JP3681082B2 - Imido ring-containing epoxy resin and epoxy resin composition - Google Patents

Imido ring-containing epoxy resin and epoxy resin composition Download PDF

Info

Publication number
JP3681082B2
JP3681082B2 JP16766196A JP16766196A JP3681082B2 JP 3681082 B2 JP3681082 B2 JP 3681082B2 JP 16766196 A JP16766196 A JP 16766196A JP 16766196 A JP16766196 A JP 16766196A JP 3681082 B2 JP3681082 B2 JP 3681082B2
Authority
JP
Japan
Prior art keywords
epoxy resin
imide ring
ring
resin composition
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16766196A
Other languages
Japanese (ja)
Other versions
JPH107764A (en
Inventor
澄夫 柴原
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16766196A priority Critical patent/JP3681082B2/en
Publication of JPH107764A publication Critical patent/JPH107764A/en
Application granted granted Critical
Publication of JP3681082B2 publication Critical patent/JP3681082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、熱的に安定な骨格を有するイミド環含有エポキシ樹脂に関するものであり、更に詳しくは半導体封止用エポキシ樹脂組成物に使用したときに優れた半田耐熱性を付与することができるイミド環含有エポキシ樹脂及び半田耐熱性に優れたエポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路などの電子部品を熱硬化性樹脂で封止しているが、特に集積回路では、耐熱性、耐湿性に優れたオルソクレゾールノボラック型エポキシ樹脂をフェノールノボラック樹脂で硬化させ、充填材として溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物が用いられている。ところが近年、集積回路の高集積化に伴いチップがだんだん大型化し、かつパッケージは従来のDIPタイプから表面実装化された小型、薄型のQFP、SOP、SOJ、TSOP、TQFP、PLCCに変わってきている。
【0003】
即ち、大型チップを小型で薄いパッケージに封入することになるため、熱応力によりクラックが発生し、これらのクラックによる耐湿性低下などの問題が大きくクローズアップされている。特に半田付け工程において、急激に200℃以上の高温にさらされることにより、パッケージの割れや樹脂とチップの剥離により耐湿性が劣化してしまうといった問題がでてきている。
これら問題を解決する方法として、特開平3−7724号公報によれば、エポキシ樹脂組成物にポリイミドやビスマレイミドなどのイミド骨格を有する樹脂を配合すると半田耐熱性が向上すると記載されているが、ポリイミドやビスマレイミドはエポキシ樹脂との相溶性が悪いため成形性が悪く、半田耐熱性も不十分である。
【0004】
また、エポキシ樹脂の硬化剤としてp−ヒドロキシフェニルマレイミド/ブチルアクリレート共重合体(数平均分子量約3万)を用いると破壊靱性値が向上することが報告されている(松本明博、日本接着学会誌,29,453(1993))。しかし、この硬化剤は分子量が大きいため成形時の流動性が悪く、この硬化剤を用いたエポキシ樹脂組成物の半田耐熱性も不十分である。
パッケージの薄型化、チップの大型化が急速に進んでおり、半田耐熱性や耐湿性が優れた信頼性の高い半導体封止用エポキシ樹脂組成物の開発が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、熱的に安定な骨格を有するエポキシ樹脂、更に詳しくは半導体封止用エポキシ樹脂組成物に使用したときに優れた半田耐熱性を付与することができるエポキシ樹脂及び半田耐熱性に優れたエポキシ樹脂組成物を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、フェノール性水酸基を有するモノマレイミド化合物が触媒量の有機リン化合物の作用によって容易に三量化して成型時の低収縮化に効果のあるスピロ環と熱的に安定な5員環構造から成るイミド環含有フェノール樹脂が容易に合成できることを見出し、更にこのイミド環含有フェノール樹脂にエピクロロヒドリンを反応させることにより熱的に安定な骨格を有するイミド環含有エポキシ樹脂が合成できることを見出した。そして、このイミド環含有エポキシ樹脂(a)を半導体封止用エポキシ樹脂組成物として使用したところ、著しく半田耐熱性が向上することを見い出し、本発明を完成するに至った。即ち、本発明は、化学式[1]で示されるスピロ環構造を有することを特徴とするイミド環含有エポキシ樹脂及びエポキシ樹脂組成物である。
【0007】
【化2】

Figure 0003681082
【0008】
【発明の実施の形態】
本発明の化学式[1]で示されるスピロ環構造を有することを特徴とするイミド環含有エポキシ樹脂(a)は、半導体封止用エポキシ樹脂組成物として使用した場合に優れた半田耐熱性を付与することができる。
【0009】
【化3】
Figure 0003681082
【0010】
本発明の化学式[1]で示されるスピロ環構造を有することを特徴とするイミド環含有エポキシ樹脂(a)は、フェノール性水酸基を有するモノマレイミド化合物に触媒量の有機リン化合物を添加して加熱することによって生成するスピロ環構造を有するイミド環含有フェノール樹脂にエピクロロヒドリン等のエピハロヒドリンを反応させることにより合成することができる。
【0011】
【化4】
Figure 0003681082
【0012】
本発明のイミド環含有エポキシ樹脂の原料となるフェノール性水酸基を有するモノマレイミド化合物は、特に制限されるものではなく、分子量が189〜500の低分子化合物の他、500以上のオリゴマーも使用することができる。オリゴマーを用いる場合はマレイミド基とフェノール性水酸基が異なった分子末端にあることが好ましい。特に好ましいモノマレイミド化合物は、p−ヒドロキシフェニルマレイミド、m−ヒドロキシフェニルマレイミド、o−ヒドロキシフェニルマレイミドである。これらマレイミド化合物は、市販品を用いても対応するフェノール性水酸基を有するアミノ化合物を無水マレイン酸と反応させてイミド化したものを用いてもよい。
【0013】
イミド環含有フェノール樹脂は、フェノール性水酸基を有するモノマレイミド化合物に触媒として有機リン化合物、好ましくはトリフェニルホスフィンを0.2〜5重量部添加し、50℃以上で、好ましくは80℃〜150℃で加熱することによって容易に合成できる。反応は、溶剤を用いても用いなくても良い。溶剤としてはm−クレゾールなどの極性溶剤が好ましい。これらの反応による生成物は、スピロ結合を有する5員環構造の三量体が主成分となるが、4量体以上のオリゴマーも少量副生する。しかし、エポキシ樹脂として用いる場合、少量のオリゴマーが共存していても何ら問題はない。
【0014】
スピロ環構造を有するイミド環含有フェノール樹脂の構造は、FD−MS(電界脱離法による質量分析)と13C−NMRスペクトルで確認できる。即ち、スピロ環構造を有するイミド環含有フェノール樹脂が生成していれば、FD−MS法によるスペクトルにおいて、原料のモノマレイミド化合物の分子量の3倍に相当するイオンのピークが認められ、また、13C−NMRスペクトルにおいてスピロ結合を有する5員環構造に由来するメチレン炭素が30ppm付近に、メチン炭素が48及び52ppm付近に、更にスピロ結合の4級炭素が54ppm付近に認められる(S.Shibahara, T.Enoki, T.Yamamoto, J.Motoyosiya, S.Hayashi: Polym.J.,投稿中)。
【0015】
スピロ環を有するイミド環含有フェノール樹脂とエピハロヒドリンとの反応は、グリシジルエーテル型のエポキシ樹脂の合成に用いられる各種の方法が適用できる。例えば、イミド環含有フェノール樹脂とこの水酸基1モルに対して2〜15倍モルのエピハロヒドリンとを水酸化ナトリムや水酸化カリウム等のアルカリ性化合物の共存下に50〜150℃の温度で反応を行う方法、あるいは、イミド環含有フェノール樹脂とこの水酸基1モルに対して2〜5倍モルのエピハロヒドリンとの混合物に、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド等の四級アンモニウム塩をイミド環含有フェノール樹脂中の水酸基1モルに対して0.001〜0.1倍モル加え、50〜150℃の温度で反応させて得られるハロヒドリンエーテルを閉環する方法などが挙げられる。これらの反応は、必要に応じて、エタノールやブタノール等のアルコール類、ベンゼンやトルエン等の炭化水素化合物等の溶剤を用いることができ、通常1〜10時間の範囲で行われる。
合成したスピロ環構造を有するイミド環含有エポキシ樹脂の構造は、イミド環含有フェノール樹脂の場合と同様に、FD−MSと13C−NMRスペクトルで確認できる。
【0016】
本発明のイミド環含有エポキシ樹脂(a)は、他のエポキシ樹脂と併用することができる。併用するエポキシ樹脂としては、エポキシ基を2個以上有する化合物あるいはポリマー全般を用いることができる。例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ化合物、トリフェニルメタン型エポキシ樹脂、アルキル変性トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン変性エポキシ樹脂、脂環式エポキシ樹脂などが挙げられるが、特にクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ化合物、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン変性エポキシ樹脂が好ましい。併用するエポキシ樹脂は1種でも2種以上でもよい。
他のエポキシ樹脂と併用する場合、本発明のイミド環含有のエポキシ樹脂(a)の割合は、総エポキシ樹脂に対して10重量%以上であることが好ましい。10重量%未満では、半田耐熱性を向上させる効果が不充分となる傾向にある。
【0017】
本発明で用いられる硬化剤(b)としては、フェノール性水酸基を2個以上有する化合物あるいはポリマー全般を用いることができる。例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、パラキシリレン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン化合物などが挙げられる。これらフェノール樹脂硬化剤は単独でも2種以上併用してもよい。
エポキシ樹脂とフェノール樹脂との配合量としては、イミド環含有フェノール樹脂を含む総フェノール樹脂の水酸基数とエポキシ樹脂のエポキシ基数とを合わせることが望ましい。
【0018】
本発明で用いる無機充填材(c)としては、溶融シリカ、球状シリカ、結晶シリカ、二次凝集シリカ、多孔質シリカ、アルミナ、炭酸カルシウム、タルク、マイカ、ガラス繊維などが挙げられ、特に球状シリカ、及び溶融シリカと球状シリカとの混合物が好ましい。また、無機充填材の配合量としては、耐半田ストレス性から総エポキシ樹脂組成物量に対して70〜90重量%が好ましい。無機充填材量が70重量%未満だと低熱膨張化、低吸水化が得られず、耐半田ストレス性が不充分となる傾向にある。また、無機充填材量が90重量%を越えると高粘度化による半導体パッケージ中のダイパッド、金線ワイヤーのずれなどの不都合が生じる傾向にある。
【0019】
本発明のエポキシ樹脂組成物は、イミド環含有エポキシ樹脂(a)、硬化剤(b)、無機充填材(c)を必須成分とするが、これ以外に必要に応じてトリフェニルホスフィン、テトラフェニルホスホニウム・テトラボレート塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ジメチルベンジルアミン、2−メチルイミダゾールなどの硬化促進触媒、γ−グリシドキシプロピルトリメトキシシラン、3ーアミノプロピルトリエトキシシラン、3ーメルカプトプロピルトリメトキシシランなどのシランカップリング剤、ブロム化エポキシ樹脂、ヘキサブロムベンゼン、三酸化アンチモンなどの難燃剤、カーボンブラック、ベンガラなどの着色剤、天然ワックス、合成ワックスなどの離型剤及びシリコーンオイル、ゴムなどの低応力剤など、種々の添加剤を配合することができる。
【0020】
本発明の半導体封止用エポキシ樹脂組成物を成形材料として製造するには、イミド環含有エポキシ樹脂(a)、硬化剤(b)、無機充填材(c)、その他添加剤をミキサーなどで均一に混合し、更に熱ロールやニーダー等で溶融混練し、冷却後粉砕して封止材料とすることができる。これら成形材料は、電気部品あるいは電子部品であるトランジスタ、集積回路などの被覆、絶縁、封止などに適用することができる。
【0021】
【実施例】
以下、実施例に基づき本発明を詳細に説明するが、本発明はこれらにより何ら制限を受けるものではない。
《合成例1》
m−クレゾール300重量部にp−ヒドロキシフェニルマレイミド(大八化学製)100重量部とトリフェニルホスフィン2重量部を加え、120℃で5時間加熱攪拌して、マレイミドの三量化反応を行った。この反応物を大過剰のメタノールに注ぎ、沈殿物を濾別後乾燥して、p−ヒドロキシフェニルマレイミドの3量体を主成分とするイミド環含有フェノール樹脂を得た。反応生成物の構造や組成は、FD−MS、13C−NMRおよびGPCによって確認した。FD−MSのm/z=567のピークからヒドロキシフェニルマレイミドの3量体であることを確認し、13C−NMRスペクトルで30、48、51、53ppmのシグナルからこの3量体がスピロ結合を含む5員環構造であることを確認した。
【0022】
この合成したイミド環含有フェノール樹脂100重量部にエピクロロヒドリン700重量部を加え、攪拌下115℃で48重量%水酸化ナトリム水溶液100重量部を3時間半かけて滴下した。その間に生成した水分は、エピクロロヒドリンとの共沸により系外に除き、留出したエピクロロヒドリンは系内に戻した。48重量%水酸化ナトリウム水溶液の滴下終了後、更に115℃で15分間反応させた。反応終了後、蒸留により過剰のエピクロロヒドリンを除いたのち、メチルイソブチルケトン200重量部を加え、反応生成物を溶解し回収した。その後、メチルイソブチルケトンを留去し、エポキシ当量250のイミド環含有エポキシ樹脂を得た。合成したイミド環含有エポキシ樹脂の構造は、FD−MS及び13C−NMRで確認した。
【0023】
《合成例2》
m−ヒドロキシフェニルマレイミドを使用し、合成例1と同様に反応を行い、m−ヒドロキシフェニルマレイミドの3量体を基本骨格とするイミド環含有エポキシ樹脂樹脂を得た。
【0024】
《実施例1》
Figure 0003681082
を常温においてミキサーで混合し、90〜100℃で2軸ロールにより混練し、冷却後粉砕して成形材料とした。得られた成形材料をタブレット化し、低圧トランスファー成形機にて175℃、2分の条件で半田耐湿性試験用として3×6mmのチップを16pSOPに封止し、半田耐熱試験用として6×6mmのチップを52pQFPに封止した。この封止したテスト用素子を175℃、8時間後硬化し、下記の半田耐湿性試験および半田耐熱性試験を行った。
【0025】
半田耐湿性試験:封止したテスト用素子を85℃、85%RHの環境下で72時間処理し、その後260℃の半田槽に10秒間浸漬後プレッシャークッカー試験(125℃、100%RH)を行い回路のオープン不良を測定した。
半田耐熱性試験:封止したテスト用素子を、85℃、85%RHの環境下で120時間処理し、その後260℃の半田槽に10秒間浸漬した後、顕微鏡で外部クラックを観察した。クラック発生数/総数で表した。
試験結果を表1に示す。
【0026】
《実施例2〜7》
表1および表2の処方に従って配合し、実施例1と同様にして成形材料を得た。この成形材料で試験用の封止した成形品を得、この成形品を用いて実施例1と同様に半田耐湿性試験及び半田耐熱性試験を行った。試験結果を表1および表2に示す。
なお、実施例1以外で用いたエポキシ樹脂およびフェノール樹脂硬化剤は以下の通りである。
【0027】
【化5】
Figure 0003681082
【0028】
【化6】
Figure 0003681082
【0029】
【化7】
Figure 0003681082
【0030】
【化8】
Figure 0003681082
【0031】
【化9】
Figure 0003681082
【0032】
《比較例1〜3》
表3の処方に従って配合し、実施例1と同様にして成形材料を得た。これら成形材料で試験用の封止した成形品を得、この成形品を用いて実施例1と同様に半田耐湿性試験及び半田耐熱性試験を行った。試験結果を表3に示す。
【0033】
【表1】
Figure 0003681082
【0034】
【表2】
Figure 0003681082
【0035】
【表3】
Figure 0003681082
【0036】
【発明の効果】
本発明のイミド環含有エポキシ樹脂は熱的に安定性な骨格を有し、このイミド環含有エポキシ樹脂を用いた半導体封止用エポキシ樹脂組成物は、実装時における半導体パッケージの半田耐熱性に優れ、且つ耐湿性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an imide ring-containing epoxy resin having a thermally stable skeleton, and more specifically, an imide capable of imparting excellent solder heat resistance when used in an epoxy resin composition for semiconductor encapsulation. The present invention relates to an epoxy resin composition excellent in ring-containing epoxy resin and solder heat resistance.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with thermosetting resin. However, especially in integrated circuits, ortho-cresol novolac epoxy resin with excellent heat resistance and moisture resistance is cured with phenol novolac resin. An epoxy resin composition containing an inorganic filler such as fused silica or crystalline silica as the filler is used. However, in recent years, as integrated circuits have been highly integrated, chips have become larger and packages have changed from conventional DIP types to surface-mounted small and thin QFP, SOP, SOJ, TSOP, TQFP, and PLCC. .
[0003]
That is, since a large chip is enclosed in a small and thin package, cracks are generated due to thermal stress, and problems such as a decrease in moisture resistance due to these cracks are greatly highlighted. In particular, in the soldering process, when exposed to a high temperature of 200 ° C. or higher, there is a problem that the moisture resistance deteriorates due to cracking of the package or separation of the resin and the chip.
As a method for solving these problems, according to JP-A-3-7724, it is described that solder heat resistance is improved when a resin having an imide skeleton such as polyimide or bismaleimide is blended with an epoxy resin composition. Polyimides and bismaleimides have poor compatibility with epoxy resins and thus have poor moldability and insufficient solder heat resistance.
[0004]
It has also been reported that the use of p-hydroxyphenylmaleimide / butyl acrylate copolymer (number average molecular weight of about 30,000) as a curing agent for epoxy resins improves fracture toughness (Akihiro Matsumoto, Journal of the Japan Adhesion Society). 29, 453 (1993)). However, since this curing agent has a large molecular weight, the fluidity at the time of molding is poor, and the solder resin heat resistance of the epoxy resin composition using this curing agent is insufficient.
As package thickness reduction and chip size increase are rapidly progressing, development of a highly reliable epoxy resin composition for semiconductor encapsulation having excellent solder heat resistance and moisture resistance is desired.
[0005]
[Problems to be solved by the invention]
The present invention relates to an epoxy resin having a thermally stable skeleton, more specifically an epoxy resin capable of imparting excellent solder heat resistance when used in an epoxy resin composition for semiconductor encapsulation, and excellent solder heat resistance. An epoxy resin composition is provided.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have found that a monomaleimide compound having a phenolic hydroxyl group is easily trimerized by the action of a catalytic amount of an organophosphorus compound and has a spiro ring that is effective in reducing shrinkage during molding and a thermally stable five-membered member. It is found that an imide ring-containing phenol resin having a ring structure can be easily synthesized, and further, an imide ring-containing epoxy resin having a thermally stable skeleton can be synthesized by reacting this imide ring-containing phenol resin with epichlorohydrin. I found. And when this imide ring containing epoxy resin (a) was used as an epoxy resin composition for semiconductor sealing, it discovered that solder heat resistance improved remarkably and came to complete this invention. That is, this invention is an imide ring containing epoxy resin and epoxy resin composition characterized by having the spiro ring structure shown by Chemical formula [1].
[0007]
[Chemical formula 2]
Figure 0003681082
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The imide ring-containing epoxy resin (a) having a spiro ring structure represented by the chemical formula [1] of the present invention imparts excellent solder heat resistance when used as an epoxy resin composition for semiconductor encapsulation. can do.
[0009]
[Chemical 3]
Figure 0003681082
[0010]
The imide ring-containing epoxy resin (a) having a spiro ring structure represented by the chemical formula [1] of the present invention is heated by adding a catalytic amount of an organophosphorus compound to a monomaleimide compound having a phenolic hydroxyl group. It can synthesize | combine by making epihalohydrin, such as epichlorohydrin, react with the imide ring containing phenol resin which has the spiro ring structure produced | generated by doing.
[0011]
[Formula 4]
Figure 0003681082
[0012]
The monomaleimide compound having a phenolic hydroxyl group, which is a raw material for the imide ring-containing epoxy resin of the present invention, is not particularly limited. In addition to a low molecular compound having a molecular weight of 189 to 500, 500 or more oligomers should also be used. Can do. When using an oligomer, the maleimide group and the phenolic hydroxyl group are preferably at different molecular ends. Particularly preferred monomaleimide compounds are p-hydroxyphenylmaleimide, m-hydroxyphenylmaleimide, and o-hydroxyphenylmaleimide. These maleimide compounds may be commercially available or may be imidized by reacting a corresponding amino compound having a phenolic hydroxyl group with maleic anhydride.
[0013]
The imide ring-containing phenol resin is obtained by adding 0.2 to 5 parts by weight of an organic phosphorus compound, preferably triphenylphosphine as a catalyst to a monomaleimide compound having a phenolic hydroxyl group, and at 50 ° C or higher, preferably 80 ° C to 150 ° C. It can be easily synthesized by heating with. The reaction may or may not use a solvent. The solvent is preferably a polar solvent such as m-cresol. The product of these reactions is mainly composed of a trimer having a 5-membered ring structure having a spiro bond, but a small amount of oligomers of tetramer or higher are also produced as a by-product. However, when used as an epoxy resin, there is no problem even if a small amount of an oligomer coexists.
[0014]
The structure of the imide ring-containing phenol resin having a spiro ring structure can be confirmed by FD-MS (mass analysis by field desorption method) and 13 C-NMR spectrum. That is, if the product imide ring-containing phenolic resins having a spiro ring structure, in the spectrum by FD-MS method, the peak of the ions corresponding to three times the molecular weight of the mono-maleimide compound of the raw material was observed, also, 13 In the C-NMR spectrum, methylene carbon derived from a 5-membered ring structure having a spiro bond is observed at around 30 ppm, methine carbon is found at around 48 and 52 ppm, and quaternary carbon of spiro bond is found at around 54 ppm (S. Shibahara, T.Enoki, T.Yamamoto, J.Motoyosiya, S.Hayashi: Polym.J., Posting).
[0015]
Various methods used for the synthesis of a glycidyl ether type epoxy resin can be applied to the reaction between the imide ring-containing phenol resin having a spiro ring and epihalohydrin. For example, a method of reacting an imide ring-containing phenol resin with 2 to 15 moles of epihalohydrin with respect to 1 mole of this hydroxyl group at a temperature of 50 to 150 ° C. in the presence of an alkaline compound such as sodium hydroxide or potassium hydroxide. Alternatively, a quaternary ammonium salt such as tetramethylammonium chloride or tetraethylammonium chloride is added to a mixture of imide ring-containing phenol resin and 2 to 5 times moles of epihalohydrin with respect to 1 mol of this hydroxyl group. Examples include a method of ring-closing halohydrin ether obtained by adding 0.001 to 0.1 times mole to 1 mole of hydroxyl group and reacting at a temperature of 50 to 150 ° C. These reactions can be carried out using an alcohol such as ethanol or butanol, or a solvent such as a hydrocarbon compound such as benzene or toluene, if necessary, and is usually performed in the range of 1 to 10 hours.
The structure of the synthesized imide ring-containing epoxy resin having a spiro ring structure can be confirmed by FD-MS and 13 C-NMR spectrum as in the case of the imide ring-containing phenol resin.
[0016]
The imide ring-containing epoxy resin (a) of the present invention can be used in combination with other epoxy resins. As the epoxy resin used in combination, a compound having two or more epoxy groups or a polymer in general can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy compound, triphenylmethane type epoxy resin, alkyl modified triphenylmethane type epoxy resin, dicyclopentadiene modified An epoxy resin, an alicyclic epoxy resin and the like can be mentioned, and a cresol novolac type epoxy resin, a biphenyl type epoxy compound, a triphenylmethane type epoxy resin, and a dicyclopentadiene modified epoxy resin are particularly preferable. The epoxy resin used together may be one type or two or more types.
When using together with another epoxy resin, it is preferable that the ratio of the imide ring containing epoxy resin (a) of this invention is 10 weight% or more with respect to a total epoxy resin. If it is less than 10% by weight, the effect of improving solder heat resistance tends to be insufficient.
[0017]
As the curing agent (b) used in the present invention, compounds having two or more phenolic hydroxyl groups or polymers in general can be used. For example, a phenol novolak resin, a cresol novolak resin, a paraxylylene-modified phenol resin, a dicyclopentadiene-modified phenol resin, a terpene-modified phenol resin, a triphenolmethane compound, and the like can be given. These phenol resin curing agents may be used alone or in combination of two or more.
As a compounding quantity of an epoxy resin and a phenol resin, it is desirable to match | combine the number of hydroxyl groups of the total phenol resin containing an imide ring containing phenol resin, and the number of epoxy groups of an epoxy resin.
[0018]
Examples of the inorganic filler (c) used in the present invention include fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, alumina, calcium carbonate, talc, mica, glass fiber, etc., especially spherical silica. And a mixture of fused silica and spherical silica is preferred. Moreover, as a compounding quantity of an inorganic filler, 70 to 90 weight% is preferable with respect to the total amount of epoxy resin compositions from solder stress resistance. If the amount of the inorganic filler is less than 70% by weight, low thermal expansion and low water absorption cannot be obtained, and the solder stress resistance tends to be insufficient. In addition, when the amount of the inorganic filler exceeds 90% by weight, there is a tendency that inconveniences such as deviation of the die pad and the gold wire in the semiconductor package due to the increase in viscosity are caused.
[0019]
The epoxy resin composition of the present invention comprises an imide ring-containing epoxy resin (a), a curing agent (b), and an inorganic filler (c) as essential components, but in addition to this, triphenylphosphine and tetraphenyl as necessary. Phosphonium tetraborate salt, 1,8-diazabicyclo (5,4,0) undecene-7, dimethylbenzylamine, curing accelerators such as 2-methylimidazole, γ-glycidoxypropyltrimethoxysilane, 3-aminopropyl Silane coupling agents such as triethoxysilane, 3-mercaptopropyltrimethoxysilane, brominated epoxy resins, flame retardants such as hexabromobenzene and antimony trioxide, colorants such as carbon black and bengara, natural wax, synthetic wax, etc. Mold release agents and low stress agents such as silicone oil and rubber It may be blended with various additives.
[0020]
In order to produce the epoxy resin composition for semiconductor encapsulation of the present invention as a molding material, the imide ring-containing epoxy resin (a), the curing agent (b), the inorganic filler (c), and other additives are uniformly mixed with a mixer or the like. And then melt-kneaded with a hot roll, a kneader, etc., cooled and pulverized to obtain a sealing material. These molding materials can be applied to covering, insulating, sealing, etc. of transistors and integrated circuits which are electrical or electronic components.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention does not receive a restriction | limiting at all by these.
<< Synthesis Example 1 >>
100 parts by weight of p-hydroxyphenylmaleimide (manufactured by Daihachi Chemical Co., Ltd.) and 2 parts by weight of triphenylphosphine were added to 300 parts by weight of m-cresol, and the mixture was heated and stirred at 120 ° C. for 5 hours to carry out a trimerization reaction of maleimide. The reaction product was poured into a large excess of methanol, and the precipitate was filtered off and dried to obtain an imide ring-containing phenol resin mainly composed of p-hydroxyphenylmaleimide trimer. The structure and composition of the reaction product were confirmed by FD-MS, 13 C-NMR and GPC. From the peak of m / z = 567 of FD-MS, it was confirmed that it was a trimer of hydroxyphenylmaleimide, and this trimer showed spiro bond from signals of 30, 48, 51, 53 ppm in 13 C-NMR spectrum. It was confirmed that it was a 5-membered ring structure.
[0022]
To 100 parts by weight of the synthesized imide ring-containing phenol resin, 700 parts by weight of epichlorohydrin was added, and 100 parts by weight of a 48% by weight aqueous sodium hydroxide solution was added dropwise at 115 ° C. with stirring over 3 hours and a half. The water generated during that time was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition of the 48 wt% aqueous sodium hydroxide solution, the reaction was further carried out at 115 ° C for 15 minutes. After completion of the reaction, excess epichlorohydrin was removed by distillation, 200 parts by weight of methyl isobutyl ketone was added, and the reaction product was dissolved and recovered. Thereafter, methyl isobutyl ketone was distilled off to obtain an imide ring-containing epoxy resin having an epoxy equivalent of 250. The structure of the synthesized imide ring-containing epoxy resin was confirmed by FD-MS and 13 C-NMR.
[0023]
<< Synthesis Example 2 >>
Using m-hydroxyphenylmaleimide, the reaction was carried out in the same manner as in Synthesis Example 1 to obtain an imide ring-containing epoxy resin resin having a trimer of m-hydroxyphenylmaleimide as a basic skeleton.
[0024]
Example 1
Figure 0003681082
Were mixed with a mixer at room temperature, kneaded with a biaxial roll at 90 to 100 ° C., cooled and pulverized to obtain a molding material. The obtained molding material was tableted, and a 3 × 6 mm chip was sealed to 16 pSOP for solder moisture resistance test at 175 ° C. for 2 minutes in a low-pressure transfer molding machine, and 6 × 6 mm was used for solder heat resistance test. The chip was sealed in 52pQFP. The sealed test element was post-cured at 175 ° C. for 8 hours, and the following solder moisture resistance test and solder heat resistance test were performed.
[0025]
Solder moisture resistance test: The sealed test element was treated in an environment of 85 ° C. and 85% RH for 72 hours, then immersed in a solder bath at 260 ° C. for 10 seconds, and then subjected to a pressure cooker test (125 ° C., 100% RH). The open circuit failure was measured.
Solder heat resistance test: The sealed test element was treated in an environment of 85 ° C. and 85% RH for 120 hours, then immersed in a solder bath at 260 ° C. for 10 seconds, and then external cracks were observed with a microscope. It was expressed as the number of cracks generated / total number.
The test results are shown in Table 1.
[0026]
<< Examples 2 to 7 >>
Compounding was carried out according to the formulations in Tables 1 and 2, and molding materials were obtained in the same manner as in Example 1. Using this molding material, a sealed molded product for test was obtained, and using this molded product, a solder moisture resistance test and a solder heat resistance test were conducted in the same manner as in Example 1. The test results are shown in Tables 1 and 2.
In addition, the epoxy resin and phenol resin hardening | curing agent which were used except Example 1 are as follows.
[0027]
[Chemical formula 5]
Figure 0003681082
[0028]
[Chemical 6]
Figure 0003681082
[0029]
[Chemical 7]
Figure 0003681082
[0030]
[Chemical 8]
Figure 0003681082
[0031]
[Chemical 9]
Figure 0003681082
[0032]
<< Comparative Examples 1-3 >>
Compounding was carried out according to the formulation shown in Table 3, and a molding material was obtained in the same manner as in Example 1. Sealed molded products for testing were obtained with these molding materials, and a solder moisture resistance test and a solder heat resistance test were performed in the same manner as in Example 1 using the molded products. The test results are shown in Table 3.
[0033]
[Table 1]
Figure 0003681082
[0034]
[Table 2]
Figure 0003681082
[0035]
[Table 3]
Figure 0003681082
[0036]
【The invention's effect】
The imide ring-containing epoxy resin of the present invention has a thermally stable skeleton, and the epoxy resin composition for semiconductor encapsulation using this imide ring-containing epoxy resin is excellent in solder heat resistance of the semiconductor package during mounting. And excellent in moisture resistance.

Claims (3)

化学式[1]で示されるスピロ環構造を有することを特徴とするイミド環含有エポキシ樹脂。
Figure 0003681082
An imide ring-containing epoxy resin having a spiro ring structure represented by the chemical formula [1].
Figure 0003681082
化学式[1]で示されるArがフェニレンである請求項1記載のイミド環含有エポキシ樹脂。 The imide ring-containing epoxy resin according to claim 1, wherein Ar represented by the chemical formula [1] is phenylene. 請求項1又は2で示されるイミド環含有エポキシ樹脂(a)、硬化剤(b)、無機充填材(c)を必須成分とするエポキシ樹脂組成物であって、イミド環含有エポキシ樹脂(a)を総エポキシ樹脂量に対して10〜100重量%含むエポキシ樹脂を用いるエポキシ樹脂組成物An epoxy resin composition comprising the imide ring-containing epoxy resin (a), the curing agent (b), and the inorganic filler (c) shown in claim 1 or 2 as essential components , the imide ring-containing epoxy resin (a) An epoxy resin composition using an epoxy resin containing 10 to 100% by weight with respect to the total amount of epoxy resin .
JP16766196A 1996-06-27 1996-06-27 Imido ring-containing epoxy resin and epoxy resin composition Expired - Fee Related JP3681082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16766196A JP3681082B2 (en) 1996-06-27 1996-06-27 Imido ring-containing epoxy resin and epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16766196A JP3681082B2 (en) 1996-06-27 1996-06-27 Imido ring-containing epoxy resin and epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH107764A JPH107764A (en) 1998-01-13
JP3681082B2 true JP3681082B2 (en) 2005-08-10

Family

ID=15853893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16766196A Expired - Fee Related JP3681082B2 (en) 1996-06-27 1996-06-27 Imido ring-containing epoxy resin and epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3681082B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395220A (en) * 1986-10-11 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Epoxyimide and production thereof
TW202450B (en) * 1991-06-26 1993-03-21 Dainippon Pharmaceutical Co
KR960005064B1 (en) * 1991-09-26 1996-04-20 제일모직주식회사 Imid-epoxy resin and method for preparation thereof

Also Published As

Publication number Publication date
JPH107764A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US5739187A (en) Semiconductor encapsulating epoxy resin compositions and semiconductor devices encapsulated therewith
JPH04359911A (en) Thermosetting resin composition
JPH0372521A (en) Semiconductor-sealing rein composition
JP2003020337A (en) Bisnadimide-polysiloxane alternating copolymer or its derivative and epoxy resin composition for electronic material containing the same
JPH06287273A (en) Epoxy resin composition for sealing semiconductor
JP3681082B2 (en) Imido ring-containing epoxy resin and epoxy resin composition
JP2870903B2 (en) Resin composition for semiconductor encapsulation
JP3719781B2 (en) Imido ring-containing phenol resin, process for producing the same, and epoxy resin composition using the phenol resin as a curing agent
JP3137295B2 (en) Epoxy resin curing agent and epoxy resin composition
JPH107770A (en) Epoxy resin composition and production thereof
JP2825572B2 (en) Resin composition for semiconductor encapsulation
JPH04337316A (en) Epoxy resin composition
JP3675571B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2823636B2 (en) High heat resistant epoxy resin composition
JP2912470B2 (en) Resin composition
JPH1067914A (en) Modified phenol resin, its production and epoxy resin composition using the same phenol resin as hardener
JPH07173253A (en) Epoxy resin composition
JPH08337709A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JPH06184272A (en) Epoxy resin composition
JP2912468B2 (en) Resin composition
KR19980026665A (en) Manufacturing method of epoxy resin and epoxy resin composition for semiconductor encapsulation containing same
JP2680389B2 (en) Epoxy resin composition
JPH04224859A (en) Resin composition
JPH0388827A (en) Resin composition for sealing of semiconductor
JP2912467B2 (en) Resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees