JP3680881B2 - Method for reinforcing crystallized glass plate and reinforced crystallized glass plate - Google Patents

Method for reinforcing crystallized glass plate and reinforced crystallized glass plate Download PDF

Info

Publication number
JP3680881B2
JP3680881B2 JP25291896A JP25291896A JP3680881B2 JP 3680881 B2 JP3680881 B2 JP 3680881B2 JP 25291896 A JP25291896 A JP 25291896A JP 25291896 A JP25291896 A JP 25291896A JP 3680881 B2 JP3680881 B2 JP 3680881B2
Authority
JP
Japan
Prior art keywords
crystallized glass
glass plate
reinforcing
resin layer
fiber mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25291896A
Other languages
Japanese (ja)
Other versions
JPH1095068A (en
Inventor
啓 平尾
龍之助 青山
克至 柏倉
武 川地
好正 林
晴果 小川
学 甚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Kirin Brewery Co Ltd
Original Assignee
Obayashi Corp
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Kirin Brewery Co Ltd filed Critical Obayashi Corp
Priority to JP25291896A priority Critical patent/JP3680881B2/en
Publication of JPH1095068A publication Critical patent/JPH1095068A/en
Application granted granted Critical
Publication of JP3680881B2 publication Critical patent/JP3680881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス中に微細な結晶を析出させた結晶化ガラス板が破壊する時にその破片が落下するのを防止できるとともに、耐熱強度も向上させ得る結晶化ガラス板の補強方法及び補強された結晶化ガラス板に関する。
【0002】
【従来の技術】
結晶化ガラス板の飛散防止対策として、結晶化ガラス板にFRP(繊維強化プラスチック)を裏打ちする技術が存在するが、性状が硬質なFRPを硬質樹脂を用いて貼り付けているので、結晶化ガラス板の変形や熱による発生応力の繰り返し等に十分に追従できず、結晶化ガラス板との界面で剥離が生じ易い。更には現場加工時にあっても、切断等の加工器具等による衝撃により補強したFRPが端面から剥離し易く、剥離した部分の修復が困難であった。
【0003】
【発明が解決しようとする課題】
そこで、本発明はかかる従来の課題に鑑みて、裏打ちする繊維メッシュと結晶化ガラス板との界面に緩衝部分を付加することにより、この緩衝部分によって結晶化ガラス板の変形や熱による発生応力および加工器具等による加工時の衝撃等を衝撃吸収させて繊維メッシュの剥離を防止し、かつ耐熱強度をも向上させた結晶化ガラス板の補強方法及び補強された結晶化ガラス板を提供することを目的とする。
【0004】
【課題を解決するための手段】
かかる目的を達成するために、本発明の請求項1に記載の結晶化ガラス板の補強方法は、結晶化ガラス板の裏面に接着性を有する弾性樹脂層を介して繊維メッシュを取り付ける結晶化ガラス板の補強方法であって、前記結晶化ガラス板は、重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなり、前記弾性樹脂層は、シリコーン樹脂又は変性シリコーン樹脂からなる手段を採用している。
【0005】
また、本発明の請求項2に記載の結晶化ガラス板の補強方法は、請求項1に記載の結晶化ガラス板の補強方法において、前記弾性樹脂層の伸び率を50%から500%とした手段を採用している。
さらに、本発明の請求項3に記載の補強された結晶化ガラス板は、重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなる結晶化ガラス板と、シリコーン樹脂又は変性シリコーン樹脂からなる接着性を有する弾性樹脂層と、該弾性樹脂層を介して前記結晶化ガラス板の裏面に取り付けられた繊維メッシュとを有する手段を採用している。
【0006】
以上の構成により、本発明の結晶化ガラス板の補強方法及び補強された結晶化ガラス板にあっては、接着性を有するシリコーン樹脂又は変性シリコーン樹脂からなる弾性樹脂層を介して繊維メッシュが重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなる結晶化ガラス板に取り付けられるため、これら繊維メッシュと結晶化ガラス板との間に緩衝機能を有する弾性樹脂層が介在されることになる。
【0007】
従って、前記弾性樹脂層によって熱などによる結晶化ガラス板の変形に伴う発生応力および加工器具等による加工時の衝撃等を緩衝吸収させることができるため、前記繊維メッシュの剥離が防止され、かつまた耐熱強度を向上させることになる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
図1は、本発明にかかる結晶化ガラス板の補強方法及び補強された結晶化ガラス板の一実施の形態を示す断面図である。
【0009】
即ち、本実施形態の結晶化ガラス板の補強方法及び補強された結晶化ガラス板は、図1に示すように、結晶化ガラス板10の裏面10aに接着性を有する弾性樹脂層12を形成し、この弾性樹脂層12を介して上記結晶化ガラス板10に繊維メッシュ14を取り付けることにより構成される。
【0010】
前記結晶化ガラス板10については複数の製法が提案されていて、例えばザラメ状のガラス粒子を耐火物の棚板に一定の厚みに敷き並べて所定の温度で焼成し、そして、ザラメ状のガラス粒子を互いに融着させて板状に形成すると共に、粒界から針状結晶を成長させることにより形成される。その後、焼成された結晶化ガラス板10を研磨した後、所定の寸法に切断して仕上げる。
【0011】
例えば、結晶化ガラス板は次のような組成を有する。(単位;重量%)
SiO2 65〜75
Na2 O 10〜15
2 O 0〜2
MgO 0〜5
CaO 8〜13
Al2 3 0.5〜3
Fe2 3 0〜0.5
【0012】
前記接着性の良い弾性樹脂12を構成する樹脂としては、シリコーン樹脂又は変性シリコーン樹脂が用いられ、変性シリコーン樹脂としては、アクリル変性シリコーン樹脂又はエポキシ変性シリコーン樹脂が用いられる。このような樹脂から構成される弾性樹脂層12は、伸び率が50%から500%の範囲であることが望ましく、150%から250%の範囲が好適である。そして、結晶化ガラス板10の裏面10aに上記のようなシリコーン樹脂又は変性シリコーン樹脂を刷毛やローラ等を用いて均一厚さに塗布して弾性樹脂層12を形成し、この弾性樹脂層12にガラス繊維メッシュ等の繊維メッシュ14が貼り付けられる。
【0013】
本発明に用いられる繊維メッシュとして、有機系のもので、ポリエステル系、ポリアミド系、ポリアクリルニトリル系、ポリプロピレン系、ポリビニルアルコール系、ポリエチレン系、アラミド系、ポリベンツオキサゾール系等、無機系のもので、炭素繊維、ガラス繊維、ステンレス繊維等が掲げられる。
【0014】
上記のように、本実施形態の結晶化ガラス板の補強方法及び補強された結晶化ガラス板は、焼成により結晶化させて形成した結晶化ガラス板10の裏面10aに、シリコーン樹脂又は変性シリコーン樹脂(アクリル変性シリコーン樹脂又はエポキシ変性シリコーン樹脂)からなる弾性樹脂層12を介してガラス繊維メッシュ等の繊維メッシュ14を貼り付けるように構成したので、これら結晶化ガラス板10と繊維メッシュ14との間に緩衝機能を有する弾性樹脂層12を介在させることができる。従って、弾性樹脂層12によって結晶化ガラス板10の変形による発生応力を緩衝、吸収することができるため、繊維メッシュ14の剥離を確実に防止することができる。
【0015】
従って、結晶化ガラス板10を現場で加工する際にも、繊維メッシュ14の剥離が防止されることにより小さな破片となって割れることがなくなり、作業者などの怪我の危険が減り、また清掃も容易になると共に、結晶化ガラス板10の変形による応力が生じても繊維メッシュ14が剥離されないことから、結晶化ガラス板10に対する飛散防止と補強機能を永続的に維持することができる。
【0016】
また、本実施形態では、結晶化ガラス板10の補強方法及び補強された結晶化ガラス板に繊維メッシュ14を用いたので、この繊維メッシュ14を貼り付ける際に、空気の混入としわの発生を心配する必要がないため、容易な貼り付け作業により高い生産性で生産することが可能であって、かつ高品質の結晶化ガラス板を得ることができる。
【0017】
本実施形態では結晶化ガラス板10に貼り付けられる繊維メッシュとしてガラス繊維メッシュ14を用いた場合を開示したが、この繊維メッシュ14に限ることなく、炭素繊維等の強化繊維で形成されるメッシュ体を用いることもできる。
【0018】
以下に、結晶化ガラス板の裏面に補強を施さなかった場合、裏面に硬質樹脂 (接着剤)等を用いて補強を行なった場合の実験方法及び結果について述べる。
【0019】
[実験方法]
結晶化ガラス板(45センチ)の裏面に所定の補強を施した、結晶化ガラス板試験体について下地拘束のない状態で、図2に示す熱冷・乾湿を繰返すことができる試験装置を用い、105分間赤外線ランプを照射し、その後15分散水することを1サイクルとして、試験体が破断するまで継続した。熱冷繰返し試験中の結晶化ガラス板の表・裏面の温度を熱電対を用いて測定した。また、結晶化ガラス板の不具合発生の有無を5サイクル毎に目視観察によって確認した。
【0020】
[実験結果]
(1) 試験体の温度
赤外線ランプによる加熱で結晶化ガラス板の表面の温度は約80°C迄加熱された後、散水によって約20°Cに急冷された。試験体の表・裏面での温度差は殆どなかった。
【0021】
(2) 結晶化ガラス板の耐熱衝撃性
熱による衝撃実験結果を下表1に示す。
【0022】
【表1】

Figure 0003680881
結晶化ガラス板単体の場合、15サイクルまでは破断に至らないことが確認できた。
【0023】
(3) 裏面補強FRPの効果
結晶化ガラス板に対して裏面側からFRP補強した場合の効果について検討した。表1に示すように、接着性を有する弾性樹脂(エポキシ変性シリコーン樹脂)を用いて繊維メッシュを貼り付けた仕様では50サイクル経過後も破断せず耐熱衝撃性が著しく増大した。
【0024】
一方、硬質樹脂(不飽和ポリエステル樹脂)によるFRPは5サイクル目で裏面から剥離してしまい、結晶化ガラス板との接着耐久性に問題があることが確認された。
【0025】
【発明の効果】
以上、説明したように、本発明の結晶化ガラス板の補強方法及び補強された結晶化ガラス板にあっては、重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなる結晶化ガラス板を用い、この結晶化ガラス板の裏面に接着性を有するシリコーン樹脂又は変性シリコーン樹脂からなる弾性樹脂層を介して繊維メッシュを取り付ける構成としたので、繊維メッシュと結晶化ガラス板との間に介在する弾性樹脂層に緩衝機能を持たせることができる。
従って、結晶化ガラス板の変形や熱により生じる応力を弾性樹脂層によって緩衝吸収することができ、繊維メッシュの剥離を防止することができる。
また、結晶化ガラス板の裏面側に弾性樹脂層を介して繊維メッシュを取り付けているので、耐熱強度を高めることもできる。
従って、結晶化ガラス板の現場加工を容易化することができるとともに、結晶化ガラス板に対する飛散防止と補強機能を永続的に維持することができる。
【図面の簡単な説明】
【図1】本発明の結晶化ガラス板の補強方法の一実施形態を示す断面図である。
【図2】熱冷繰返し試験装置を示す模式図である。
【符号の説明】
10 結晶化ガラス板
10a 裏面
12 弾性樹脂層
14 ガラス繊維メッシュ[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for reinforcing a crystallized glass plate that can prevent the fragments from falling when the crystallized glass plate in which fine crystals are precipitated in the glass breaks, and can also improve the heat resistance strength, and has been reinforced. It relates to a crystallized glass plate .
[0002]
[Prior art]
As a countermeasure to prevent scattering of the crystallized glass plate, there is a technology for lining the FRP (fiber reinforced plastic) on the crystallized glass plate, but since the hard FRP is pasted using a hard resin, the crystallized glass It cannot sufficiently follow the deformation of the plate and the repetition of the generated stress due to heat, and peeling easily occurs at the interface with the crystallized glass plate. Further, even during on-site processing, the FRP reinforced by the impact of a processing tool such as cutting is easily peeled off from the end face, and it is difficult to repair the peeled portion.
[0003]
[Problems to be solved by the invention]
Therefore, in view of such conventional problems, the present invention adds a buffer portion to the interface between the fiber mesh to be lined and the crystallized glass plate, and the buffer portion causes deformation of the crystallized glass plate and heat generated due to heat and To provide a method for reinforcing a crystallized glass plate that absorbs impact during processing by a processing tool or the like to prevent the fiber mesh from peeling and also has improved heat resistance and a reinforced crystallized glass plate Objective.
[0004]
[Means for Solving the Problems]
In order to achieve this object, the method for reinforcing a crystallized glass plate according to claim 1 of the present invention is a crystallized glass in which a fiber mesh is attached to the back surface of a crystallized glass plate via an elastic resin layer having adhesiveness. a method for reinforcing a plate, the crystallized glass plate, SiO in a weight ratio 2: 65~75%, Na 2 O : 10~15%, K 2 O: 0~2%, MgO: 0~5% , CaO: 8 to 13%, Al 2 O 3 : 0.5 to 3%, Fe 2 O 3 : 0 to 0.5%, and the elastic resin layer is made of a silicone resin or a modified silicone resin. Means.
[0005]
Moreover, the method for reinforcing a crystallized glass sheet according to claim 2 of the present invention is the method for reinforcing a crystallized glass sheet according to claim 1, wherein the elastic resin layer has an elongation percentage of 50% to 500%. Means.
Furthermore, the reinforced crystallized glass sheet according to claim 3 of the present invention is SiO 2 : 65 to 75%, Na 2 O: 10 to 15%, K 2 O: 0 to 2%, MgO by weight ratio. : 0 to 5%, CaO: 8 to 13%, Al 2 O 3 : 0.5 to 3%, Fe 2 O 3 : 0 to 0.5% of a crystallized glass plate and a silicone resin or modification A means having an elastic resin layer made of silicone resin and having an adhesive property and a fiber mesh attached to the back surface of the crystallized glass plate through the elastic resin layer is employed.
[0006]
With the above configuration, in the method for reinforcing a crystallized glass plate and the reinforced crystallized glass plate of the present invention, the fiber mesh has a weight through an elastic resin layer made of an adhesive silicone resin or a modified silicone resin. 65~75%, Na 2 O:: SiO 2 ratio 10~15%, K 2 O: 0~2 %, MgO: 0~5%, CaO: 8~13%, Al 2 O 3: 0.5 ~3%, Fe 2 O 3: since it is attached to the crystallized glass plate comprising a 0 to 0.5% of the composition, the elastic resin layer having a buffering function between these fiber mesh and crystallized glass plate is interposed Will be.
[0007]
Therefore, since the elastic resin layer can absorb and absorb the stress generated by the deformation of the crystallized glass plate due to heat and the impact at the time of processing by a processing tool, etc., the peeling of the fiber mesh is prevented, and Heat resistance strength will be improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Figure 1 is a cross-sectional view showing an embodiment of a reinforcing method, and reinforced crystallized glass plate of the crystallized glass plate according to the present invention.
[0009]
That is, the reinforcing method and reinforced crystallized glass plate of the crystallized glass plate of the present embodiment, as shown in FIG. 1, to form an elastic resin layer 12 having adhesiveness to the rear surface 10a of the crystallized glass plate 10 The fiber mesh 14 is attached to the crystallized glass plate 10 through the elastic resin layer 12.
[0010]
A plurality of manufacturing methods have been proposed for the crystallized glass plate 10. For example, glazed glass particles are laid on a shelf board of a refractory material with a certain thickness and fired at a predetermined temperature. Are fused to each other to form a plate, and a needle crystal is grown from the grain boundary. Thereafter, the fired crystallized glass plate 10 is polished and then cut into a predetermined size and finished.
[0011]
For example, a crystallized glass plate has the following composition. (Unit:% by weight)
SiO 2 65~75
Na 2 O 10-15
K 2 O 0-2
MgO 0-5
CaO 8-13
Al 2 O 3 0.5-3
Fe 2 O 3 0~0.5
[0012]
As the resin constituting the elastic resin layer 12 having good adhesiveness, a silicone resin or a modified silicone resin is used, and as the modified silicone resin, an acrylic modified silicone resin or an epoxy modified silicone resin is used. The elastic resin layer 12 composed of such a resin preferably has an elongation of 50% to 500%, and preferably 150% to 250%. Then, the above-described silicone resin or modified silicone resin is applied to the back surface 10a of the crystallized glass plate 10 with a uniform thickness using a brush, a roller, or the like to form the elastic resin layer 12, and the elastic resin layer 12 A fiber mesh 14 such as a glass fiber mesh is attached.
[0013]
The fiber mesh used in the present invention is organic, such as polyester, polyamide, polyacrylonitrile, polypropylene, polyvinyl alcohol, polyethylene, aramid, polybenzoxazole, etc. , Carbon fiber, glass fiber, stainless fiber and the like.
[0014]
As described above, the method for reinforcing a crystallized glass plate and the reinforced crystallized glass plate according to this embodiment include a silicone resin or a modified silicone resin on the back surface 10a of the crystallized glass plate 10 formed by crystallization by firing. Since it comprised so that the fiber meshes 14, such as a glass fiber mesh, may be affixed through the elastic resin layer 12 which consists of (acryl modified silicone resin or an epoxy modified silicone resin) , between these crystallized glass plates 10 and the fiber mesh 14 An elastic resin layer 12 having a buffer function can be interposed between the two. Therefore, since the elastic resin layer 12 can buffer and absorb the stress generated by the deformation of the crystallized glass plate 10, it is possible to reliably prevent the fiber mesh 14 from peeling off.
[0015]
Therefore, even when the crystallized glass plate 10 is processed on-site, the fiber mesh 14 is prevented from being peeled off so that it does not break into small fragments, reducing the risk of injury to the operator and cleaning. In addition to being easy, since the fiber mesh 14 is not peeled even when stress due to deformation of the crystallized glass plate 10 occurs, the prevention of scattering and the reinforcement function for the crystallized glass plate 10 can be maintained permanently.
[0016]
Moreover, in this embodiment , since the fiber mesh 14 was used for the reinforcement method of the crystallized glass plate 10 and the reinforced crystallized glass plate, when the fiber mesh 14 is affixed, air contamination and wrinkles are generated. Since there is no need to worry, it can be produced with high productivity by an easy pasting operation, and a high-quality crystallized glass plate can be obtained.
[0017]
In the present embodiment, the case where the glass fiber mesh 14 is used as the fiber mesh to be attached to the crystallized glass plate 10 is disclosed. However, the mesh body is not limited to the fiber mesh 14 and is formed of reinforcing fibers such as carbon fibers. Can also be used.
[0018]
The following describes experimental methods and results when the back surface of the crystallized glass plate is not reinforced and when the back surface is reinforced with a hard resin (adhesive) or the like.
[0019]
[experimental method]
Using a test apparatus capable of repeating the heating, cooling, and drying shown in FIG. 2 in a state in which there is no base restraint for the crystallized glass plate test body, which is subjected to predetermined reinforcement on the back surface of the crystallized glass plate (45 cm), Irradiation with an infrared lamp for 105 minutes followed by 15 dispersion water was taken as one cycle and continued until the specimen broke. The temperatures of the front and back surfaces of the crystallized glass plate during the hot cooling repeated test were measured using a thermocouple. In addition, the presence or absence of defects in the crystallized glass plate was confirmed by visual observation every 5 cycles.
[0020]
[Experimental result]
(1) Temperature of test specimen The surface of the crystallized glass plate was heated to about 80 ° C by heating with an infrared lamp, and then rapidly cooled to about 20 ° C by watering. There was almost no temperature difference between the front and back surfaces of the specimen.
[0021]
(2) Table 1 below shows the results of impact experiments with thermal shock resistance heat of crystallized glass plates.
[0022]
[Table 1]
Figure 0003680881
In the case of a single crystallized glass plate, it was confirmed that no fracture occurred until 15 cycles.
[0023]
(3) Effect of back side reinforcing FRP The effect of FRP reinforcement from the back side on the crystallized glass plate was examined. As shown in Table 1, in the specification in which a fiber mesh was attached using an elastic resin (epoxy-modified silicone resin) having adhesiveness, the thermal shock resistance was remarkably increased without breaking even after 50 cycles.
[0024]
On the other hand, it was confirmed that FRP by hard resin (unsaturated polyester resin) peeled from the back surface in the 5th cycle, and there was a problem in adhesion durability with a crystallized glass plate.
[0025]
【The invention's effect】
As described above, in the method for reinforcing a crystallized glass plate of the present invention and the reinforced crystallized glass plate, SiO 2 : 65 to 75% by weight ratio, Na 2 O: 10 to 15%, K 2 O: 0 to 2%, MgO: 0 to 5%, CaO: 8 to 13%, Al 2 O 3 : 0.5 to 3%, Fe 2 O 3 : 0 to 0.5% Since it was set as the structure which attaches a fiber mesh through the elastic resin layer which consists of a silicone resin which has adhesiveness, or a modified silicone resin on the back surface of this crystallized glass plate using this crystallized glass plate, The elastic resin layer interposed between the two can be provided with a buffer function.
Therefore, the elastic resin layer can absorb and absorb the stress caused by the deformation of the crystallized glass plate and heat, and the fiber mesh can be prevented from peeling off.
Moreover, since the fiber mesh is attached to the back surface side of the crystallized glass plate via an elastic resin layer, the heat resistance strength can be increased.
Therefore, on-site processing of the crystallized glass plate can be facilitated, and the scattering prevention and reinforcement function for the crystallized glass plate can be maintained permanently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a method for reinforcing a crystallized glass sheet according to the present invention.
FIG. 2 is a schematic diagram showing a hot cooling repeated test apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Crystallized glass board 10a Back surface 12 Elastic resin layer 14 Glass fiber mesh

Claims (3)

結晶化ガラス板の裏面に接着性を有する弾性樹脂層を介して繊維メッシュを取り付ける結晶化ガラス板の補強方法であって、
前記結晶化ガラス板は、重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなり、
前記弾性樹脂層は、シリコーン樹脂又は変性シリコーン樹脂からなることを特徴とする結晶化ガラス板の補強方法。
A method for reinforcing a crystallized glass plate, in which a fiber mesh is attached to the back surface of the crystallized glass plate via an elastic resin layer having adhesion,
The crystallized glass plate, SiO in a weight ratio 2: 65~75%, Na 2 O : 10~15%, K 2 O: 0~2%, MgO: 0~5%, CaO: 8~13%, Al 2 O 3 : 0.5 to 3%, Fe 2 O 3 : 0 to 0.5% composition,
The method for reinforcing a crystallized glass plate, wherein the elastic resin layer is made of a silicone resin or a modified silicone resin .
前記弾性樹脂層の伸び率を50%から500%としたことを特徴とする請求項1に記載の結晶化ガラス板の補強方法。  2. The method for reinforcing a crystallized glass sheet according to claim 1, wherein an elongation percentage of the elastic resin layer is 50% to 500%. 重量比でSiO:65〜75%、NaO:10〜15%、KO:0〜2%、MgO:0〜5%、CaO:8〜13%、Al:0.5〜3%、Fe:0〜0.5%の組成からなる結晶化ガラス板と、
シリコーン樹脂又は変性シリコーン樹脂からなる接着性を有する弾性樹脂層と、
該弾性樹脂層を介して前記結晶化ガラス板の裏面に取り付けられた繊維メッシュとを有することを特徴とする補強された結晶化ガラス板。
65~75%, Na 2 O:: SiO 2 in a weight ratio of 10~15%, K 2 O: 0~2 %, MgO: 0~5%, CaO: 8~13%, Al 2 O 3: 0. A crystallized glass plate having a composition of 5 to 3%, Fe 2 O 3 : 0 to 0.5%;
An elastic resin layer having adhesiveness made of silicone resin or modified silicone resin;
A reinforced crystallized glass plate comprising a fiber mesh attached to the back surface of the crystallized glass plate through the elastic resin layer.
JP25291896A 1996-09-25 1996-09-25 Method for reinforcing crystallized glass plate and reinforced crystallized glass plate Expired - Fee Related JP3680881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25291896A JP3680881B2 (en) 1996-09-25 1996-09-25 Method for reinforcing crystallized glass plate and reinforced crystallized glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25291896A JP3680881B2 (en) 1996-09-25 1996-09-25 Method for reinforcing crystallized glass plate and reinforced crystallized glass plate

Publications (2)

Publication Number Publication Date
JPH1095068A JPH1095068A (en) 1998-04-14
JP3680881B2 true JP3680881B2 (en) 2005-08-10

Family

ID=17243988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25291896A Expired - Fee Related JP3680881B2 (en) 1996-09-25 1996-09-25 Method for reinforcing crystallized glass plate and reinforced crystallized glass plate

Country Status (1)

Country Link
JP (1) JP3680881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090120484A (en) 2007-02-22 2009-11-24 다우 코닝 코포레이션 Composite article having excellent fire and impact resistance and method of making the same
KR20090110878A (en) * 2007-02-22 2009-10-22 다우 코닝 코포레이션 Composite article having excellent fire resistance

Also Published As

Publication number Publication date
JPH1095068A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
Albakry et al. Effect of sandblasting, grinding, polishing and glazing on the flexural strength of two pressable all-ceramic dental materials
GB2211142A (en) Composite structure reinforcement
JP2580265B2 (en) Composite nonwoven
US8338318B2 (en) Glass ceramic armor material
JP7033074B2 (en) Glass roll with resin film
DK114890A (en) ARMOR MATERIALS
JP3680881B2 (en) Method for reinforcing crystallized glass plate and reinforced crystallized glass plate
TW200936821A (en) Crucible holding member and method for producing the same
BR112015019379B1 (en) METHOD OF RECONDITIONING A CONSUMABLE COMPONENT OR A COMPOUND COMPRISING A CONSUMABLE COMPONENT ADHERED TO A NON-CONSUMABLE COMPONENT, AND, COMPOSITE
JP4370611B2 (en) Flat glass for flat panel display
EP2969532B1 (en) Armor system with multi-hit capacity and method of manufacture
US20050133123A1 (en) Glass fiber metal matrix composites
Yue et al. The morphology, character and strength of the interface in glass fibre-polypropylene composites
Wang et al. On understanding the mechanical properties and damage behavior of Cf/SiC composites by indentation method
Park et al. The influence of crystallinity on interfacial properties of carbon and SiC two‐fiber/polyetheretherketone (PEEK) composites
EP0393003B1 (en) Composite material for medical or paramedical, particularly orthopaedic use
CN109160718B (en) Preparation method of curved glass
Guillen et al. The influence of cooling rate on the fracture properties of a glass reiforced/nylon fiber‐metal laminate
EP3851503A1 (en) Bondable stretch flock composite materials
Russell et al. Composite repair issues on the CF-18 aircraft
CN109734329A (en) A kind of heat resistant glass and preparation method thereof
Wingard Use of DSC and DMA to study crystallization as a possible cause for a glove tear: Neoprene rubber gloves are used as part of a Space Shuttle pressurized astronaut suit
Tsampas et al. Mechanical performance of novel high Tg polyimide matrix carbon fibre-reinforced laminates
GB2313338A (en) Perforated film for wound dressings
US11046048B1 (en) Selective modifiers for composite material property enhancement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees