plurality of throttle holes 52a and 52b having different opening and closing channel areas. Yes.
[0036]
In addition, a control rod 53 is connected to the rotary valve 52, and an upper end of the control rod 53 is connected to a drive actuator 55 disposed inside a bracket 54 that is connected to the upper end of the rod body 5.
[0037]
The control rod 53 is disposed on the shaft core portion from the upper end to the lower side of the rod body 5 with a spacer 56 and a seal 57 interposed therebetween.
[0038]
Although not shown, between the cylinder member 31 and the upper spring receiver 51 connected to the upper end of the rod body 5 and between the cylinder member 31 and the lower spring receiver 41 connected to the lower end side of the cylinder body 4. Of course, the vehicle body side suspension spring element 1 and the axle side suspension spring element 2 are interposed.
[0039]
Therefore, in this embodiment, the spring constant switching means 3 is the rod body 5 portion in the hydraulic shock absorber SA, so that the above-described compactness and space saving can be achieved. By making the diaphragm 33 for switching the spring constant variable, the spring constant of the suspension spring can be arbitrarily switched between large and small according to the situation of the vehicle traveling on an arbitrary road surface.
[0040]
【The invention's effect】
As described above, according to the present invention, since the spring constant switching means is provided integrally with the cylinder body or the rod body of the hydraulic shock absorber, so-called compactness is possible, and space saving can be achieved. The mountability will be improved.
Similarly, since the spring constant switching structure includes spring constant switching means that enables expansion and contraction between the vehicle body side suspension spring element and the axle side suspension spring element, no other configuration is required. As a result, it is possible to switch the spring constant between large and small, and therefore, it becomes possible to save space by reducing the size and reduce the cost as a whole.
[0041]
At this time, since the spring constant switching means is configured to enable or disable expansion / contraction by the diaphragm effect by the diaphragm, for example, when the diaphragm diameter is set, or when the diaphragm is set to a variable type In addition, the switching timing of the spring constant can be arbitrarily set by, for example, forcibly changing the flow rate of the hydraulic oil by an appropriate means.
[0042]
In particular, whether or not the hydraulic oil can pass through the throttle, that is, whether or not the expansion and contraction of the spring constant switching means decreases with an increase in the vibration frequency, suddenly expresses whether or not the spring constant switching means can expand and contract. Thus, when the spring constant is switched between large and small, no shock is caused, and there is no concern about the deterioration of the feeling when improving the riding comfort and maneuverability of the vehicle.
[0043]
As a result, according to the present invention, it is possible to save space by reducing the size as a whole and to reduce the cost, and in the case of traveling on a paved road surface having a large undulation at a relatively low speed tendency, Decreasing the spring constant in the spring improves the ride comfort in the vehicle, and increases the spring constant in the suspension spring when the vehicle is traveling at a relatively high speed on a road surface with continuous fine irregularities. Further, there is an advantage that the timing of switching the spring constant at that time is automatically set, and the switching is not suddenly realized, so that the feeling is not deteriorated.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view of a spring constant switching structure according to an embodiment of the present invention.
FIG. 2 is a longitudinal front view of a spring constant switching structure according to another embodiment.
FIG. 3 is a longitudinal front view of a spring constant switching structure according to another embodiment.
[Explanation of symbols]
SA Hydraulic shock absorber 1 Car body side suspension spring element 2 Axle side suspension spring element 3 Spring constant switching means 4 Cylinder body 4
5 Rod body 5
51 Upper spring holder 51
41 Lower spring support 41
33 Aperture 34 Piston 34
31 Cylinder member 31
R1 Extension side oil chamber R1
R2 Pressure side oil chamber R2
L Flow path L

Claims (2)

油圧緩衝器に並列に配置した車体側懸架ばね要素及び車軸側懸架ばね要素と、車体側懸架ばね要素と車軸側懸架ばね要素との間に配置したばね定数切換手段とを有してなるばね定数の切換構造において、油圧緩衝器はシリンダ体と、シリンダ体内に移動自在に挿入したロッド体と、ロッド体の上端に連設した上方ばね受と、シリンダ体の下端側に連設した下方ばね受とを備え、上記ばね定数切換手段がシリンダ体の外周に固設したピストンと、シリンダ体の外周とピストンの外周に摺動自在に収装したシリンダ部材と、シリンダ部材内にピストンで区画された伸側油室及び圧側油室と、ピストン又はロッド体に開穿されて伸側油室と圧側油室を連通する流路と,流路中に配在した絞りとからなり、車体側懸架ばね要素を上記上方ばね受と上記シリンダ部材との間に介在させ、車軸側懸架ばね要素を下方ばね受とシリンダ部材との間に介在させたことを特徴とするばね定数の切替構造  A spring constant comprising: a vehicle body side suspension spring element and an axle side suspension spring element arranged in parallel with the hydraulic shock absorber; and a spring constant switching means arranged between the vehicle body side suspension spring element and the axle side suspension spring element. In this switching structure, the hydraulic shock absorber includes a cylinder body, a rod body movably inserted into the cylinder body, an upper spring receiver connected to the upper end of the rod body, and a lower spring receiver connected to the lower end side of the cylinder body. A piston fixed to the outer periphery of the cylinder body, a cylinder member slidably disposed on the outer periphery of the cylinder body and the outer periphery of the piston, and the piston separated in the cylinder member A vehicle body side suspension spring comprising an extension side oil chamber and a pressure side oil chamber, a flow path that is opened in the piston or rod body and communicates with the extension side oil chamber and the pressure side oil chamber, and a throttle disposed in the flow path. The upper spring support and the element It is interposed between the cylinder member, the switching structure of the spring constant, characterized in that interposed between the axle-side suspension spring element and the lower spring receiver and the cylinder member 油圧緩衝器に並列に配置した車体側懸架ばね要素及び車軸側懸架ばね要素と、車体側懸架ばね要素と車軸側ばね要素との間に配置したばね定数切換手段とを有してなるばね定数の切換構造において、油圧緩衝器はシリンダ体と、シリンダ体内に移動自在に挿入したロッド体と、ロッド体の上端に連設した上方ばね受と、シリンダ体の下端側に連設した下方ばね受とを備え、上記ばね定数切換手段がロッド体の外周に固設したピストンと、ロッド体の外周とピストンの外周に摺動自在に収装したシリンダ部材と、シリンダ部材内にピストンで区画された伸側油室及び圧側油室と、ピストン又はロッド体に開穿されて伸側油室と圧側油室を連通する流路と,流路中に配在した絞りとからなり、車体側懸架ばね要素を上記上方ばね受と上記シリンダ部材3との間に介在させ、車軸側懸架ばね要素を下方ばね受とシリンダ部材との間に介在させたことを特徴とするばね定数の切替構造  A spring constant comprising a vehicle body side suspension spring element and an axle side suspension spring element arranged in parallel with the hydraulic shock absorber, and a spring constant switching means arranged between the vehicle body side suspension spring element and the axle side spring element. In the switching structure, the hydraulic shock absorber includes a cylinder body, a rod body that is movably inserted into the cylinder body, an upper spring receiver that is connected to the upper end of the rod body, and a lower spring receiver that is connected to the lower end side of the cylinder body. A piston fixed to the outer periphery of the rod body, a cylinder member slidably mounted on the outer periphery of the rod body and the outer periphery of the piston, and an extension defined by the piston in the cylinder member. A vehicle body side suspension spring element comprising a side oil chamber and a pressure side oil chamber, a flow path opened in the piston or rod body and communicating with the expansion side oil chamber and the pressure side oil chamber, and a throttle disposed in the flow path. The upper spring support and the cylinder Is interposed between the timber 3, the switching structure of the spring constant, characterized in that interposed between the axle-side suspension spring element and the lower spring receiver and the cylinder member
JP03734496A 1996-01-31 1996-01-31 Spring constant switching structure Expired - Fee Related JP3682334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03734496A JP3682334B2 (en) 1996-01-31 1996-01-31 Spring constant switching structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03734496A JP3682334B2 (en) 1996-01-31 1996-01-31 Spring constant switching structure

Publications (2)

Publication Number Publication Date
JPH09207536A JPH09207536A (en) 1997-08-12
JP3682334B2 true JP3682334B2 (en) 2005-08-10

Family

ID=12494980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03734496A Expired - Fee Related JP3682334B2 (en) 1996-01-31 1996-01-31 Spring constant switching structure

Country Status (1)

Country Link
JP (1) JP3682334B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968929B (en) * 2012-11-23 2016-01-13 大连橡胶塑料机械股份有限公司 Container pitch pen recorder
JP7452999B2 (en) * 2020-01-07 2024-03-19 カヤバ株式会社 suspension equipment

Also Published As

Publication number Publication date
JPH09207536A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US9273746B2 (en) Suspension damper device for a bicycle
US5046755A (en) Hydropneumatic suspension system
US6332622B1 (en) Suspension apparatus having two interconnected shock absorbers
JP6324254B2 (en) Vehicle with shock absorber
US5509512A (en) Shock absorber with adjustable damping with controlled damping characteristics
KR950008180A (en) Vehicle suspension
CN112203879A (en) Suspension device
JPH05131825A (en) Semi-active control method for running mechanism
JPH05162527A (en) Adjusting apparatus for vehicle supporting mechanism
JP3682334B2 (en) Spring constant switching structure
JP2003194133A (en) Damping-force-adjustable hydraulic shock absorber
JP3733148B2 (en) Hydraulic shock absorber
JP3895425B2 (en) Hydraulic shock absorber
JP3712289B2 (en) Spring constant switching structure
JP4356544B2 (en) shock absorber
JPH0747366B2 (en) Suspension device for automobile
JPS61268509A (en) Device for controlling active type suspension
JP3874389B2 (en) Hydraulic shock absorber for air suspension
JPS59156813A (en) Suspension for car
JP3821451B2 (en) Suspension device
KR100260306B1 (en) Shock absorber of car
JPS59186708A (en) Suspension for automobile
JPH05302639A (en) Hydraulic damper
JPH116539A (en) Suspension
JPH08326824A (en) Position depending type hydraulic damper

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees