JP3681798B2 - Manufacturing method for negative electrode case of button type alkaline battery - Google Patents

Manufacturing method for negative electrode case of button type alkaline battery Download PDF

Info

Publication number
JP3681798B2
JP3681798B2 JP28283895A JP28283895A JP3681798B2 JP 3681798 B2 JP3681798 B2 JP 3681798B2 JP 28283895 A JP28283895 A JP 28283895A JP 28283895 A JP28283895 A JP 28283895A JP 3681798 B2 JP3681798 B2 JP 3681798B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode case
folded portion
battery
type alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28283895A
Other languages
Japanese (ja)
Other versions
JPH09129199A (en
Inventor
孝幸 仁司
朗 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP28283895A priority Critical patent/JP3681798B2/en
Publication of JPH09129199A publication Critical patent/JPH09129199A/en
Application granted granted Critical
Publication of JP3681798B2 publication Critical patent/JP3681798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極活物質として無水銀の亜鉛を用いたボタン型アルカリ電池負極ケ―スの製作方法に関するものである。
【0002】
【従来の技術】
ボタン型アルカリ電池では、一般に、亜鉛をそのまま負極活物質として用いると、亜鉛がアルカリ水溶液中で水素ガスを発生しながら溶解する、いわゆる自己腐食を起こすため、自己腐食を抑制できるアマルガム化された亜鉛を負極活物質として使用することが通常行われている。
【0003】
しかし、最近、環境問題から電池の無水銀化が強く要望されており、無水銀であつても自己腐食の小さい亜鉛が開発されて、乾電池などではすでに実用化されている(特開昭62−40163号公報)。ボタン型アルカリ電池でも、このような無水銀の亜鉛の応用が検討されているが、水素ガスの発生による電池のふくれや容量劣化を引き起こすという欠点があつた。
【0004】
このため、特開平6−163026号公報に開示されているように、インジウム、鉛、錫および亜鉛など、あるいはこれらの合金などの水素過電圧の高い金属層で負極ケ―スの内面を被覆することにより、水素ガスの発生を効果的に抑制し、電池のふくれや容量劣化を防ぐことが試みられている。
【0005】
【発明が解決しようとする課題】
ところが、上記のように、負極ケ―スの内面に水素過電圧の高い金属層を形成したものでは、容量劣化はある程度抑制できても、耐漏液性が低下する傾向にあることが判明した。この理由としては、耐漏液性に最も影響を及ぼしやすい負極ケ―スの周辺折り返し部の表面状態が、水素過電圧の高い金属層で被覆されたことにより、電解液の露出しやすい、著しく荒れた表面状態に変化したことに起因しているものと考えられる。
【0006】
ボタン型アルカリ電池の封口においては、通常、負極ケ―スの周辺折り返し部と正極缶の開口端部との間に、ポリエチレンやポリプロピレンなどの合成樹脂もしくはゴム製のガスケツトを配設し、正極缶の開口端部を内方に変形させてガスケツトを介して負極ケ―スの周辺折り返し部に圧着させることにより、各部の接面からの電解液の漏出を防ぐようにしている。
【0007】
しかしながら、水酸化カリウムのようなアルカリ電解液を使用する電池では、上述した封口手段にもかかわらず、耐漏液性が低下しがちであり、このため、負極ケ―スの形状を耐漏液性を向上できるような形状に改良したり、あるいはガスケツトと正極缶および負極ケ―スとの接面にピツチやフツ素オイルなどの液体パツキングを介在させるなどの多くの提案がなされている。ところが、これらの方法によつても、負極活物質に無水銀の亜鉛を用いた場合、十分な耐漏液性を確保することは困難であることがわかつた。
【0008】
また、ボタン型アルカリ電池における電解液の漏出は、一般に、正極缶とガスケツトとの接面からよりも、負極ケ―スとガスケツトとの接面からの方が起こりやすい。これは、放電特性を向上させるなどのため、アルカリ電解液の大半の量を負極側に注入していることにもよるが、本発明者らの検討によれば、負極活物質として無水銀の亜鉛を用いるため、水素過電圧の高い金属層で内面が被覆された負極ケ―スの周辺折り返し部の表面には、プレス加工により上記の金属層に亀裂が発生しており、これと負極ケ―スの基板である下地金属との間で局部電池が形成されることによるガス発生の結果、内圧が上昇し、電解液が漏出しやすくなつているものと考えられる。
【0009】
この亀裂の存在のため、毛管現象も液のはい上がりを助長し、電解液の漏出がより一層顕著になり、電池の耐漏液性を低下させ、腕時計、電子露出計などに利用する場合に要求される高度の耐漏液性が得られないという問題があつた。
【0010】
本発明は、上記の事情に鑑みてなされたもので、水素ガスの発生を抑止して電池のふくれなどを防止できることはもちろん、負極ケ―スの周辺折り返し部表面での亀裂がなく、耐漏液性の向上が図れ、容量保持特性と貯蔵特性にすぐれたボタン型アルカリ電池を提供すること、またこの電池の負極ケ―スの製作方法として、製作工程数を増やすことなく、周辺折り返し部を無亀裂状態に整形できるようにした上記方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、負極活物質として無水銀の亜鉛を用い、基板の片面に水素過電圧の高い金属層が形成された金属板を金層層が内面側となる状態にプレス成形して構成され、周辺に正極缶の開口端部にガスケツトを介して圧着される折り返し部が形成された負極ケ―スを備えてなるボタン型アルカリ電池において、上記の周辺折り返し部を上記の金属層が無亀裂となる状態に整形したものである。
【0012】
また、本発明は、上記構成のボタン型アルカリ電池の負極ケ―スの製作方法として、上記のプレス成形時に、金型を用いて、上記の周辺折り返し部を上記の金属層に引張り力が作用しないように押圧して、整形するようにしたものである。ここで、上記の金属層に引張り力が作用しないように押圧するには、たとえば、上記の周辺折り返し部に対応する金型の内周側コ―ナ―部に上記の周辺折り返し部に密着する曲面状の引張り力抑止面部を形成すればよい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明のボタン型アルカリ電池の一例を示す半截縦断面図である。
【0014】
同図において、1は表面にニツケルメツキが施された鉄製の正極缶で、その内部に正極合剤2が装填されている。この正極合剤2は、酸化銀、二酸化マンガン、水酸化ニツケルなどの正極活物質と、カ―ボンブラツク、グラフアイト、黒鉛のような導電助剤との混合粉末を円盤状に加圧成形し、この成形体にアルカリ電解液の一部を含浸させて構成されたものである。
【0015】
3は負極活物質4を内填して正極缶1の開口側を被う負極ケ―スである。上記の負極活物質4は、無水銀の亜鉛の粉末と、必要に応じて加えられるポリアクリル酸ソ―ダ、カルボキシメチルセルロ―スなどのゲル化剤とからなり、これにアルカリ電解液の大半の量が注入されている。
【0016】
5は上記の正極合剤2と負極活物質4との間に配設されたセパレ―タで、たとえば、親水処理されて正極合剤2に接触する微孔性フイルム6と、このフイルム6の片面にセロフアンフイルム7を介して配設されたビニロン・レ―ヨン混沙紙のような吸液層8とから構成されている。
【0017】
負極ケ―ス3に形成された周辺折り返し部3aと正極缶1の開口端部1aとの間には、ポリエチレン、ポリプロピレンなどの各種合成樹脂もしくはゴムからなる断面L字形の環状ガスケツト9が介装されており、正極缶1の開口端部1aを内方に変形させてガスケツト9を締め付けて負極ケ―ス3の周辺折り返し部3aに圧着させることにより、電池内部を密閉させてある。
【0018】
負極ケ―ス3は、図2に示す金属板10から製作されたものである。
図2において、金属板10は、負極ケ―ス基板である、たとえばステンレス板(SUS304)11と、このステンレス板11の片面に美観を兼ねて耐食性を付与するためにクラツド化されたニツケル板12と、このニツケル板12とは反対側の面に水素ガスの発生を防止するための水素過電圧の高い金属として、電解法メツキで形成された錫層13とからなつている。この錫層13は、たとえば、1〜50μmの厚さに設定されているのがよく、また、金属板10の厚さに対して15%以内、好ましくは1〜5%の範囲内であるのがよい。
【0019】
また、この例では、ステンレス板11と錫層13との間に、両者11,13の密着性を上げるための金属層として、銅層14が介設されている。この銅層14は、たとえば薄肉銅板からなり、ステンレス板11に錫層13をメツキ形成するに先立つて、ステンレス板11にクラツド化されたものであるが、場合により、メツキなどで形成したものであつてもよい。
【0020】
このような構造の金属板10を所定の大きさに型取りし、これをプレス成形により、図3に示すように錫層13が内面側となる状態に絞り加工するとともに、周辺折り返し部3aを形成することにより、負極ケ―ス3を製作する。ここで、周辺折り返し部3aは、プレス成形に際し、錫層13に亀裂が生じないように、後述する特定の成形金型N(図4)を用いて整形される。
【0021】
ボタン型アルカリ電池の負極ケ―スは、シリンダ―型の棒状と異なり、カツプ型となるため、延展性や加工性にすぐれた金属が要求される。しかし、実用的な水素過電圧の高い金属のほとんどがプレス工程を経る上での強度が不十分で、複数の工程からなる絞り加工で水素過電圧の高い金属層が内面側となるように成形すると、折り返し部表面に亀裂を生じてしまう。このような亀裂が存在すると、電解液の漏出防止効果が十分に発揮されず、電池の保存中や使用中に電解液が負極ケ―スの表面を伝わつて漏出しやすくなる。
【0022】
この点について、さらに詳しく説明する。錫層13のように水素過電圧の高い金属は、延伸性は高いが、柔軟であるために、引張り強度が小さい傾向にある。この場合、上記の金属板10を、図5に示すような従来一般の第1〜第3の金型M,N,Wを用いてプレス成形する際、周辺折り返し部3aに対応する第2金型Nの内周側のコ―ナ―部が空所Gとして存在する。このために、周辺折り返し部3aの表面(負極ケ―スの内周面)の錫層13に引張り力が作用して伸ばされるため、他の部分に比べて非常に薄くなる。錫層13を厚くしても、加工による体積増加が大きくなるために、逆に亀裂が顕著となり、錫層13が脱落し、著しい場合には歯欠けのような状態となつてしまう。
【0023】
これに対して、本発明では、周辺折り返し部3aを、従来のように自然曲げにより変形させるのではなく、金型で押圧させながら曲げ加工させるようにしたものである。すなわち、図4に示す金型M,N,Wのうち、第2金型Nの内周側コ―ナ―部に周辺折り返し部3aに密着する凹曲面状の引張り力抑止面部Naを形成したもので、これによると、プレス成形時に錫層13に加わる引張り力が抑止され、押し広げるようにして周辺折り返し部3aが形成されるため、工程数を増やすことなく、錫層13を無亀裂の状態となるように容易に成形できる。したがつて、プレス成形工程を経ても、錫層13が図3の拡大部に示すように良好に保持された負極ケ―ス3を得ることができる。
【0024】
その結果、図1のボタン型アルカリ電池において、負極ケ―ス3の内面の錫層13で水素ガスの発生が抑制されて、電池のふくれなどが防止できるうえ、負極ケ―ス3の周辺折り返し部3aとガスケツト9との間でのシ―ル性の向上が図れるとともに、下地金属であるステンレス板11との間で局部電池が形成されることもなく、耐漏液性を高めることができる。
【0025】
なお、上記の実施例では、周辺折り返し部3aの錫層13に対して金属板10をプレス成形する際に、第2の金型Nで周辺折り返し部3aを押圧して無亀裂の状態に整形したものであるが、場合により、負極ケ―ス3を成形したのちに錫層13を上記同様に整形してもよい。また、水素過電圧の大きい金属として、錫を用いているが、その他、インジウム、鉛および亜鉛など、あるいはこれらの合金から適宜選択することができる。
【0026】
表1は、ニツケル・ステンレス板(SUS304)・銅からなるクラツド板の銅側に電解法メツキにより厚さ約5μmの錫層を被覆し、これをプレス機で打ち抜いて所定の形状とした負極ケ―スを用い、酸化銀を正極活物質、無水銀の亜鉛粉末を負極活物質とし、電解液として水酸化カリウム水溶液を使用した前記の構成からなるボタン型アルカリ電池A、Bについて、その耐漏液性(45℃,90%RH)を示したものである。
【0027】
電池Aは本発明品で、周辺折り返し部を押圧できるような形状の第2金型Nを用いたプレス機で打ち抜いた負極ケ―スを使用したものである。また、電池Bは比較品で、従来までの方法でプレスした負極ケ―スを使用したものである。
【0028】

Figure 0003681798
【0029】
上記の表1中の数値は、各電池100個につき試験したときの、1カ月後に電解液の漏出が認められた電池個数である。この表1の結果から明らかなように、本発明の電池Aによれば、従来構成の電池Bに比べて、より確実に耐漏液性を向上できるものであることが理解できる。
【0030】
【発明の効果】
以上のように、本発明によれば、負極ケ―スの周辺折り返し部に対して、負極ケ―スの内面側の水素過電圧の大きい金属層に亀裂が生じないように整形を施したことにより、上記の金属層の脱落などが防止され、その結果、電池性能を十分確保しつつ、耐漏液性の向上を図ることができる。また、上記整形手段として、負極ケ―スをプレス成形する際に金型を用いて周辺折り返し部を押圧するようにしたので、工程数を増やすことなく、周辺折り返し部の金属層に亀裂が生じないように容易に整形することができる。
【図面の簡単な説明】
【図1】本発明のボタン型アルカリ電池の一例を示す半截縦断面図である。
【図2】同ボタン型アルカリ電池の負極ケ―スを製作するための金属板を示す縦断面図である。
【図3】同金属板をプレス加工して得られた負極ケ―スを一部拡大して示す縦断面図である。
【図4】本発明のボタン型アルカリ電池の負極ケ―ス製作用の金型の要部を示す縦断面図である。
【図5】従来の負極ケ―ス製作用の金型の要部を示す縦断面図である。
【符号の説明】
1 正極缶
1a 正極缶の開口端部
3 負極ケ―ス
3a 周辺折り返し部
4 負極活物質
10 金属板
11 基板
13 水素過電圧の高い金属層
N 金型[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a negative electrode case for a button-type alkaline battery using anhydrous silver zinc as a negative electrode active material.
[0002]
[Prior art]
In button-type alkaline batteries, in general, when zinc is used as a negative electrode active material as it is, zinc dissolves while generating hydrogen gas in an alkaline aqueous solution, so-called self-corrosion, so that amalgamated zinc that can suppress self-corrosion Is generally used as a negative electrode active material.
[0003]
However, recently, there has been a strong demand for dehydration of batteries due to environmental problems, and zinc having low self-corrosion has been developed even in the case of anhydrous silver, and has already been put to practical use in dry batteries and the like (Japanese Patent Laid-Open No. Sho 62-62). No. 40163). The button-type alkaline battery is also being studied for the application of such anhydrous zinc, but has the disadvantage of causing battery blistering and capacity deterioration due to the generation of hydrogen gas.
[0004]
For this reason, as disclosed in JP-A-6-163026, the inner surface of the negative electrode case is covered with a metal layer having a high hydrogen overvoltage such as indium, lead, tin and zinc, or an alloy thereof. Thus, attempts have been made to effectively suppress the generation of hydrogen gas and prevent battery blistering and capacity deterioration.
[0005]
[Problems to be solved by the invention]
However, as described above, it was found that, in the case where the metal layer having a high hydrogen overvoltage was formed on the inner surface of the negative electrode case, the liquid leakage resistance tended to decrease even though the capacity deterioration could be suppressed to some extent. The reason for this is that the surface state of the peripheral folded portion of the negative electrode case, which is most likely to affect the liquid leakage resistance, was covered with a metal layer with a high hydrogen overvoltage, so that the electrolyte was easily exposed and extremely rough. This is probably due to the change to the surface state.
[0006]
In the sealing of a button-type alkaline battery, a synthetic resin such as polyethylene or polypropylene or a rubber gasket is usually arranged between the peripheral folded portion of the negative electrode case and the open end of the positive electrode can. The opening end of each part is deformed inward and is crimped to the peripheral folded part of the negative electrode case via a gasket, thereby preventing leakage of the electrolyte from the contact surface of each part.
[0007]
However, in a battery using an alkaline electrolyte such as potassium hydroxide, the leakage resistance tends to be lowered despite the above-described sealing means. Therefore, the shape of the negative electrode case has a reduced leakage resistance. Many proposals have been made such as improving the shape so that it can be improved, or interposing liquid packing such as pitch or fluorine oil on the contact surface between the gasket, the positive electrode can and the negative electrode case. However, even with these methods, it has been found that, when anhydrous silver zinc is used as the negative electrode active material, it is difficult to ensure sufficient leakage resistance.
[0008]
In addition, leakage of the electrolyte in a button-type alkaline battery is generally more likely to occur from the contact surface between the negative electrode case and the gasket than from the contact surface between the positive electrode can and the gasket. This is due to the fact that most of the alkaline electrolyte is injected into the negative electrode side in order to improve discharge characteristics, etc., but according to the study by the inventors, anhydrous silver is used as the negative electrode active material. Since zinc is used, cracks are generated in the above metal layer by press working on the surface of the peripheral folded portion of the negative electrode case whose inner surface is coated with a metal layer having a high hydrogen overvoltage. As a result of gas generation due to the formation of a local battery with the base metal which is the substrate of the gas, it is considered that the internal pressure rises and the electrolyte is easily leaked.
[0009]
Due to the presence of this crack, the capillary phenomenon also promotes the rising of the liquid, the leakage of the electrolyte becomes even more pronounced, reducing the leakage resistance of the battery, and required for use in watches, electronic exposure meters, etc. However, there is a problem that the high liquid leakage resistance cannot be obtained.
[0010]
The present invention has been made in view of the above circumstances, and can suppress the generation of hydrogen gas to prevent the battery from blistering. The button-type alkaline battery with improved capacity, excellent capacity retention and storage characteristics, and the negative electrode case for this battery can be manufactured without increasing the number of manufacturing steps and eliminating the need for peripheral folding. An object of the present invention is to provide the above-described method that can be shaped into a cracked state.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses an anhydrous silver zinc as a negative electrode active material, and a metal plate in which a metal layer having a high hydrogen overvoltage is formed on one side of a substrate is a state in which the gold layer is on the inner surface side. In a button-type alkaline battery comprising a negative electrode case that is formed by press-molding and having a folded portion that is crimped to the opening end of the positive electrode can through a gasket at the periphery. The metal layer is shaped so as to be crack-free.
[0012]
Further, the present invention provides a method for producing a negative electrode case for a button-type alkaline battery having the above-described configuration, wherein a tensile force acts on the metal layer by using a mold at the time of the press molding. It is pressed so as not to be shaped. Here, in order to press the metal layer so that no tensile force acts on the metal layer, for example, the inner peripheral corner portion of the mold corresponding to the peripheral folded portion is closely attached to the peripheral folded portion. A curved tensile force restraining surface portion may be formed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a half-longitudinal longitudinal sectional view showing an example of a button-type alkaline battery of the present invention.
[0014]
In the figure, reference numeral 1 denotes an iron positive electrode can whose surface is nickel-plated, and a positive electrode mixture 2 is loaded therein. This positive electrode mixture 2 is formed by press-molding a mixed powder of a positive electrode active material such as silver oxide, manganese dioxide, nickel hydroxide and a conductive aid such as carbon black, graphite, graphite into a disk shape, This molded body is constituted by impregnating a part of an alkaline electrolyte.
[0015]
Reference numeral 3 denotes a negative electrode case that contains the negative electrode active material 4 and covers the opening side of the positive electrode can 1. The negative electrode active material 4 comprises an anhydrous silver zinc powder and a gelling agent such as polyacrylic acid soda or carboxymethyl cellulose which is added as necessary. The amount of being injected.
[0016]
Reference numeral 5 denotes a separator disposed between the positive electrode mixture 2 and the negative electrode active material 4. For example, a microporous film 6 that is hydrophilically treated and contacts the positive electrode mixture 2, and It is composed of a liquid absorbing layer 8 such as vinylon / rayon mixed paper disposed on one side via a cellophane film 7.
[0017]
Between the peripheral folded portion 3a formed on the negative electrode case 3 and the open end 1a of the positive electrode can 1, an annular gasket 9 having an L-shaped cross section made of various synthetic resins such as polyethylene and polypropylene or rubber is interposed. The inside of the battery is hermetically sealed by deforming the open end 1a of the positive electrode can 1 inward and tightening the gasket 9 so as to be crimped to the peripheral folded portion 3a of the negative electrode case 3.
[0018]
The negative electrode case 3 is manufactured from the metal plate 10 shown in FIG.
In FIG. 2, a metal plate 10 is a negative case substrate, for example, a stainless steel plate (SUS304) 11, and a nickel plate 12 that is clad to provide corrosion resistance on one side of the stainless steel plate 11 for beauty. And a tin layer 13 formed by electrolytic method plating as a metal having a high hydrogen overvoltage for preventing the generation of hydrogen gas on the surface opposite to the nickel plate 12. The tin layer 13 is preferably set to a thickness of 1 to 50 μm, for example, and is within 15%, preferably 1 to 5% of the thickness of the metal plate 10. Is good.
[0019]
Further, in this example, a copper layer 14 is interposed between the stainless steel plate 11 and the tin layer 13 as a metal layer for improving the adhesion between the both 11 and 13. The copper layer 14 is made of, for example, a thin copper plate, and is clad on the stainless steel plate 11 prior to the formation of the tin layer 13 on the stainless steel plate 11. May be hot.
[0020]
The metal plate 10 having such a structure is molded to a predetermined size, and is pressed to form a tin layer 13 on the inner surface side as shown in FIG. 3, and the peripheral folded portion 3a is formed. By forming, the negative electrode case 3 is manufactured. Here, the peripheral folded portion 3a is shaped using a specific molding die N (FIG. 4) described later so that the tin layer 13 is not cracked during press molding.
[0021]
The negative electrode case of a button-type alkaline battery is a cup-type, unlike a cylinder-type rod, so a metal with excellent extensibility and workability is required. However, most of the practical metal with high hydrogen overvoltage has insufficient strength to go through the pressing process, and when forming so that the metal layer with high hydrogen overvoltage is on the inner surface side by drawing process consisting of multiple steps, Cracks will occur on the surface of the folded part. If such cracks exist, the effect of preventing leakage of the electrolytic solution is not sufficiently exerted, and the electrolytic solution is likely to leak through the surface of the negative electrode case during storage or use of the battery.
[0022]
This point will be described in more detail. A metal having a high hydrogen overvoltage such as the tin layer 13 has high stretchability but is flexible and therefore tends to have low tensile strength. In this case, when the metal plate 10 is press-molded using the conventional first to third molds M, N, and W as shown in FIG. 5, the second gold corresponding to the peripheral folded portion 3a. A corner portion on the inner peripheral side of the mold N exists as a void G. For this reason, since the tensile force acts on the tin layer 13 on the surface of the peripheral folded portion 3a (the inner peripheral surface of the negative electrode case), it is stretched, so that it is very thin compared to other portions. Even if the tin layer 13 is thickened, the increase in volume due to processing increases, and conversely, cracks become conspicuous, and the tin layer 13 falls off.
[0023]
On the other hand, in the present invention, the peripheral folded portion 3a is not deformed by natural bending as in the prior art, but is bent while being pressed by a mold. That is, among the molds M, N, and W shown in FIG. 4, the concave curved tensile force restraining surface portion Na that is in close contact with the peripheral folded portion 3 a is formed at the inner peripheral corner portion of the second mold N. According to this, the tensile force applied to the tin layer 13 at the time of press molding is suppressed, and the peripheral folded portion 3a is formed so as to be expanded, so that the tin layer 13 can be cracked without increasing the number of steps. It can be easily molded to be in a state. Therefore, the negative electrode case 3 in which the tin layer 13 is well held as shown in the enlarged portion of FIG. 3 can be obtained even after the press molding process.
[0024]
As a result, in the button-type alkaline battery of FIG. 1, the generation of hydrogen gas is suppressed by the tin layer 13 on the inner surface of the negative electrode case 3, and the battery can be prevented from blistering. The sealability between the portion 3a and the gasket 9 can be improved, and a local battery is not formed between the base plate and the stainless steel plate 11, and the leakage resistance can be improved.
[0025]
In the above embodiment, when the metal plate 10 is press-molded against the tin layer 13 of the peripheral folded portion 3a, the peripheral folded portion 3a is pressed by the second mold N so as to be shaped without cracks. However, in some cases, after forming the negative electrode case 3, the tin layer 13 may be shaped in the same manner as described above. In addition, tin is used as a metal having a large hydrogen overvoltage, but other materials such as indium, lead and zinc, or alloys thereof can be appropriately selected.
[0026]
Table 1 shows that a copper layer of a nickel / stainless steel plate (SUS304) / copper is coated with a tin layer having a thickness of about 5 μm by electrolytic method plating, and this is punched out with a press to have a predetermined shape. The button-type alkaline batteries A and B having the above-described structure using silver oxide as a positive electrode active material, anhydrous silver zinc powder as a negative electrode active material, and an aqueous potassium hydroxide solution as an electrolyte solution. (45 ° C., 90% RH).
[0027]
The battery A is a product of the present invention, and uses a negative electrode case punched out by a press using a second mold N having a shape capable of pressing the peripheral folded portion. Battery B is a comparative product using a negative electrode case pressed by a conventional method.
[0028]
Figure 0003681798
[0029]
The numerical values in Table 1 above are the number of batteries in which leakage of the electrolyte was observed after one month when 100 batteries were tested. As is apparent from the results in Table 1, it can be understood that according to the battery A of the present invention, the leakage resistance can be improved more reliably than the battery B having the conventional configuration.
[0030]
【The invention's effect】
As described above, according to the present invention, the peripheral folded portion of the negative electrode case is shaped so as not to cause a crack in the metal layer having a large hydrogen overvoltage on the inner surface side of the negative electrode case. The above metal layer is prevented from falling off, and as a result, the leakage resistance can be improved while sufficiently ensuring the battery performance. In addition, as the shaping means, when the negative electrode case is press-molded, the peripheral folded portion is pressed using a mold, so that the metal layer of the peripheral folded portion is cracked without increasing the number of steps. It can be shaped easily so that there is no.
[Brief description of the drawings]
FIG. 1 is a semi-longitudinal longitudinal sectional view showing an example of a button-type alkaline battery of the present invention.
FIG. 2 is a longitudinal sectional view showing a metal plate for manufacturing a negative electrode case of the button-type alkaline battery.
FIG. 3 is a longitudinal sectional view showing a partially enlarged negative electrode case obtained by pressing the metal plate.
FIG. 4 is a longitudinal sectional view showing a main part of a mold for producing a negative electrode case of the button-type alkaline battery of the present invention.
FIG. 5 is a longitudinal sectional view showing a main part of a conventional mold for producing a negative electrode case.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode can 1a Opening edge part 3 of positive electrode can 3 Negative electrode case 3a Peripheral folding | turning part 4 Negative electrode active material 10 Metal plate 11 Board | substrate 13 Metal layer N with a high hydrogen overvoltage Mold

Claims (1)

負極活物質として無水銀の亜鉛を用い、基板の片面に水素過電圧の高い金属層が形成された金属板を金属層が内面側となる状態にプレス成形して構成され、周辺に正極缶の開口端部にガスケツトを介して圧着される折り返し部が形成された負極ケ―スを備えてなるボタン型アルカリ電池の上記の負極ケ―スの製作方法において、上記のプレス成形時に金型を用いて上記の周辺折り返し部を上記の金属層に引張り力が作用しないように押圧して整形することを特徴とする負極ケ―スの製作方法。  Anhydrous zinc is used as the negative electrode active material, and a metal plate with a metal layer with high hydrogen overvoltage formed on one side of the substrate is press-molded so that the metal layer is on the inner surface side. In the above-described negative electrode case manufacturing method for a button-type alkaline battery comprising a negative electrode case formed with a folded portion that is crimped via a gasket at the end, a mold is used during the above press molding. A method for manufacturing a negative electrode case, wherein the peripheral folded portion is pressed and shaped so that a tensile force does not act on the metal layer.
JP28283895A 1995-10-31 1995-10-31 Manufacturing method for negative electrode case of button type alkaline battery Expired - Fee Related JP3681798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28283895A JP3681798B2 (en) 1995-10-31 1995-10-31 Manufacturing method for negative electrode case of button type alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28283895A JP3681798B2 (en) 1995-10-31 1995-10-31 Manufacturing method for negative electrode case of button type alkaline battery

Publications (2)

Publication Number Publication Date
JPH09129199A JPH09129199A (en) 1997-05-16
JP3681798B2 true JP3681798B2 (en) 2005-08-10

Family

ID=17657736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28283895A Expired - Fee Related JP3681798B2 (en) 1995-10-31 1995-10-31 Manufacturing method for negative electrode case of button type alkaline battery

Country Status (1)

Country Link
JP (1) JP3681798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730433B2 (en) 2002-01-16 2004-05-04 The Gillette Company Thin-wall anode can

Also Published As

Publication number Publication date
JPH09129199A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JPS5840304B2 (en) alkaline battery
JP4158326B2 (en) Alkaline battery
EP1611623B1 (en) Zinc/air cell
EP1629550B1 (en) Zinc/air cell assembly
JP3630992B2 (en) Battery and method for manufacturing battery can
JP3522303B2 (en) Button type alkaline battery
JP3681798B2 (en) Manufacturing method for negative electrode case of button type alkaline battery
JP3681799B2 (en) Button-type alkaline battery
JPH10255733A (en) Small-sized battery
JP3997804B2 (en) Alkaline battery
JP3131145U (en) Button-type alkaline battery
JP4851708B2 (en) Alkaline battery and manufacturing method thereof
JPS5856459B2 (en) Flat sealed alkaline battery
JPH09161740A (en) Alkaline button battery
JPH08222194A (en) Button type alkaline battery
JPS59132558A (en) Battery
JPH02207449A (en) Manufacture of flat type cell
JPS5841626B2 (en) Manufacturing method of battery sealing plate
JP4618771B2 (en) Button-type alkaline battery
JP3594752B2 (en) Air zinc button type battery
JPH09129200A (en) Button type alkaline battery
JP3605451B2 (en) Method of manufacturing prismatic battery
JP2001068070A (en) Button cell
JP2004079398A (en) Coin-shaped lithium primary battery
JPS6116599Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees