【0001】
【産業上の利用分野】
本発明は、太陽熱を利用して給湯を行う太陽熱給湯設備に関するものである。
【0002】
【従来の技術】
図2は、従来の太陽熱給湯設備の一例を示すシステム図である。
【0003】
図中、太陽熱温水器10に水を供給するための給水管11が、太陽熱温水器10の給水口10aに接続され、また太陽熱温水器10から湯を取り出すための給湯管12が、太陽熱温水器10の給湯口10bに接続されている。給水管11には、太陽熱温水器10よりも低位の位置に減圧弁13が取り付けられている。
【0004】
また減圧弁13の2次側には、太陽熱温水器10よりも低位の位置で給水管11と給湯管12を連通させる連通管14が設けられ、連通管14と給湯管12の連結部には、ミキシングバルブ(湯水混合栓)15が設けられている。連通管14と給水管11の連結部11aと、太陽熱温水器10との間の給水管11には、減圧弁13から太陽熱温水器10への流れを許容し、逆方向の流れを防止する第1の逆止弁16が設けられている。連通管14には、給水管11から給湯管12への流れを許容し、逆方向の流れを防止する第2の逆止弁17が設けられている。またミキシングバルブ15の出口15aには、混合水が出ていく方向の流れを許容し、逆方向の流れを防止する第3の逆止弁18が設けられている。さらに太陽熱温水器10の出湯口10bには、圧力逃し弁19が取り付けられてなり、圧力逃し弁19には、排水用パイプ(図示せず)が連結されており、湯を屋根面に沿って流すようになっている。
【0005】
この圧力逃し弁19の設定圧力は、減圧弁13の設定圧力よりも高くされ、例えば圧力逃し弁19の設定圧力が、0.95kg/cm2 、減圧弁13の設定圧力が0.8kg/cm2 とされる。
【0006】
このような太陽熱温水器10に供給された水は、太陽熱で温められて温度が上がると膨張し、太陽熱温水器10内の水圧が上昇することになるが、水圧が太陽熱温水器10の出湯口10bに設けられた圧力逃し弁19の設定圧力に達すると、圧力逃し弁19から排水用パイプを経て湯が外部に排出され、太陽熱温水器10内の圧力を低下させる。つまり太陽熱温水器10内の圧力は、圧力逃し弁19の設定圧力を越えないようになっている。
【0007】
このような太陽熱給湯設備においては、水道水が減圧弁13から給水管11を通り、太陽熱温水器10に供給された後、給湯管12と連通管14に満たされる。この状態で、日中、一定時間汲み置かれると、太陽熱温水器10内の水が、太陽熱で加熱されて湯になり、給湯管12からミキシングバルブ15の湯口15b、出口15a、第3の逆止弁18を経て外部に取り出される。
【0008】
このとき太陽熱温水器10から出ていく湯と同量の水が、給水管11から太陽熱温水器10に供給される。また減圧弁13を通った水は、ミキシングバルブ15の水口15cにも入り、ミキシングバルブ15内で湯と水が混合されて設定温度の湯が出口15aから出ていくことになる。こうして取り出された湯は、直接給湯利用されたり、あるいは雨や雪等で太陽熱温水器10内の湯が低い時に、ガス、石油給湯機器で追い焚きしてから給湯利用される。
【0009】
【発明が解決しようとする課題】
ところで従来から太陽熱温水器は、1kg/cm2 以下の圧力で使用されており、例えば上記の太陽熱給湯設備の場合には、太陽熱温水器内の圧力は、圧力逃し弁の設定圧力である0.95kg/cm2 を越えることはない。
【0010】
しかしながら近年、直圧式のガス・石油給湯機器が普及し、また2階での給湯利用あるいは多箇所での同時給湯利用が増えつつあり、これに伴い太陽熱温水器の給湯圧力を高くしなければ十分に機能しなくなってきた。
【0011】
すなわち圧力が1kg/cm2 以下の太陽熱温水器を、直圧式のガス・石油給湯機器に接続すると、台所で湯の出が悪くなったり、シャワーからの湯の出が悪くなるという支障が生じる。
【0012】
このような事情から太陽熱温水器を1kg/cm2 以上の圧力で使うことが望まれているが、このような高い圧力で太陽熱給湯設備を使用すると、湯温が100℃を越えることがあり、その結果、構成部材の劣化を招きやすくなるという問題が生じる。
【0013】
例えば図2の太陽熱給湯設備の減圧弁13の設定圧力を2.5kg/cm2 、圧力逃し弁19の設定圧力を3kg/cm2 として、貯湯量240リットル、有効集熱面積2.73m2 の真空ガラス管式の太陽熱温水器を用い、夏期の晴天日の朝に太陽熱温水器10内に約30℃の水道水を供給し、1日中湯を全く使わずに放置すると、太陽熱温水器10内の湯の最高到達温度は、約84℃となる。このまま湯を全く使わずに、翌日に持ち越すと、夜間の自然冷却によって翌朝の湯温は、約60℃になるが、再び翌日が晴天であり、日中全く湯を使わなければ、太陽熱温水器10内の湯の最高到達温度は、約113℃となる。同様にして、3日目も湯を全く使わずに放置すると、太陽熱温水器10内の湯の最高到達温度は、約130℃にもなる。
【0014】
このように太陽熱温水器10の性能が良ければ、晴天日が続く時に、湯を全く使わずに放置すると、太陽熱温水器10内の湯の最高到達温度は、圧力逃し弁19の設定圧力が飽和蒸気圧になる温度まで上昇することがある。
【0015】
また冬期に外気温が0℃以下になると、給水管11や給湯管12内の水が凍結することがあるため、給水管11と給湯管12の全長にわたって長尺のサーモスタット付ヒーターバンドを巻き付け、さらにその上に断熱材を巻き付け、外気温がサーモスタットの設定温度以下になると、ヒーターに通電し、給水管11や給湯管12内の水を温めて凍結を防止する工夫がなされている。
【0016】
しかしながら一般に給水管11や給湯管12の長さは、約10mもあり、ヒーターバンドの取付工事に大変手間がかかるという問題があった。
【0017】
本発明は、上記事情に鑑みなされたものであり、太陽熱温水器の圧力を1kg/cm2 以上にしても、太陽熱温水器内の湯温が100℃を越えることがなく、しかも給水管や給湯管に長尺のサーモスタット付ヒーターバンドを巻き付けることなく、冬期における水の凍結を防止することが可能な太陽熱給湯設備を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明の太陽熱給湯設備は、太陽熱を利用して水を温める太陽熱温水器と、太陽熱温水器の給水口に接続して太陽熱温水器に給水するための給水管と、太陽熱温水器の出湯口に接続して太陽熱温水器から湯を取り出すための給湯管とを備えた太陽熱給湯設備であって、上記太陽熱温水器よりも低位の位置で給水管に減圧弁を設け、減圧弁の2次側で、且つ、太陽熱温水器よりも低位の位置に給水管と給湯管を連通させる第1の連通管を設け、第1の連通管と給湯管の連結部にミキシングバルブを設け、第1の連通管よりも太陽熱温水器側で、且つ、太陽熱温水器よりも低位の位置に給水管と給湯管を連通させる第2の連通管を設け、第2の連通管にポンプと第1の温圧弁とヒーターを設け、太陽熱温水器の出湯口に第2の温圧弁と、太陽熱温水器の湯温を検出してポンプの作動を制御する第1の温度センサーを設け、太陽熱温水器の近傍に外気温を検出する第2の温度センサーを設け、給水管内に水温を検出する第3の温度センサーを設けてなり、減圧弁の設定圧力を第1の温圧弁および第2の温圧弁の設定圧力よりも低くし、且つ、第1の温圧弁の設定圧力を第2の温圧弁の設定圧力よりも低くし、ポンプを起動させる第1の温度センサーの設定温度を第1の温圧弁および第2の温圧弁の設定温度よりも低くし、且つ、第1の温圧弁の設定温度を第2の温圧弁の設定温度よりも低くし、第2の温度センサーと第3の温度センサーによってポンプとヒーターの作動を制御することを特徴とする。
【0019】
また本発明は、第1の連通管と給水管の連結部と、第2の連通管と給水管の連結部の間の給水管に、減圧弁から太陽熱温水器への流れを許容し、逆方向への流れを防止する第1の逆止弁を設け、第2の連通管に給湯管から給水管への流れを許容し、逆方向への流れを防止する第2の逆止弁を設け、ミキシングバルブの出口付近の給湯管に混合水が出ていく方向の流れを許容し、逆方向への流れを防止する第3の逆止弁を設けてなることを特徴とする。
【0020】
さらに本発明は、第3の逆止弁の2次側に排水用バルブを設けてなることを特徴とし、減圧弁の1次側の給水管にストレーナを設けてなることを特徴とする。
【0021】
また本発明は、ポンプを起動させる第1の温度センサーの設定温度を70℃以上、90℃以下とすることを特徴とし、第2の温度センサーで、ポンプとヒーターを起動し、第3の温度センサーで、ポンプとヒーターを停止することを特徴とする。
【0022】
【作用】
本発明の太陽熱給湯設備においては、太陽熱温水器を1kg/cm2 以上の圧力で使用しても、夏期の晴天日に2日間以上、湯を全く使わずに放置し、太陽熱温水器内の湯の温度が上昇して、ポンプの起動する温度に達すると、ポンプが作動し、太陽熱温水器内の湯が、給湯管から第2の連通管を経て給水管へと循環する間に冷却される。
【0023】
しかしながら太陽熱温水器の設置条件、例えば給水管や給湯管の長さが短い場合や、給水管・給湯管に厚肉の断熱材が巻かれ、冷却能力が小さいという条件下では、湯が循環しても徐々に太陽熱温水器内の湯温が上昇することがあるが、その湯温が、第1の温圧弁の設定温度に達すると、第1の温圧弁から湯が排出され、その排出量と同量の水が新たに減圧弁から給水管を経て太陽熱温水器に供給され、湯と混合され湯温を下げることになる。第1の温圧弁は、太陽熱温水器よりも低位の位置に設置され、通常はこれに排水用パイプを連結することによって地面に近いところで、安全に湯を排出させるようにする。
【0024】
また万一、停電やポンプの故障等で循環機能が働かないときは、太陽熱温水器内の湯温は、太陽熱温水器の出湯口に設けた第2の温圧弁の設定温度まで上昇することになるが、この時にも第2の温圧弁から湯が排出され、その排出量と同量の水が新たに減圧弁から給水管を経て太陽熱温水器に供給され、湯と混合され湯温を下げることになる。すなわち本発明の太陽熱給湯設備では、通常、第1の温圧弁が作動して設定温度以下に湯温を保持するが、第2の温圧弁は、安全対策上、万一の場合を考えて設けられている。
【0025】
また冬期において外気温が低い時には、第2の温度センサーと第3の温度センサーでポンプとヒーターの作動を制御し、ヒーターで温められた湯を循環させることによって、給水管や給湯管内の水の凍結を防止できる。ポンプが作動した場合の湯の循環経路は、太陽熱温水器→給湯管→第2の連結管→給水管→太陽熱温水器であり、ヒーターで温められた湯は、まず給水管に流れ込むため、加熱効果が直ちに得られる。
【0026】
また給湯管には、太陽熱温水器で温められた湯が流れ込むことになる。但し、太陽熱温水器の湯を全て使いきった場合には、太陽熱温水器には水が充満されるため、給湯管にも水が流れ込むことになるが、この水が直ちに凍結することはなく、凍結する前にヒーターで温められた湯が、太陽熱温水器を通って給湯管まで達する。
【0027】
本発明の太陽熱給湯設備において、第1の連通管と給水管の連結部と、第2の連通管と給水管の連結部の間の給水管に、減圧弁から太陽熱温水器への流れを許容し、逆方向への流れを防止する第1の逆止弁を設け、第2の連通管に給湯管から給水管への流れを許容し、逆方向への流れを防止する第2の逆止弁を設け、ミキシングバルブの出口付近の給湯管に混合水が出ていく方向の流れを許容し、逆方向への流れを防止する第3の逆止弁を設けると、断水時等の不測の事態が生じたときに、水道の本管側への逆流を防止することができる。
【0028】
また第3の逆止弁の2次側に排水用バルブを設けると、排水用バルブから手動で太陽熱温水器内の湯を抜いたり、この抜いた湯の温度を測定することによって、ミキシングバルブの設定温度の確認をすることができるため好ましい。
【0029】
さらに減圧弁の1次側の給水管にストレーナを設けると、水道水中のゴミ等の異物を除去してポンプや温圧弁等の異物咬み事故を防止することができるため好ましい。
【0030】
尚、本発明の太陽熱給湯設備の第1の温圧弁と第2の温圧弁とは、温度と圧力の安全弁として作用するものであり、温度調整弁と圧力逃し弁を併用することも可能である。
【0031】
また本発明の太陽熱給湯設備においては、ポンプを起動させる温度センサーの設定温度が低すぎると、折角太陽熱温水器によって得られた熱量を無駄に捨てることになり、また温度センサーの設定温度が高すぎると、第1の温圧弁の設定温度との差がなくなるため、70℃以上、90℃以下にすることが望ましい。
【0032】
さらに本発明の太陽熱給湯設備においては、第2の温圧弁を複数個設置すると、1つの温圧弁が故障しても、他の温圧弁が正常に働くため、安全性が増すことになる。
【0033】
また給水管や給湯管内の水が凍結する主な原因は、外気温が低いためであり、そのためポンプとヒーターの起動は、外気温を検出する第2の温度センサーによって行うのが好ましい。外気温センサーである第2の温度センサーの取付位置としては、風等の影響を受けやすい太陽熱温水器の近傍とする。
【0034】
さらに太陽熱温水器に湯が残っている場合には、その湯が給水管や給湯管内を流れ、例え外気温が0℃以下であっても、凍結することがないため、ポンプとヒーターの停止は、水温を検出する第3の温度センサーによって行うのが好ましい。水温センサーである第3の温度センサーの取付位置は、風呂や台所等で湯が使われる時に給湯管内を湯が流れるため、給水管内にする必要がある。
【0035】
【実施例】
以下、本発明の太陽熱給湯設備を実施例に基づいて詳細に説明する。
【0036】
(実施例1)
図1は、本発明の太陽熱給湯設備を示すシステム図である。尚、図2の太陽熱給湯設備と同じ構成部材については、同一番号を付与した。
【0037】
太陽熱温水器10としては、例えば特公平3−56387号に開示されているような内部を真空に保持した透明な長尺円筒状のガラス容器の内部に、外表面に選択吸収膜を被覆形成した円筒状の金属製貯湯容器を同軸状に配置してなる集熱貯湯管を複数本配列したものが使用でき、貯湯量を240リットル、有効集熱面積を2.73m2 とした。
【0038】
この太陽熱温水器10は、建物の屋根上に所定の傾斜角をもって設置され、給水管11が太陽熱温水器10の給水口10aに接続され、また給湯管12が太陽熱温水器10の出湯口10bに接続されている。給水管11には、太陽熱温水器10よりも低位の位置(地面近く)に減圧弁13が取り付けられ、減圧弁13の1次側には、ストレーナ20が設けられ、ストレーナ20の1次側の給水管11は、水道の元栓に接続されている。
【0039】
減圧弁13の2次側のすぐ近くには、給水管11と給湯管12を連通させる第1の連通管21が設けられ、この第1の連通管21と給湯管12の連結部には、ミキシングバルブ15が設けられている。第1の連通管21よりも太陽熱温水器10側で、且つ、太陽熱温水器10よりも低位の位置に給水管11と給湯管12を連通させる第2の連通管22が設けられ、第2の連通管22にはポンプ23と第1の温圧弁24とヒーター25が設けられている。さらに第1の温圧弁24には、排水用パイプ(図示せず)が連結され、湯を地面付近で排出できるようになっている。
【0040】
太陽熱温水器10の出湯口10bには、第2の温圧弁26が設けられていると共に、太陽熱温水器10内の湯温を検出してポンプ23の作動を制御する第1の温度センサー27が挿入されている。第2の温圧弁26にも、排水用パイプ(図示せず)が連結されており、湯を屋根上に沿って流すようになっている。
【0041】
太陽熱温水器10の近傍には、第2の温度センサー28が設けられ、給水管11内には、第3の温度センサー29が設けられており、これらの温度センサーによってポンプ23とヒーター25の作動を制御するようになっている。
【0042】
第1の連通管21と給水管11の連結部11aと、第2の連通管22と給水管11の連結部11bの間の給水管11には、減圧弁13から太陽熱温水器10への流れを許容し、逆方向の流れを防止する第1の逆止弁30が設けられ、また第2の連通管22には、給湯管12から給水管11への流れを許容し、逆方向の流れを防止する第2の逆止弁31が設けられ、ミキシングバルブ15の出口15a付近の給湯管12には、ミキシングバルブ15から混合水が出ていく方向の流れを許容し、逆方向の流れを防止する第3の逆止弁32が設けられている。また第3の逆止弁32の2次側の給湯管12には、排水管33が連結されており、この排水管33には、排水用バルブ34が取り付けられている。
【0043】
この太陽熱給湯設備の給水管11と給湯管12の長さは、各々約10mであり、断熱せずに架橋ポリエチレンパイプで配管してある。またミキシングバルブ15の設定温度は、給湯用途やガス・石油給湯機器の種類に応じて適宜決められるが、一般には30〜65℃に湯温が調整される。
【0044】
次にこの太陽熱給湯設備の使用例を説明する。
【0045】
まず減圧弁13の設定圧力を2.5kg/cm2 、第1の温圧弁24の設定圧力を3.0kg/cm2 、第2の温圧弁26の設定圧力を3.5kg/cm2 とした。またポンプ23を制御する第1の温度センサー27の設定温度を、80℃でポンプ23を起動し、75℃でポンプ23を停止するようにし、第2の温度センサー28の設定温度を4℃でポンプ23とヒーター25を起動するようにし、第3の温度センサー29の設定温度を7℃でポンプ23とヒーター25を停止するようにした。尚、ヒーター25としては、100V、1kWのものを使用した。さらに第1の温圧弁24の設定温度を90℃、第2の温圧弁26の設定温度を95℃とした。
【0046】
こうして夏期の晴天日の朝、約30℃の水道水を減圧弁13から給水管11を通して太陽熱温水器10内に供給し、湯を全く使わずに放置すると、午後には、太陽熱温水器10内の湯が80℃になり、第1の温度センサー27が80℃を検出し、ポンプ23が作動した。
【0047】
ポンプ23が作動した場合の湯の循環経路は、ポンプ23→第2の連通管22→給水管11→太陽熱温水器10→給湯管12→第2の連通管22→ポンプ23であり、循環流量は、約8リットル/分とした。そして夕方、太陽熱温水器10内の湯温が下がり、75℃になると、再び第1の温度センサー27が75℃を検出し、ポンプ23が停止した。
【0048】
尚、ポンプ運転中の太陽熱温水器10内の湯の最高到達温度は、約81℃であり、またこの日の日射量は、約4800kcal/m2 ・dayであった。
【0049】
そしてこのまま夜間も湯を使わずに放置すると、自然冷却され、翌朝の湯温は約63℃となった。さらにこのまま湯を使わずに放置すると、正午前に太陽熱温水器10内の湯温が80℃となり、第1の温度センサー27が80℃を検出し、ポンプ23が作動した。夕方、太陽熱温水器10内の湯温が下がり、75℃になると、再び第1の温度センサー27が検出してポンプ23が停止した。
【0050】
尚、ポンプ運転中の太陽熱温水器10内の湯の最高到達温度は、約86℃であり、この日の日射量は約5200kcal/m2 ・dayであった。
【0051】
(実施例2)
給水管11と給湯管12の長さを各々5mとし、それらの周囲に20mmの厚みの断熱材を全長に亙って巻き付けた以外は、全て実施例1と同じ構成を有する太陽熱給湯設備を作製した。
【0052】
そしてポンプ23を制御する第1の温度センサー27の設定温度を85℃で起動、80℃で停止するように変更し、ポンプ循環したときの冷却能力を小さくし、しかも晴天日の朝に70℃の湯を太陽熱温水器10に供給して強制的に第1の温圧弁24が作動する状況を作り出した。
【0053】
このような条件下で、日中、湯を全く使わずに放置すると、約2時間後に太陽熱温水器10内の湯温が85℃になり、第1の温度センサー27が検出してポンプ23が作動したが、循環中にも徐々に湯温が上昇して90℃になり、第1の温圧弁24が作動し、排水用パイプを通して湯が排出された。そしてその排出量と同量の水が給水管11から太陽熱温水器10内に入り、湯温を低下させた。この日の太陽熱温水器10内の湯の最高到達温度は、約90℃であり、日射量は約5060kcal/m2 ・dayであった。
【0054】
(実施例3)
実施例1と同じ構成を有する太陽熱給湯設備で、停電やポンプ23の故障を想定してポンプ23の電源を切り、日中、全く湯を使わずに放置した。すると太陽熱温水器10内の湯温が80℃に達しても、ポンプ23は作動せず、湯温がそのまま上昇し続けた。
【0055】
ポンプ23で湯を循環しなければ、第1の温圧弁24が太陽熱温水器10内の湯温を検出することができないため、湯温が第1の温圧弁24の設定温度である90℃になっても、第1の温圧弁24は作動しなかった。
【0056】
そして太陽熱温水器10内の湯温が95℃になった時、第2の温圧弁26が作動し、排水用パイプを通して湯が屋根上に沿って排出され、その排出量と同量の水が給水管11から太陽熱温水器10内に入り、湯温を低下させた。この日の太陽熱温水器10内の湯の最高到達温度は約95℃であり、日射量は約4910kcal/m2 ・dayであった。
【0057】
(実施例4)
実施例1と同じ構成を有する太陽熱給湯設備を室温が−20℃の冷凍庫(暗室)に設置して、太陽熱温水器10と全ての配管部を満水にすることによって、太陽熱温水器10内に残り湯がなく、集熱もしない苛酷な状況を作り出した。
【0058】
但し、太陽熱温水器10は、冷凍庫内の高さ約3mの2階床面に傾斜角30°で設置し、第1の連通管21を1階床面から約50cmの高さに設置し、第2の連通管22を1階の床か面から約1mの高さに設置した。また給水管11と給湯管12の全長にわたって20mm厚の断熱材を巻き付け、第3の温度センサー29の近くの水温を測定するため、熱電対を給水管11内に挿入した。
【0059】
このような条件下で太陽熱給湯設備を使用すると、まず第2の温度センサー28が冷凍庫の室温を検出し、直ちにポンプ23とヒーター25が起動し、ポンプ23によってヒーター25で温められた湯が循環し、20時間後の給水管11内の水温を測定したところ、約7℃であった。
【0060】
【発明の効果】
以上のように本発明の太陽熱給湯設備を使用すると、太陽熱温水器を1kg/cm2 以上の圧力で使い、夏期の晴天日2日間以上にわたって湯を使わずに放置しても、ポンプが作動して湯を循環させることによって湯温の上昇を抑えたり、あるいは第1の温圧弁が作動して、高温の湯を外部に排出することができる。
【0061】
しかも万一、停電時やポンプの故障時等の異常事態が発生しても、第2の温圧弁が作動して高温の湯を外部に排出するため、太陽熱温水器内の湯温は、100℃以上にはならない。
【0062】
さらに給水管や給湯管の周囲にヒーターバンドを巻き付けなくても、冬期における凍結を防止することが可能であり、工事の手間を省くことができる。
【図面の簡単な説明】
【図1】本発明の太陽熱給湯設備を示すシステム図である。
【図2】従来の太陽熱給湯設備を示すシステム図である。
【符号の説明】
10 太陽熱温水器
11 給水管
12 給湯管
13 減圧弁
15 ミキシングバルブ
20 ストレーナ
21 第1の連通管
22 第2の連通管
23 ポンプ
24 第1の温圧弁
25 ヒーター
26 第2の温圧弁
27 第1の温度センサー
28 第2の温度センサー
29 第3の温度センサー
30 第1の逆止弁
31 第2の逆止弁
32 第3の逆止弁
34 排水用バルブ[0001]
[Industrial application fields]
The present invention relates to a solar hot water supply facility that supplies hot water using solar heat.
[0002]
[Prior art]
FIG. 2 is a system diagram showing an example of a conventional solar hot water supply facility.
[0003]
In the figure, a water supply pipe 11 for supplying water to the solar water heater 10 is connected to a water supply port 10a of the solar water heater 10, and a hot water supply pipe 12 for taking out hot water from the solar water heater 10 is a solar water heater. 10 hot water inlets 10b. A pressure reducing valve 13 is attached to the water supply pipe 11 at a position lower than the solar water heater 10.
[0004]
The secondary side of the pressure reducing valve 13 is provided with a communication pipe 14 that connects the water supply pipe 11 and the hot water supply pipe 12 at a position lower than the solar water heater 10. A mixing valve (a hot and cold water mixing tap) 15 is provided. In the water supply pipe 11 between the communication pipe 14 and the connecting portion 11a of the water supply pipe 11 and the solar water heater 10, the flow from the pressure reducing valve 13 to the solar water heater 10 is allowed and the reverse flow is prevented. 1 check valve 16 is provided. The communication pipe 14 is provided with a second check valve 17 that allows a flow from the water supply pipe 11 to the hot water supply pipe 12 and prevents a reverse flow. The outlet 15a of the mixing valve 15 is provided with a third check valve 18 that allows a flow in the direction in which the mixed water exits and prevents a reverse flow. Further, a pressure relief valve 19 is attached to the outlet 10b of the solar water heater 10, and a drain pipe (not shown) is connected to the pressure relief valve 19 so that the hot water can flow along the roof surface. It is supposed to flow.
[0005]
The set pressure of the pressure relief valve 19 is set higher than the set pressure of the pressure reducing valve 13. For example, the set pressure of the pressure relief valve 19 is 0.95 kg / cm 2 and the set pressure of the pressure reducing valve 13 is 0.8 kg / cm 2. 2
[0006]
The water supplied to such a solar water heater 10 expands when the temperature rises by being heated by solar heat, and the water pressure in the solar water heater 10 rises, but the water pressure is the outlet of the solar water heater 10. When the set pressure of the pressure relief valve 19 provided in 10b is reached, hot water is discharged from the pressure relief valve 19 through the drain pipe, and the pressure in the solar water heater 10 is reduced. That is, the pressure in the solar water heater 10 does not exceed the set pressure of the pressure relief valve 19.
[0007]
In such a solar hot water supply facility, tap water passes through the water supply pipe 11 from the pressure reducing valve 13 and is supplied to the solar water heater 10 and then filled with the hot water supply pipe 12 and the communication pipe 14. In this state, if the water is pumped for a certain period of time during the day, the water in the solar water heater 10 is heated by solar heat to become hot water, and from the hot water supply pipe 12, the gate 15b, the outlet 15a of the mixing valve 15, the third reverse It is taken out through the stop valve 18.
[0008]
At this time, the same amount of water as the hot water coming out of the solar water heater 10 is supplied from the water supply pipe 11 to the solar water heater 10. Further, the water that has passed through the pressure reducing valve 13 also enters the water port 15c of the mixing valve 15, and hot water and water are mixed in the mixing valve 15 so that hot water having a set temperature exits from the outlet 15a. The hot water taken out in this way is used directly for hot water supply, or when the hot water in the solar water heater 10 is low due to rain, snow, etc., it is replenished with gas or oil hot water supply equipment and then used for hot water supply.
[0009]
[Problems to be solved by the invention]
Conventionally, solar water heaters have been used at a pressure of 1 kg / cm 2 or less. For example, in the case of the above-described solar water heater, the pressure in the solar water heater is 0. 0 which is the set pressure of the pressure relief valve. It does not exceed 95 kg / cm 2 .
[0010]
However, in recent years, direct-pressure gas / oil hot water supply equipment has become widespread, and the use of hot water on the second floor or the simultaneous use of hot water at multiple locations is increasing. With this, it is sufficient if the hot water supply pressure of solar water heaters is not increased. Has stopped working.
[0011]
That is, if a solar water heater with a pressure of 1 kg / cm 2 or less is connected to a direct pressure gas / petroleum hot water supply device, there will be a problem that hot water will be discharged in the kitchen or hot water from the shower will be deteriorated.
[0012]
Under such circumstances, it is desired to use a solar water heater at a pressure of 1 kg / cm 2 or more. However, when using a solar water heater at such a high pressure, the hot water temperature may exceed 100 ° C., As a result, there arises a problem that the constituent members are likely to be deteriorated.
[0013]
For example, when the set pressure of the pressure reducing valve 13 of the solar hot water supply equipment of FIG. 2 is 2.5 kg / cm 2 and the set pressure of the pressure relief valve 19 is 3 kg / cm 2 , the hot water storage amount is 240 liters and the effective heat collecting area is 2.73 m 2 . When using a vacuum glass tube type solar water heater and supplying tap water of about 30 ° C. into the solar water heater 10 on a sunny day in the summer, and leaving it without using hot water all day, the solar water heater 10 The maximum temperature of the inner hot water is about 84 ° C. If you carry it over the next day without using hot water as it is, the hot water in the next morning will be about 60 ° C due to natural cooling at night, but the next day will be sunny, and if you do not use hot water at all during the day, The maximum reached temperature of hot water in 10 is about 113 ° C. Similarly, if the third day is left without using any hot water, the maximum hot water temperature in the solar water heater 10 reaches about 130 ° C.
[0014]
Thus, if the performance of the solar water heater 10 is good, if the hot water is not used at all when the sunny day continues, the maximum reached temperature of the hot water in the solar water heater 10 is saturated with the set pressure of the pressure relief valve 19. May rise to a temperature that results in vapor pressure.
[0015]
In addition, when the outside air temperature becomes 0 ° C. or lower in winter, water in the water supply pipe 11 and the hot water supply pipe 12 may freeze, so a long heater band with a thermostat is wound over the entire length of the water supply pipe 11 and the hot water supply pipe 12. Further, a heat insulating material is wound on the heater, and when the outside air temperature becomes equal to or lower than the set temperature of the thermostat, the heater is energized to warm the water in the water supply pipe 11 and the hot water supply pipe 12 to prevent freezing.
[0016]
However, in general, the lengths of the water supply pipe 11 and the hot water supply pipe 12 are about 10 m, and there is a problem that it takes a lot of labor to install the heater band.
[0017]
The present invention has been made in view of the above circumstances. Even when the pressure of the solar water heater is 1 kg / cm 2 or more, the hot water temperature in the solar water heater does not exceed 100 ° C., and the water pipe or hot water supply is used. It is an object of the present invention to provide a solar hot water supply facility that can prevent freezing of water in the winter without winding a long heater band with a thermostat around the pipe.
[0018]
[Means for Solving the Problems]
The solar water heater of the present invention includes a solar water heater that heats water using solar heat, a water supply pipe that is connected to a water heater inlet of the solar water heater, and supplies water to the solar water heater, and a hot water outlet of the solar water heater. A hot water supply facility comprising a hot water supply pipe for connecting and extracting hot water from the solar water heater, wherein a pressure reducing valve is provided in the water supply pipe at a position lower than the solar water heater, and on the secondary side of the pressure reducing valve In addition, a first communication pipe that connects the water supply pipe and the hot water supply pipe is provided at a position lower than the solar water heater, a mixing valve is provided at a connection portion between the first communication pipe and the hot water supply pipe, and the first communication pipe is provided. A second communication pipe that connects the water supply pipe and the hot water supply pipe to the solar water heater side and at a position lower than the solar water heater, and a pump, a first temperature-pressure valve, and a heater are provided in the second communication pipe. A solar water heater with a second hot pressure valve at the outlet of the solar water heater A first temperature sensor for detecting the hot water temperature of the water heater to control the pump operation, a second temperature sensor for detecting the outside air temperature in the vicinity of the solar water heater, and a third temperature sensor for detecting the water temperature in the water supply pipe. The temperature sensor is provided so that the set pressure of the pressure reducing valve is lower than the set pressure of the first temperature pressure valve and the second temperature pressure valve, and the set pressure of the first temperature pressure valve is set to that of the second temperature pressure valve. Lower than the set pressure, lower the set temperature of the first temperature sensor for starting the pump lower than the set temperature of the first hot pressure valve and the second hot pressure valve, and set the set temperature of the first hot pressure valve The temperature is set lower than the set temperature of the second temperature and pressure valve, and the operation of the pump and the heater is controlled by the second temperature sensor and the third temperature sensor.
[0019]
In addition, the present invention allows the flow from the pressure reducing valve to the solar water heater in the water supply pipe between the first communication pipe and the water supply pipe and the connection between the second communication pipe and the water supply pipe. A first check valve that prevents flow in the direction is provided, and a second check valve that allows flow from the hot water supply pipe to the water supply pipe in the second communication pipe and prevents flow in the reverse direction is provided. A third check valve is provided which allows a flow in the direction in which the mixed water goes out to the hot water supply pipe near the outlet of the mixing valve and prevents the flow in the reverse direction.
[0020]
Furthermore, the present invention is characterized in that a drain valve is provided on the secondary side of the third check valve, and a strainer is provided on the water supply pipe on the primary side of the pressure reducing valve.
[0021]
Further, the present invention is characterized in that the set temperature of the first temperature sensor for starting the pump is 70 ° C. or higher and 90 ° C. or lower, the pump and heater are started by the second temperature sensor, and the third temperature is set. The sensor is characterized by stopping the pump and the heater.
[0022]
[Action]
In the solar water heater of the present invention, even if the solar water heater is used at a pressure of 1 kg / cm 2 or more, it is left for 2 days or more on a sunny day in summer without using any hot water, and the hot water in the solar water heater is When the temperature of the water rises and reaches the temperature at which the pump starts, the pump operates and the hot water in the solar water heater is cooled while circulating from the hot water supply pipe to the water supply pipe through the second communication pipe. .
[0023]
However, hot water circulates under solar water heater installation conditions, for example, when the length of the water supply pipe or hot water supply pipe is short, or when the insulation capacity of the water supply pipe or hot water supply pipe is wrapped with a thick insulation material and the cooling capacity is low. However, the hot water temperature in the solar water heater may gradually rise, but when the hot water temperature reaches the set temperature of the first hot pressure valve, hot water is discharged from the first hot pressure valve. The same amount of water is newly supplied from the pressure reducing valve through the water supply pipe to the solar water heater, and mixed with hot water to lower the hot water temperature. The first temperature and pressure valve is installed at a position lower than the solar water heater, and usually a drain pipe is connected to the first water pressure valve so that hot water can be safely discharged near the ground.
[0024]
In the unlikely event that the circulation function does not work due to power failure or pump failure, the hot water temperature in the solar water heater will rise to the set temperature of the second temperature and pressure valve provided at the outlet of the solar water heater. Even at this time, hot water is discharged from the second hot pressure valve, and the same amount of water is newly supplied from the pressure reducing valve through the water supply pipe to the solar water heater and mixed with hot water to lower the hot water temperature. It will be. In other words, in the solar hot water supply equipment of the present invention, the first temperature / pressure valve is normally operated to maintain the temperature of the hot water below the set temperature, but the second temperature / pressure valve is provided in the event of a safety measure. It has been.
[0025]
Also, when the outside air temperature is low in winter, the operation of the pump and heater is controlled by the second temperature sensor and the third temperature sensor, and the hot water heated by the heater is circulated, so that the water in the water supply pipe and the hot water supply pipe is circulated. Freezing can be prevented. When the pump is activated, the hot water circulation path is solar water heater → hot water supply pipe → second connecting pipe → water supply pipe → solar water heater. Hot water heated by the heater first flows into the water supply pipe. The effect is obtained immediately.
[0026]
The hot water heated by the solar water heater flows into the hot water supply pipe. However, when all the hot water of the solar water heater is used up, the solar water heater is filled with water, so water will also flow into the hot water supply pipe, but this water will not freeze immediately, Hot water heated by the heater before freezing reaches the hot water supply pipe through the solar water heater.
[0027]
In the solar hot water supply facility of the present invention, the flow from the pressure reducing valve to the solar water heater is allowed in the water supply pipe between the first communication pipe and the water supply pipe connection and the second communication pipe and the water supply pipe connection. And a first check valve for preventing the flow in the reverse direction, the second check pipe for allowing the second communication pipe to flow from the hot water supply pipe to the water supply pipe and preventing the flow in the reverse direction. If a third check valve is installed to allow the flow of mixed water to flow out to the hot water supply pipe near the outlet of the mixing valve and prevent the flow in the reverse direction, When a situation occurs, it is possible to prevent backflow of the water supply to the main side.
[0028]
If a drainage valve is provided on the secondary side of the third check valve, the hot water in the solar water heater is manually drained from the drainage valve, or the temperature of the drained hot water is measured, This is preferable because the set temperature can be confirmed.
[0029]
Furthermore, it is preferable to provide a strainer in the water supply pipe on the primary side of the pressure reducing valve because foreign matters such as dust in tap water can be removed and foreign matter biting accidents such as a pump and a temperature / pressure valve can be prevented.
[0030]
In addition, the 1st temperature pressure valve and the 2nd temperature pressure valve of the solar water heating equipment of this invention operate | move as a safety valve of temperature and pressure, and it is also possible to use a temperature control valve and a pressure relief valve together. .
[0031]
Further, in the solar hot water supply equipment of the present invention, if the set temperature of the temperature sensor for starting the pump is too low, the amount of heat obtained by the folding solar water heater is wasted, and the set temperature of the temperature sensor is too high. And the set temperature of the first temperature and pressure valve are eliminated, it is desirable that the temperature be 70 ° C. or higher and 90 ° C. or lower.
[0032]
Further, in the solar hot water supply facility of the present invention, when a plurality of second temperature / pressure valves are installed, even if one temperature / pressure valve breaks down, the other temperature / pressure valves work normally, which increases safety.
[0033]
Also, the main cause of freezing of water in the water supply pipe or hot water supply pipe is that the outside air temperature is low. Therefore, it is preferable to start the pump and the heater with a second temperature sensor that detects the outside air temperature. The mounting position of the second temperature sensor, which is an outside air temperature sensor, is in the vicinity of a solar water heater that is easily affected by wind or the like.
[0034]
In addition, when hot water remains in the solar water heater, the hot water flows through the water supply pipe and hot water supply pipe, and even if the outside air temperature is 0 ° C or less, it will not freeze. It is preferable to use a third temperature sensor for detecting the water temperature. The mounting position of the third temperature sensor, which is a water temperature sensor, needs to be in the water supply pipe because hot water flows in the hot water supply pipe when hot water is used in a bath or kitchen.
[0035]
【Example】
Hereinafter, the solar hot water supply equipment of the present invention will be described in detail based on examples.
[0036]
(Example 1)
FIG. 1 is a system diagram showing a solar hot water supply facility of the present invention. In addition, the same number was given about the same structural member as the solar hot water supply equipment of FIG.
[0037]
As the solar water heater 10, for example, a selective absorption film is formed on the outer surface of a transparent long cylindrical glass container whose interior is kept in vacuum as disclosed in Japanese Patent Publication No. 3-56387. A plurality of heat collecting hot water storage tubes in which cylindrical metal hot water storage containers are coaxially arranged can be used, the amount of hot water stored is 240 liters, and the effective heat collecting area is 2.73 m 2 .
[0038]
The solar water heater 10 is installed on the roof of a building with a predetermined inclination angle, the water supply pipe 11 is connected to the water supply port 10a of the solar water heater 10, and the hot water pipe 12 is connected to the outlet 10b of the solar water heater 10. It is connected. A pressure reducing valve 13 is attached to the water supply pipe 11 at a position lower than the solar water heater 10 (near the ground), and a strainer 20 is provided on the primary side of the pressure reducing valve 13. The water supply pipe 11 is connected to a water tap.
[0039]
A first communication pipe 21 that connects the water supply pipe 11 and the hot water supply pipe 12 is provided in the immediate vicinity of the secondary side of the pressure reducing valve 13, and a connecting portion between the first communication pipe 21 and the hot water supply pipe 12 includes: A mixing valve 15 is provided. A second communication pipe 22 that connects the water supply pipe 11 and the hot water supply pipe 12 to the solar water heater 10 side of the first communication pipe 21 and at a position lower than the solar water heater 10 is provided. The communication pipe 22 is provided with a pump 23, a first warm pressure valve 24, and a heater 25. Further, a drain pipe (not shown) is connected to the first temperature / pressure valve 24 so that hot water can be discharged near the ground.
[0040]
The hot water outlet 10 b of the solar water heater 10 is provided with a second temperature pressure valve 26, and a first temperature sensor 27 that detects the hot water temperature in the solar water heater 10 and controls the operation of the pump 23. Has been inserted. A drain pipe (not shown) is also connected to the second temperature / pressure valve 26 so that hot water flows along the roof.
[0041]
A second temperature sensor 28 is provided in the vicinity of the solar water heater 10, and a third temperature sensor 29 is provided in the water supply pipe 11. The pump 23 and the heater 25 are operated by these temperature sensors. Is to control.
[0042]
A flow from the pressure reducing valve 13 to the solar water heater 10 is provided in the water supply pipe 11 between the first communication pipe 21 and the connection part 11 a of the water supply pipe 11 and the connection part 11 b of the second communication pipe 22 and the water supply pipe 11. The first check valve 30 is provided to prevent the reverse flow, and the second communication pipe 22 is allowed to flow from the hot water supply pipe 12 to the water supply pipe 11 and flows in the reverse direction. A second check valve 31 is provided to prevent water flow, and the hot water pipe 12 near the outlet 15a of the mixing valve 15 is allowed to flow in the direction in which the mixed water exits from the mixing valve 15 and flows in the reverse direction. A third check valve 32 is provided for prevention. A drain pipe 33 is connected to the hot water supply pipe 12 on the secondary side of the third check valve 32, and a drain valve 34 is attached to the drain pipe 33.
[0043]
The lengths of the water supply pipe 11 and the hot water supply pipe 12 of this solar hot water supply facility are about 10 m, respectively, and are piped with a crosslinked polyethylene pipe without being insulated. The set temperature of the mixing valve 15 is appropriately determined according to the hot water supply application and the type of gas / petroleum hot water supply equipment, but the hot water temperature is generally adjusted to 30 to 65 ° C.
[0044]
Next, the usage example of this solar hot water supply equipment is demonstrated.
[0045]
First, the set pressure of the pressure reducing valve 13 is 2.5 kg / cm 2 , the set pressure of the first warm pressure valve 24 is 3.0 kg / cm 2 , and the set pressure of the second warm pressure valve 26 is 3.5 kg / cm 2 . . Further, the set temperature of the first temperature sensor 27 for controlling the pump 23 is started at 80 ° C., the pump 23 is stopped at 75 ° C., and the set temperature of the second temperature sensor 28 is set at 4 ° C. The pump 23 and the heater 25 are started, and the pump 23 and the heater 25 are stopped when the set temperature of the third temperature sensor 29 is 7 ° C. In addition, as the heater 25, the thing of 100V and 1kW was used. Further, the set temperature of the first temperature / pressure valve 24 was 90 ° C., and the set temperature of the second temperature / pressure valve 26 was 95 ° C.
[0046]
Thus, in the morning on a sunny day in summer, tap water of about 30 ° C. is supplied from the pressure reducing valve 13 through the water supply pipe 11 into the solar water heater 10 and left without using any hot water. The hot water reached 80 ° C., the first temperature sensor 27 detected 80 ° C., and the pump 23 was activated.
[0047]
When the pump 23 is operated, the hot water circulation path is as follows: pump 23 → second communication pipe 22 → water supply pipe 11 → solar water heater 10 → hot water supply pipe 12 → second communication pipe 22 → pump 23. Was about 8 liters / minute. In the evening, when the hot water temperature in the solar water heater 10 dropped to 75 ° C., the first temperature sensor 27 again detected 75 ° C., and the pump 23 stopped.
[0048]
The maximum temperature of hot water in the solar water heater 10 during pump operation was about 81 ° C., and the amount of solar radiation on this day was about 4800 kcal / m 2 · day.
[0049]
And if it was left without using hot water at night, it was naturally cooled, and the hot water temperature the next morning was about 63 ° C. Furthermore, when left without using hot water, the hot water temperature in the solar water heater 10 reached 80 ° C. at noon, the first temperature sensor 27 detected 80 ° C., and the pump 23 was activated. In the evening, when the hot water temperature in the solar water heater 10 dropped to 75 ° C., the first temperature sensor 27 detected again and the pump 23 stopped.
[0050]
The maximum temperature of hot water in the solar water heater 10 during the pump operation was about 86 ° C., and the amount of solar radiation on this day was about 5200 kcal / m 2 · day.
[0051]
(Example 2)
A solar water heater having the same configuration as that of Example 1 was prepared except that the length of each of the water supply pipe 11 and the hot water supply pipe 12 was 5 m, and a heat insulating material having a thickness of 20 mm was wrapped around the entire length. did.
[0052]
And the set temperature of the first temperature sensor 27 for controlling the pump 23 is changed to start at 85 ° C. and to stop at 80 ° C., the cooling capacity when the pump circulates is reduced, and 70 ° C. on a sunny day morning. No hot water was supplied to the solar water heater 10 to create a situation where the first hot pressure valve 24 was forced to operate.
[0053]
Under such conditions, if left unattended during the day without using any hot water, the hot water temperature in the solar water heater 10 reaches 85 ° C. after about 2 hours, and the first temperature sensor 27 detects that the pump 23 is turned on. Although it operated, the hot water temperature gradually increased to 90 ° C. during the circulation, the first hot pressure valve 24 was operated, and the hot water was discharged through the drain pipe. Then, the same amount of water entered the solar water heater 10 from the water supply pipe 11 and lowered the hot water temperature. The maximum temperature of hot water in the solar water heater 10 on this day was about 90 ° C., and the amount of solar radiation was about 5060 kcal / m 2 · day.
[0054]
(Example 3)
In the solar hot water supply facility having the same configuration as in Example 1, the power supply of the pump 23 was turned off assuming a power failure or a failure of the pump 23 and left without using any hot water during the day. Then, even if the hot water temperature in the solar water heater 10 reached 80 ° C., the pump 23 did not operate, and the hot water temperature continued to rise as it was.
[0055]
If the hot water is not circulated by the pump 23, the first hot pressure valve 24 cannot detect the hot water temperature in the solar water heater 10, so the hot water temperature reaches 90 ° C., which is the set temperature of the first hot pressure valve 24. Even then, the first warm-pressure valve 24 did not operate.
[0056]
When the hot water temperature in the solar water heater 10 reaches 95 ° C., the second hot pressure valve 26 is activated, hot water is discharged along the roof through the drain pipe, and the same amount of water is discharged. The hot water temperature was lowered by entering the solar water heater 10 from the water supply pipe 11. The maximum temperature of hot water in the solar water heater 10 on this day was about 95 ° C., and the amount of solar radiation was about 4910 kcal / m 2 · day.
[0057]
(Example 4)
The solar water heater having the same configuration as that of the first embodiment is installed in a freezer (dark room) having a room temperature of −20 ° C., and the solar water heater 10 and all the pipes are filled with water, thereby remaining in the solar water heater 10. It created a harsh situation with no hot water and no heat collection.
[0058]
However, the solar water heater 10 is installed at an inclination angle of 30 ° on the second floor with a height of about 3 m in the freezer, and the first communication pipe 21 is installed at a height of about 50 cm from the first floor. The second communication pipe 22 was installed at a height of about 1 m from the floor or surface of the first floor. In addition, a 20 mm thick heat insulating material was wound over the entire length of the water supply pipe 11 and the hot water supply pipe 12, and a thermocouple was inserted into the water supply pipe 11 in order to measure the water temperature near the third temperature sensor 29.
[0059]
When the solar hot water supply equipment is used under such conditions, first, the second temperature sensor 28 detects the room temperature of the freezer, and the pump 23 and the heater 25 are activated immediately, and hot water heated by the heater 25 by the pump 23 circulates. When the water temperature in the water supply pipe 11 after 20 hours was measured, it was about 7 ° C.
[0060]
【The invention's effect】
As described above, when the solar water heater of the present invention is used, the pump operates even when the solar water heater is used at a pressure of 1 kg / cm 2 or more and left without using hot water for two days or more on a sunny day in summer. By circulating the hot water, the rise of the hot water temperature can be suppressed, or the first hot pressure valve can be operated to discharge the hot water to the outside.
[0061]
In addition, even if an abnormal situation such as a power failure or a pump failure occurs, the second hot pressure valve operates and discharges hot hot water to the outside. Therefore, the hot water temperature in the solar water heater is 100 Do not exceed ℃.
[0062]
Furthermore, it is possible to prevent freezing in the winter without having to wrap a heater band around the water supply pipe or hot water supply pipe, and the work of construction can be saved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a solar hot water supply facility of the present invention.
FIG. 2 is a system diagram showing a conventional solar hot water supply facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Solar water heater 11 Water supply pipe 12 Hot water supply pipe 13 Pressure reducing valve 15 Mixing valve 20 Strainer 21 1st communication pipe 22 2nd communication pipe 23 Pump 24 1st hot pressure valve 25 Heater 26 2nd hot pressure valve 27 1st Temperature sensor 28 Second temperature sensor 29 Third temperature sensor 30 First check valve 31 Second check valve 32 Third check valve 34 Drain valve