JP3679728B2 - Direction correction device - Google Patents

Direction correction device Download PDF

Info

Publication number
JP3679728B2
JP3679728B2 JP2001151470A JP2001151470A JP3679728B2 JP 3679728 B2 JP3679728 B2 JP 3679728B2 JP 2001151470 A JP2001151470 A JP 2001151470A JP 2001151470 A JP2001151470 A JP 2001151470A JP 3679728 B2 JP3679728 B2 JP 3679728B2
Authority
JP
Japan
Prior art keywords
hydraulic
hydraulic jack
outer cylinder
cylindrical portion
spherical seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151470A
Other languages
Japanese (ja)
Other versions
JP2002349184A (en
Inventor
裕嗣 千品
雄一 三浦
裕治 佐久間
実 田中
敏彦 高梨
英則 日野
昌志 宮武
恭一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001151470A priority Critical patent/JP3679728B2/en
Publication of JP2002349184A publication Critical patent/JP2002349184A/en
Application granted granted Critical
Publication of JP3679728B2 publication Critical patent/JP3679728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に横穴、縦穴等のトンネルを構築するために、先端装置で地中を推進する際においてその推進方向を修正する方向修正装置に関するものである。
【0002】
【従来の技術】
管を地中に埋設するための工法としては、(1)立坑に設置した元押装置により先端装置をただ単に押圧し、土砂を掘削することなく地中に圧入させる静的圧入工法、(2)先端装置としての掘削機で土砂を掘削すると共に掘削した土砂を排土しながら地中で掘削機を推進させる掘削工法、(3)特開昭60−148997号公報に示す工法で、本出願の図11及び図12に示すように、加振機aを作動させて、先端装置としての振動発生装置bの前部cを加振すると共に、該振動発生装置b周囲の土砂dに振動を与えて流動化させ、立坑eに設置した元押装置fにより押圧することにより土砂を掘削することなく振動発生装置bを圧入するようにした動的圧入工法がある。
【0003】
前記各工法において地中に埋設物等の障害物がある場合には、先端装置の推進方向を修正する必要があり、該先端装置の推進方向を修正する装置としては、特開昭58−222291号公報に示す装置がある。この特開昭58−222291号公報に示す装置は、本出願の図13に示すように、倍力機構として装置の推進方向と平行に伸長する位置決めジャッキgにより主動楔部材hを介して受動楔部材iの楔面を押し、受動楔部材iの前方の穿孔ヘッドj、推進ジャッキkを球軸受mを介して傾斜させ、装置の推進方向を変更して障害物を避けるものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の如き障害物を避けるよう先端装置の推進方向を修正する装置は、主動楔部材hを介して受動楔部材iの楔面を押す位置決めジャッキgのストロークが推進方向に長くなるため、装置の推進方向の全長が長くなり、出発点となる立坑への搬入が困難になると共に、装置の方向制御を行う制御性が悪いという問題があった。
【0005】
こうした問題を解決すべく、本発明者等は、以下に示すような方向修正装置を発明し、既に出願している。
【0006】
図5〜図10は本発明者等が発明した方向修正装置の一例である。
【0007】
前記方向修正装置が適用される管埋設装置は図10に示され、図中、1は先端装置である。
【0008】
先端装置1は、推進方向D1前方側に位置する前部4と、先端装置1の前部4の推進方向D1後方に接続されると共に、推進中に推進方向D1を修正させるための屈曲部5を備えた方向修正装置6を備えており、7は先端装置1において方向修正装置6の推進方向D1後方に配置された挿入管、8は立坑9内に配設されて押圧板10を介し挿入管7の後端を押圧するようにした液圧ジャッキ等の元押装置である。
【0009】
而して、上記管埋設装置においては、元押装置8を伸長させて押圧板10を介し挿入管7を地中に圧入し、挿入管7により先端装置1を押圧することにより先端装置1を推進させるようにしている。
【0010】
又、管埋設装置は、方向修正装置6の屈曲部5により先端装置1の前部4を傾動させ、更に元押装置8を伸長させることにより押圧板10及び挿入管7を介して先端装置1を押圧し、先端装置1の推進方向D1を変更しつつ推進させるようにしている。
【0011】
このような方向修正装置6の詳細は図5〜図8に示されており、方向修正装置6は、屈曲部5を備えた方向修正部11を、前段部の前段円筒部12と後段部の後段円筒部13とにより構成している。
【0012】
前段円筒部12は、先端装置1の前部4に着脱可能な接続部14を介して前方壁15を配し、該前方壁15の推進方向D1後方に、先端装置1の前部4と略同径に形成される第一の外筒16と、該第一の外筒16と同心に形成され且つ推進方向D1後方へ張り出す円筒状の内筒17とを設けてなる構成を有しており、前記内筒17における前方壁15の近傍には、内筒17の軸線上に中心を有する凸状球面座18を形成してあり、該凸状球面座18の表面には、カーボン等の固体潤滑被膜19を形成してある。
【0013】
前記前段円筒部12の推進方向D1後方に位置する後段円筒部13は、前段円筒部12の第一の外筒16と略同径の第二の外筒20を備え、該第二の外筒20の先端には、前段円筒部12の第一の外筒16と内筒17との間に位置し且つ凸状球面座18を推進方向D1の投影面積で広く受ける凹状球面座21を形成しており、前記凸状球面座18に接する凹状球面座21の内周面には凸状球面座18と同様なカーボン等の固体潤滑被膜22を形成し、凹状球面座21の外周面には複数の環状溝23(図5では二本)を設け、該環状溝23には、前段円筒部12の第一の外筒16と後段円筒部13の凹状球面座21との間の隙間から内部に土砂が流入することを防ぐためのU字状のパッキン24を嵌入してある。
【0014】
又、前記凹状球面座21の外周面で環状溝23の推進方向D1後方には、前段円筒部12が傾動した際に前段円筒部12の第一の外筒16における推進方向D1後端が凹状球面座21の外周面に接触しないよう所定の大きさの溝25を形成してある。
【0015】
前記後段円筒部13の第二の外筒20における凹状球面座21の推進方向D1後方には、図5及び図7に示す如く、内筒17における凸状球面座18の回動中心から推進方向D1後方へ最も離れた位置、即ち内筒17の推進方向D1後端に位置するよう四本の液圧ジャッキ26を配設してあり、該四本の液圧ジャッキ26は、内筒17を周方向へ等間隔に囲むと共に、内筒17を径方向に挟み込む二本を一対として構成されている。
【0016】
ここで、内筒17の外周面と液圧ジャッキ26との構造を説明すると、図7に示す如く、内筒17の外周面には接線方向へ延在する複数の平面(図7では四個所)を形成して滑り軸受け板27を配しており、該滑り軸受け板27には、球面座28を備えて首を振れるようにした液圧ジャッキ26の先端部を面接触させるようにしてある。
【0017】
前記後段円筒部13の第二の外筒20における複数の液圧ジャッキ26のうち二本の液圧ジャッキ26の間には、内筒17の径方向に向かう二本のストローク検出器29を内筒17の周方向へ位相をずらして略直角に配置し、残りの二本の液圧ジャッキ26の間には、ストローク検出器29と同様に内筒17の径方向に向かう二本の土圧検出器30を内筒17の周方向へ位相をずらして略直角に配置してある。
【0018】
一方、図5及び図6に示す如く、後段円筒部13の推進方向D1後端部、即ち方向修正部11の推進方向D1後端部には、後段円筒部13の第二の外筒20に対し同心状で外径が略同一に形成され且つ推進方向D1後端部に蓋体31が取り付けられた中空の後方筒部32が接続され、該後方筒部32の中空部内には、方向修正部11の前段円筒部12を傾動させるために必要な油圧回路を構成する各種機器及び制御系統を構成する各種機器が収納されるようになっている。
【0019】
前記後方筒部32に収納されている機器は、油圧回路を構成する三位置切換弁である電磁制御弁34、各液圧ジャッキ26に対応する圧力センサ35、地中の土内にベントナイト等の滑材を供給するよう後方筒部32の周方向表面に形成された滑材供給ノズル36、制御系統におけるストローク検出器29用のアンプ、推進方向D1を制御するジャイロ37、発生する磁界により地上で位置を検出させる電磁コイル38、各部材に給電するバッテリ39、及び省配線ユニット等である。又、二本ずつで構成される二対の液圧ジャッキ26は、先端装置1の推進方向D1後方へ延在する管路40を介して、各対に対応するそれぞれの電磁制御弁34に接続されており、それぞれの電磁制御弁34に接続された後述の図8における管路41,42は、送給管路47及び戻り管路48に接続され、該送給管路47及び戻り管路48には、蓋体31に取り付けられ且つ油圧ユニット60へ接続可能なカップラ43,44と、振動発生装置の油圧系へ接続可能なカップラ45,46とが接続されている。
【0020】
前記滑材供給ノズル36には管路49の先端が接続され、該管路49は後方筒部32の中空部を通って後方へ延在し、蓋体31に取り付けられたカップラ50に接続されている。又、管路49の中途位置には分岐部分(図示せず)が設けられており、該分岐部分から後方筒部32の中空部を通って前方側へ延在する管路52は、先端装置1の前部4の油圧系へ着脱可能なカップラ51に接続されている。
【0021】
尚、図6中、53は、前段円筒部12の第一の外筒16における推進方向D1後端に凸設されたキー状の回り止め部材であり、該回り止め部材53は、後段円筒部13の第二の外筒20における推進方向D1先端に設けた切欠き状の案内手段54と係合しており、これにより、推進時に前段円筒部12が円周方向へ回動しないよう動きを規制されている。
【0022】
一方、前記液圧ジャッキ26により前段円筒部12の方向、即ち先端装置1の推進方向D1を変更する油圧回路は図8に示されており、60は油圧ユニット、61は傾動用の油圧回路である。
【0023】
前記油圧ユニット60は地上に設置されており、電動機62により駆動される油圧ポンプ63の吐出側には、中途部に逆止弁64及び可変絞り付逆止弁65を、又、油流れ方向D2下流端にカップラ66を設けた管路67が接続されている。又、前記油圧ユニット60は、油流れ方向D2上流端にカップラ68が接続され且つ油をタンク69に戻すようにした戻り管路70を備え、油圧ポンプ63には、タンク69から油を吸い込むための吸引管路71が接続されている。
【0024】
又、管路67における逆止弁64の油流れ方向D2下流側には、中途部に切換弁72が接続されて一端が戻り管路70に接続された管路73の他端が接続されている。油圧ユニット60の管路67と戻り管路70とをつなぐ管路途中には、管路67側の圧力が設定値を越えた場合に油を戻り管路70側へ逃がすためのリリーフ弁74を設けてある。
【0025】
前記油圧回路61を構成する各機器は後方筒部32内に収納されており、油圧ユニット60のカップラ66と管路75を介して接続し得るようにしたカップラ43には、先端装置1の前部4の油圧ユニット(図示せず)に接続可能なカップラ45へ通じる送給管路47が接続されると共に、油圧ユニット60のカップラ68と管路76を介して接続し得るようにしたカップラ44には、先端装置1の前部4の油圧ユニット(図示せず)に接続可能なカップラ46へ通じる戻り管路48が接続されている。
【0026】
又、送給管路47の中途部には、二つの電磁制御弁34に接続される管路41が接続され、戻り管路48の中途部には、二つの電磁制御弁34に接続される管路42が一本の管路77にまとめられて接続されており、まとめられた一本の管路77には第一の弁としてのリリーフ弁78が設けられている。
【0027】
一方、前記電磁制御弁34には、各液圧ジャッキ26のヘッド側液圧室79へ通じる管路40と接続され且つ途中に可変絞り付逆止弁80を有する管路81が接続されており、可変絞り付逆止弁80は、液圧ジャッキ26のヘッド側液圧室79から戻る油の流量を制御するようになっている。
【0028】
又、前記管路81の管路40に対する接続位置から可変絞り付逆止弁80までの中途部には、逆止弁82を備えた管路83が分岐接続され、該管路83は、一本の管路84にまとめられて第二の弁としてのリリーフ弁85を介し戻り管路48に接続されている。
【0029】
ここで、前記リリーフ弁78は、所定の液圧ジャッキ26が内筒17を押圧することによりそれと対向する液圧ジャッキ26が内筒17によって押圧された際に、対向する戻り側の液圧ジャッキ26のヘッド側液圧室79、管路40、管路81、電磁制御弁34、管路42の一連の流路の圧力がゼロにならないよう所定の圧力に設定されている。
【0030】
前記液圧ジャッキ26を介して前段円筒部12を傾動させる際の制御装置は、図9に示されており、圧力センサ35で検出したそれぞれの液圧ジャッキ26の推力である液圧ジャッキ圧力P1、ストローク検出器29で検出した内筒17延いては前段円筒部12の変位方向X1、土圧検出器30で検出した後段円筒部13の第二の外筒20に作用する土圧力P2は、それぞれ検出信号として地上に設置した制御装置90の演算制御部91へ与え得るようになっている。
【0031】
前記前段円筒部12の傾動時における液圧ジャッキ26の選択Sa、液圧ジャッキ26の伸長量LaはCPU等の上位系制御装置92若しくはオペレータより、制御装置90の演算制御部91へ設定し得るようになっており、その他の操作指令C1も制御装置90の演算制御部91へ与え得るようになっている。又、制御装置90の演算制御部91から上位系制御装置92へは、動作状態情報Iを与え得るようになっている。
【0032】
又、上位系制御装置92等から与えられた種々のデータを基に、制御装置90における演算制御部91からは、電磁制御弁34に切換指令Vを与え得るようになっている。尚、図9中、93は制御装置90における演算制御部91からの動作状態データを表示するための表示部である。
【0033】
次に、上記方向修正装置6の作動を説明する。
【0034】
先端装置1の方向を変更する際において、図8に示す油圧回路61のリリーフ弁78、リリーフ弁85は、リリーフ弁78の設定圧をPO1、リリーフ弁85の設定圧をPO2とした場合、常にPO1<PO2となるよう圧力調整が行われており、油圧ユニット60では、油が流通するよう切換弁72が切換わった状態で油圧ポンプ63は電動機62により駆動されており、油圧ポンプ63から吐出された油は、管路67,73、切換弁72、戻り管路70を通ってタンク69へ循環している。
【0035】
又、上位系制御装置92から、先端装置1即ち前段円筒部12の変位方向及び変位量に対応する液圧ジャッキ26の選択Sa、液圧ジャッキ26の伸長量La、その他の操作指令C1等の信号が制御装置90の演算制御部91に与えられている。このため、推進方向D1の変更を開始する操作ボタンをオンにすることにより、制御装置90の演算制御部91からは油圧ユニット60の切換弁72に切換指令が与えられて管路73の油が切換弁72を通過しないように切り換わり、同時に油圧回路61の二つの電磁制御弁34のうち少なくとも一つに切換指令が与えられて、一対の液圧ジャッキ26のうち一方の管路81を送給側の管路41に接続すると共に他方の管路81を戻り側の管路42に接続するか、或いは他方の管路81を送給側の管路41に接続すると共に一方の管路81を戻り側の管路42に接続するよう、電磁制御弁34の切換が行われている。
【0036】
このため、二つの電磁制御弁34のうち一方の電磁制御弁34において、一対の液圧ジャッキ26のヘッド側液圧室79に接続された一方の管路81を送給側の管路41に接続すると共に他方の管路81を戻り側の管路42に接続するよう、切換が行われている場合には、油圧ポンプ63から吐出された油は、管路67,75,47,41を経て電磁制御弁34を通り、管路81から管路40を経て液圧ジャッキ26のヘッド側液圧室79へ導入され、液圧ジャッキ26を伸長させることにより内筒17を押圧しており、同時に、相対する液圧ジャッキ26のヘッド側液圧室79の油は排出され、他方の管路40,81を経て電磁制御弁34を通り、管路42から管路77及びリリーフ弁78を介して、戻り管路48、管路76,70を通り、タンク69に戻される。
【0037】
又、二つの電磁制御弁34のうち一方の電磁制御弁34において、一対の液圧ジャッキ26のヘッド側液圧室79に接続された他方の管路81を送給側の管路41に接続すると共に一方の管路81を戻り側の管路42に接続するよう、切換が行われている場合には、油圧ポンプ63から吐出された油は、管路67,75,47,41を経て電磁制御弁34を通り、上記の場合の他方の管路81から管路40を経て逆側の液圧ジャッキ26のヘッド側液圧室79へ導入され、逆側の液圧ジャッキ26を伸長させることにより内筒17を逆方向に押圧しており、同時に、相対する液圧ジャッキ26のヘッド側液圧室79の油は排出され、上記の場合の一方の管路40,81を経て電磁制御弁34を通り、管路42から管路77及びリリーフ弁78を介して、戻り管路48、管路76,70を通り、タンク69に戻される。
【0038】
更に、二つの電磁制御弁34のうち他方の電磁制御弁34において、他の一対の液圧ジャッキ26が作動する場合には、上記の一方の電磁制御弁34と略同様に作動し、二つの電磁制御弁34を同時に作動させた場合には、互いに直交する方向に配設された二対の液圧ジャッキ26が所要方向へそれぞれ伸縮する形となり、このときの内筒17の押圧方向は二対の液圧ジャッキ26の伸長方向を合わせたものになる。
【0039】
ここで、前記内筒17の傾動角度は、内筒17の周方向へ位相をずらして略直角に配置された二本のストローク検出器29により傾動のデータが検出され、該検出された値を演算することにより求められる。
【0040】
而して、所定の液圧ジャッキ26を所定量で伸長させると、該液圧ジャッキ26は前段円筒部12の内筒17を径方向に押圧し、凸状球面座18の球中心を回動中心として前段円筒部12を所定変位量で傾動させ、先端装置1の前部4を所望方向へ向ける。
【0041】
続いて、先端装置1の推進方向D1を更に変更する際には、圧力センサ35により液圧ジャッキ圧力P1が、又、ストローク検出器29により前段円筒部12の変位方向X1が、更に、土圧検出器30により後段円筒部13の外周面に作用する土圧力P2が、それぞれ検出されて制御装置90における演算制御部91に与えられ、所定の演算が行われることにより、切換指令Vにより電磁制御弁34が適切な状態に制御される。
【0042】
このため、制御装置90は、傾動時の前段円筒部12の変位方向及び変位量に対応する液圧ジャッキ26の選択Sa、液圧ジャッキ26の伸長量La、その他の操作指令C1を任意に設定すると共に、前述の検出データを基として前段円筒部12の傾動方向を予め設定した所定の状態に制御して傾動を行うことができる。
【0043】
一方、図10に示す元押装置8によりトンネルを形成するよう先端装置1を押圧した場合には、先端装置1へ与える推力、先端装置1の径方向にかかる力等を凸状球面座18を介して後段円筒部13の凹状球面座21で受ける。
【0044】
従って、前段円筒部12の傾動に必要な液圧ジャッキ26のストロークの方向を先端装置1の推進方向D1でなく前段円筒部12の内筒17の径方向にするため、先端装置1の推進方向D1の全長を短くでき、結果的に出発点となる立坑9への搬入が容易になると共に、先端装置1の方向制御を行う制御性を良好にすることができる。又、先端装置1へ与える推力を凸状球面座18で支持するため液圧ジャッキ26を小型化し、設置スペースの占有を低減して方向修正装置6内部のスペースを有効利用することができる。
【0045】
又、液圧ジャッキ26が伸長して内筒17と液圧ジャッキ26との接触角が変化した際においても、球面座28及び滑り軸受け板27により液圧ジャッキ26は前段円筒部12の内筒17に対して点接触でなく面接触を維持するため、液圧ジャッキ26及び前段円筒部12の内筒17の周囲面の破損を防止することができる。
【0046】
しかも、前記凸状球面座18と凹状球面座21との摺動面に備えた固体潤滑被膜19,22によりグリス等の給油を不要にするため、凸状球面座18と凹状球面座21に対しオイルシール等の部材を不要にして装置構造を簡易にでき、又、液圧ジャッキ26を凸状球面座18の回動中心から推進方向D1後方へ離れた位置に備えるため、内筒17即ち前段円筒部12を傾動させる傾動モーメントを大きくして前段円筒部12を容易に傾動させることができる。
【0047】
又、前記前段円筒部12は、回り止め部材53により円周方向へ回動することがないため、前段円筒部12及び後段円筒部13の中空部内に収納された配線や配管に捩れが生じることがなく、又、パッキン24により前段円筒部12と後段円筒部13の間から土砂が入ることを防止し、結果的に耐久性を良くすることができる。
【0048】
更に又、前記内筒17に接するストローク検出器29の検出値より屈曲部5における前段円筒部12の傾動角度を検出するため、先端装置1の方向制御を適確に行うことができ、又、液圧ジャッキ26に圧力センサ35を備えて前段円筒部12の傾動により発生するモーメントを検出するため、先端装置1の方向制御を一層適確に行うことができる。
【0049】
又、液圧ジャッキ26を制御する電磁制御弁34を方向修正装置6の内部に備えるため、方向修正装置6の内部で管路40をまとめて、方向修正装置6の外部へ延在する管路を最少限にし、結果的に先端装置1の操作性を良くすることができる。更に又、内筒17の内部に配線、配管を通すことが可能となるため、先端装置1の外部に配線、配管を出すことなく、先端装置1の前部4に必要な電気信号、油、滑材等を供給することができる。
【0050】
以上述べたように、本発明者等が既に発明して出願している方向修正装置6は、小型でしかも耐久性、操作性の良いものとなっている。
【0051】
ところで、土質が硬い場合、或いは圧入工法のように周囲の土が押し固められたような状態となる場合、液圧ジャッキ26により凸状球面座18の球中心を回動中心として前段円筒部12に作用させる傾動モーメントは、大きくした方が有利となることが確認されている。
【0052】
前記傾動モーメントを大きくするためには、一つの手段としては、液圧ジャッキ26の内径を大きくしてその推力を増加させる必要があるが、先端装置1の後段円筒部13の第二の外筒20内に、別物としての液圧ジャッキ26を配設するのでは、該第二の外筒20という限られた搭載スペースの制約をもろに受ける形となり、液圧ジャッキ26の内径をあまり大きくすることは不可能であった。
【0053】
又、別の手段として、凸状球面座18の球中心から液圧ジャッキ26が配設される位置までの距離即ち傾動モーメントの腕の長さを長くしてやれば、前記傾動モーメントを大きくすることが可能となるが、この場合、液圧ジャッキ26のストロークを大きくしてやる必要がある。しかしながら、前述と同様に、先端装置1の後段円筒部13の第二の外筒20内に、別物としての液圧ジャッキ26を配設するのでは、やはり第二の外筒20という限られた搭載スペースの制約により、液圧ジャッキ26のストロークをあまり大きくすることは困難となる一方、該液圧ジャッキ26のストロークを充分に取れない場合には、充分な傾動角が得られなくなる虞があった。
【0054】
一方、内筒17を径方向へ押圧する液圧ジャッキ26一台当りの動作圧力を高めてその推力を大きくした場合、荷重が一箇所に集中する形となることから、液圧ジャッキ26の荷重作用部の必要強度が大きくなり、該液圧ジャッキ26の荷重作用部における部材の肉厚を厚くする等といった対策を講じなければならなくなり、広い搭載スペースが必要となり、第二の外筒20のように搭載スペースに制約がある場合には、液圧ジャッキ26の動作圧力をあまり大きくすることが困難となり、前記傾動モーメントを大きくすることができなかった。
【0055】
本発明は、斯かる実情に鑑み、限られたスペース内で、より大きな傾動モーメントを発生させることができ、土質が硬く非常に高い負荷がかかる場合、或いは圧入工法のように周囲の土が押し固められたような状態となり非常に高い負荷がかかる場合にも有効に適用できる方向修正装置を提供しようとするものである。
【0056】
【課題を解決するための手段】
本発明の請求項1の方向修正装置は、地中を推進する先端装置の一部を形成する第一の外筒内に配設された凸状球面座と、第二の外筒に設けられると共に前記凸状球面座に外嵌された凹状球面座と、前記凸状球面座に連なる内筒を径方向へ押圧することにより凸状球面座を介して先端装置の前部の推進方向を修正するよう前記第二の外筒内に配設された所要対の液圧ジャッキとを備えた方向修正装置において、
第二の外筒に液圧ジャッキを、該液圧ジャッキのボディが第二の外筒の一部を構成するよう一体に組み込んだことを特徴とする方向修正装置にかかるものである。
【0057】
前記方向修正装置においては、請求項2のように、各液圧ジャッキを第二の外筒の軸線方向へ複数台並設して構成することが有効となり、この場合、請求項3のように、第二の外筒の軸線方向へ並設した複数台の液圧ジャッキの液圧室を連通させることが望ましい。
【0058】
【0059】
上記手段によれば、以下のような作用が得られる。
【0060】
本発明の請求項1の方向修正装置のように、第二の外筒に液圧ジャッキを、該液圧ジャッキのボディが第二の外筒の一部を構成するよう一体に組み込むと、先端装置の第二の外筒内に、別物としての液圧ジャッキを配設するのとは異なり、該第二の外筒という限られた搭載スペースの制約を受けにくくなり、液圧ジャッキの内径を大きくしてその推力を増加させることが可能になると共に、液圧ジャッキのストロークを大きくし、凸状球面座の球中心から液圧ジャッキが配設される位置までの距離即ち傾動モーメントの腕の長さを長くしてやることが可能となり、これにより、内筒を傾動させる傾動モーメントを大きくすることが可能となり、充分な傾動角も得られる。
【0061】
前記方向修正装置において、請求項2のように、各液圧ジャッキを第二の外筒の軸線方向へ複数台並設して構成すると、内筒を径方向へ押圧する液圧ジャッキ一台当りの荷重が一箇所に集中せずに分散される形となることから、液圧ジャッキの荷重作用部の必要強度が小さくなり、該液圧ジャッキの荷重作用部における部材の肉厚を厚くする等といった対策を講じなくて済み、広い搭載スペースが必要とならず、第二の外筒のように搭載スペースに制約がある場合であっても、液圧ジャッキ一台当りの内径、ストロークを大きくしやすく、一方向当りの液圧ジャッキのトータルの推力を大きくすることが可能となり、前記傾動モーメントをより大きくすることに役立つ。この場合、請求項3のように、第二の外筒の軸線方向へ並設した複数台の液圧ジャッキの液圧室を連通させると、該複数台の液圧ジャッキには同じ液圧が作用し、外部から大きな負荷が加わったような場合でも、一つの液圧ジャッキにのみ大きな荷重が作用するようなことがないため、液圧ジャッキの荷重作用部の必要強度が更に小さくて済み、搭載スペースの確保に役立つ。
【0062】
【0063】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
【0064】
図1〜図4は本発明を実施する形態の一例であって、図中、図5〜図10と同一の符号を付した部分は同一物を表わしており、基本的な構成は図5〜図10に示すものと同様であるが、本図示例の特徴とするところは、図1〜図4に示す如く、第二の外筒20に液圧ジャッキ26を、該液圧ジャッキ26のボディ26aが第二の外筒20の一部を構成するよう一体に組み込んだ点にある。
【0065】
本図示例の場合、各液圧ジャッキ26は第二の外筒20の軸線方向へ複数台(図の例では二台)並設して構成すると共に、該第二の外筒20の軸線方向へ並設した複数台の液圧ジャッキ26のヘッド側液圧室79は、該液圧ジャッキ26のボディ26aに形成された流路94を介して連通させるようにしてある。
【0066】
次に、上記図示例の作動を説明する。
【0067】
前述のように、第二の外筒20に液圧ジャッキ26を、該液圧ジャッキ26のボディ26aが第二の外筒20の一部を構成するよう一体に組み込むと、先端装置1の後段円筒部13の第二の外筒20内に、別物としての液圧ジャッキ26を配設するのとは異なり、該第二の外筒20という限られた搭載スペースの制約を受けにくくなり、液圧ジャッキ26の内径を大きくしてその推力を増加させることが可能になると共に、液圧ジャッキ26のストロークを大きくし、凸状球面座18の球中心から液圧ジャッキ26が配設される位置までの距離即ち傾動モーメントの腕の長さを長くしてやることが可能となり、これにより、内筒17即ち前段円筒部12を傾動させる傾動モーメントを大きくすることが可能となり、充分な傾動角も得られる。
【0068】
本図示例の場合、各液圧ジャッキ26は第二の外筒20の軸線方向へ複数台並設して構成するようにしてあるため、内筒17を径方向へ押圧する液圧ジャッキ26一台当りの荷重が一箇所に集中せずに分散される形となることから、液圧ジャッキ26の荷重作用部の必要強度が小さくなり、該液圧ジャッキ26の荷重作用部における部材の肉厚を厚くする等といった対策を講じなくて済み、広い搭載スペースが必要とならず、第二の外筒20のように搭載スペースに制約がある場合であっても、液圧ジャッキ26一台当りの内径、ストロークを大きくしやすく、一方向当りの液圧ジャッキ26のトータルの推力を大きくすることが可能となり、前記傾動モーメントをより大きくすることに役立つ。
【0069】
しかも、本図示例の場合、第二の外筒20の軸線方向へ並設した複数台の液圧ジャッキ26のヘッド側液圧室79は、該液圧ジャッキ26のボディ26aに形成された流路94を介して連通させるようにしてあるため、該複数台の液圧ジャッキ26には同じ油圧が作用し、外部から大きな負荷が加わったような場合でも、一つの液圧ジャッキ26にのみ大きな荷重が作用するようなことがないため、液圧ジャッキ26の荷重作用部の必要強度が更に小さくて済み、搭載スペースの確保に役立つ。尚、前記流路94途中に切換弁(図示せず)を設け、該切換弁の操作により、土質等に応じて、第二の外筒20の軸線方向へ並設した複数台の液圧ジャッキ26のうち一方のみを作動させ、内筒17を傾動させるような使い方をすることも可能となる。
【0070】
こうして、上記図示例における方向修正装置6によれば、限られたスペース内で、より大きな傾動モーメントを発生させることができ、土質が硬く非常に高い負荷がかかる場合、或いは圧入工法のように周囲の土が押し固められたような状態となり非常に高い負荷がかかる場合にも有効に適用できる。
【0071】
【0072】
尚、本発明の方向修正装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0073】
【発明の効果】
以上、説明したように本発明の請求項1記載の方向修正装置によれば、限られたスペース内で、より大きな傾動モーメントを発生させることができ、土質が硬く非常に高い負荷がかかる場合、或いは圧入工法のように周囲の土が押し固められたような状態となり非常に高い負荷がかかる場合にも有効に適用できるという優れた効果を奏し得る。
【0074】
本発明の請求項2記載の方向修正装置によれば、内筒を径方向へ押圧する液圧ジャッキ一台当りの荷重を一箇所に集中させずに分散させることができ、液圧ジャッキの荷重作用部の必要強度を小さくして、広い搭載スペースを不要とし得、第二の外筒のように搭載スペースに制約がある場合であっても、液圧ジャッキ一台当りの内径、ストロークを大きくしやすく、一方向当りの液圧ジャッキのトータルの推力を大きくでき、前記傾動モーメントをより大きくすることに役立つという優れた効果を奏し得る。
【0075】
本発明の請求項3記載の方向修正装置によれば、複数台の液圧ジャッキに同じ液圧を作用させることができ、外部から大きな負荷が加わったような場合でも、一つの液圧ジャッキにのみ大きな荷重が作用するようなことを防止できるため、液圧ジャッキの荷重作用部の必要強度を更に小さくし得、搭載スペースの確保に役立つという優れた効果を奏し得る。
【0076】
【図面の簡単な説明】
【図1】 本発明を実施する形態の一例の縦断面図である。
【図2】 本発明を実施する形態の一例の平面図である。
【図3】 図1のIII−III方向矢視図である。
【図4】 図1のIV−IV方向矢視図である。
【図5】 本発明者等が既に発明している方向修正装置の一例の縦断面図である。
【図6】 本発明者等が既に発明している方向修正装置の一例の平面図である。
【図7】 図5のVII−VII方向矢視図である。
【図8】 本発明者等が既に発明している方向修正装置に適用する油圧回路図である。
【図9】 本発明者等が既に発明している方向修正装置に適用する制御系統図である。
【図10】 図5に示す方向修正装置を適用した管埋設装置の概要を示す側面図である。
【図11】 従来の圧入工法に使用する振動発生装置の概要を示す側面図である。
【図12】 図11に示す振動発生装置を適用した管埋設装置の概要を示す側面図である。
【図13】 従来の方向修正方法に使用する方向修正装置の概要を示す側面図である。
【符号の説明】
1 先端装置
4 前部
5 屈曲部
6 方向修正装置
7 挿入管
8 元押装置
9 立坑
16 第一の外筒
17 内筒
18 凸状球面座
20 第二の外筒
21 凹状球面座
26 液圧ジャッキ
26a ボディ
79 ヘッド側液圧室(液圧室)
94 流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direction correcting device for correcting a propulsion direction when propelling the ground with a tip device in order to construct a tunnel such as a horizontal hole or a vertical hole in the ground.
[0002]
[Prior art]
As a method for embedding the pipe in the ground, (1) a static press-fitting method in which the tip device is simply pressed by the main pushing device installed in the vertical shaft and pressed into the ground without excavating the soil, (2 ) Excavation method to excavate the earth and sand with the excavator as a tip device and to push the excavator in the ground while discharging the excavated earth and sand; 11 and 12, the vibrator a is operated to vibrate the front portion c of the vibration generating device b as a tip device, and the earth and sand d around the vibration generating device b is vibrated. There is a dynamic press-fitting method in which the vibration generator b is press-fitted without excavating the earth and sand by being fed and fluidized and pressed by the main pusher f installed in the shaft e.
[0003]
When there is an obstacle such as an embedded object in the ground in each of the above methods, it is necessary to correct the propulsion direction of the tip device, and as a device for correcting the propulsion direction of the tip device, JP-A-58-222291. There is a device shown in the gazette. As shown in FIG. 13 of the present application, the device shown in Japanese Patent Laid-Open No. 58-222291 is a passive wedge through a main wedge member h by a positioning jack g that extends parallel to the propulsion direction of the device as a booster mechanism. The wedge surface of the member i is pushed, the drilling head j in front of the passive wedge member i and the propulsion jack k are tilted via the ball bearing m to change the propulsion direction of the apparatus to avoid obstacles.
[0004]
[Problems to be solved by the invention]
However, in the device for correcting the propulsion direction of the tip device so as to avoid the obstacle as described above, the stroke of the positioning jack g that pushes the wedge surface of the passive wedge member i through the main driving wedge member h becomes longer in the propulsion direction. The total length of the propulsion direction of the apparatus becomes long, making it difficult to carry into the shaft as a starting point, and there is a problem that the controllability for controlling the direction of the apparatus is poor.
[0005]
In order to solve such a problem, the present inventors have invented and applied for a direction correcting device as shown below.
[0006]
5 to 10 show an example of the direction correcting device invented by the present inventors.
[0007]
A pipe embedding device to which the direction correcting device is applied is shown in FIG. 10, in which 1 is a tip device.
[0008]
The tip device 1 is connected to the front portion 4 located on the front side of the propulsion direction D1 and the rear portion of the front portion 4 of the tip device 1 and the bent portion 5 for correcting the propulsion direction D1 during propulsion. , 7 is an insertion tube disposed behind the direction correction device 6 in the propulsion direction D1 of the direction correction device 6, and 8 is disposed in the shaft 9 and inserted through the pressing plate 10. A main pushing device such as a hydraulic jack that pushes the rear end of the pipe 7.
[0009]
Thus, in the tube embedding device, the main pushing device 8 is extended, the insertion tube 7 is press-fitted into the ground via the pressing plate 10, and the tip device 1 is pressed by the insertion tube 7, thereby moving the tip device 1. I try to promote it.
[0010]
Further, the tube embedding device tilts the front portion 4 of the tip device 1 by the bent portion 5 of the direction correcting device 6 and further extends the main pushing device 8 to extend the tip device 1 through the pressing plate 10 and the insertion tube 7. To push the tip device 1 while changing the propulsion direction D1.
[0011]
The details of the direction correcting device 6 are shown in FIGS. 5 to 8. The direction correcting device 6 includes a direction correcting portion 11 having a bent portion 5, a front cylindrical portion 12 and a rear cylindrical portion. The rear cylindrical portion 13 is used.
[0012]
The front cylindrical portion 12 is provided with a front wall 15 via a connecting portion 14 that can be attached to and detached from the front portion 4 of the tip device 1, and is substantially the same as the front portion 4 of the tip device 1 behind the front wall 15 in the propelling direction D1. The first outer cylinder 16 is formed to have the same diameter, and the cylindrical inner cylinder 17 is formed concentrically with the first outer cylinder 16 and extends rearward in the propulsion direction D1. A convex spherical seat 18 having a center on the axis of the inner cylinder 17 is formed in the vicinity of the front wall 15 in the inner cylinder 17, and the surface of the convex spherical seat 18 is made of carbon or the like. A solid lubricating film 19 is formed.
[0013]
The rear cylindrical portion 13 located behind the front cylindrical portion 12 in the propelling direction D1 includes a second outer cylinder 20 having substantially the same diameter as the first outer cylinder 16 of the front cylindrical portion 12, and the second outer cylinder. A concave spherical seat 21 that is located between the first outer cylinder 16 and the inner cylinder 17 of the front cylindrical portion 12 and that receives the convex spherical seat 18 widely in the projected area in the propelling direction D1 is formed at the tip of the front cylindrical portion 12. A solid lubricating film 22 such as carbon similar to the convex spherical seat 18 is formed on the inner peripheral surface of the concave spherical seat 21 in contact with the convex spherical seat 18, and a plurality of outer peripheral surfaces of the concave spherical seat 21 are formed. Of the annular groove 23 (two in FIG. 5), and the annular groove 23 is inserted into the annular groove 23 from the gap between the first outer cylinder 16 of the front cylindrical portion 12 and the concave spherical seat 21 of the rear cylindrical portion 13. A U-shaped packing 24 is inserted to prevent inflow of earth and sand.
[0014]
Further, on the outer peripheral surface of the concave spherical seat 21, the rear end in the propulsion direction D1 of the first outer cylinder 16 of the front cylindrical portion 12 is concave when the front cylindrical portion 12 tilts behind the propulsion direction D1 of the annular groove 23. A groove 25 having a predetermined size is formed so as not to contact the outer peripheral surface of the spherical seat 21.
[0015]
As shown in FIGS. 5 and 7, the propulsion direction from the rotational center of the convex spherical seat 18 in the inner cylinder 17 is behind the propelling direction D1 of the concave spherical seat 21 in the second outer cylinder 20 of the rear cylindrical portion 13. The four hydraulic jacks 26 are arranged so as to be located farthest rearward of D1, that is, at the rear end of the inner cylinder 17 in the propelling direction D1, and the four hydraulic jacks 26 connect the inner cylinder 17 to the rear. A pair of two cylinders that are surrounded at equal intervals in the circumferential direction and sandwich the inner cylinder 17 in the radial direction are configured.
[0016]
Here, the structure of the outer peripheral surface of the inner cylinder 17 and the hydraulic jack 26 will be described. As shown in FIG. 7, the outer peripheral surface of the inner cylinder 17 has a plurality of planes extending in the tangential direction (four locations in FIG. 7). ) And a sliding bearing plate 27 is arranged, and the sliding bearing plate 27 is provided with a spherical seat 28 so as to make a surface contact with a tip portion of a hydraulic jack 26 which can swing the neck. .
[0017]
Between the two hydraulic jacks 26 of the plurality of hydraulic jacks 26 in the second outer cylinder 20 of the rear cylindrical portion 13, two stroke detectors 29 directed in the radial direction of the inner cylinder 17 are provided. In the circumferential direction of the cylinder 17, the phases are arranged at substantially right angles, and between the remaining two hydraulic jacks 26, two earth pressures directed in the radial direction of the inner cylinder 17, similar to the stroke detector 29. The detector 30 is arranged at a substantially right angle with the phase shifted in the circumferential direction of the inner cylinder 17.
[0018]
On the other hand, as shown in FIGS. 5 and 6, the rear end portion in the propulsion direction D 1 of the rear cylindrical portion 13, that is, the rear end portion in the propulsion direction D 1 of the direction correcting portion 11, On the other hand, a hollow rear cylinder 32 having a concentric outer diameter and substantially the same outer diameter and having a lid 31 attached to the rear end of the propulsion direction D1 is connected. In the hollow part of the rear cylinder 32, the direction is corrected. Various devices constituting a hydraulic circuit necessary for tilting the front cylindrical portion 12 of the portion 11 and various devices constituting a control system are accommodated.
[0019]
The equipment accommodated in the rear cylinder part 32 includes an electromagnetic control valve 34 which is a three-position switching valve constituting a hydraulic circuit, a pressure sensor 35 corresponding to each hydraulic jack 26, and bentonite in the soil in the ground. A lubricant supply nozzle 36 formed on the circumferential surface of the rear cylinder portion 32 to supply the lubricant, an amplifier for the stroke detector 29 in the control system, a gyro 37 for controlling the propulsion direction D1, and a magnetic field generated on the ground. An electromagnetic coil 38 for detecting the position, a battery 39 for supplying power to each member, a wiring saving unit, and the like. Also, two pairs of hydraulic jacks 26 constituted by two are connected to the respective electromagnetic control valves 34 corresponding to each pair via pipe lines 40 extending rearward in the propulsion direction D1 of the tip device 1. The pipes 41 and 42 in FIG. 8 to be described later connected to the respective electromagnetic control valves 34 are connected to the feed pipe 47 and the return pipe 48, and the feed pipe 47 and the return pipe are connected. Couplers 48 are connected to couplers 43 and 44 attached to the lid 31 and connectable to the hydraulic unit 60, and couplers 45 and 46 connectable to the hydraulic system of the vibration generator.
[0020]
A tip of a conduit 49 is connected to the lubricant supply nozzle 36, and the conduit 49 extends rearward through a hollow portion of the rear cylinder portion 32 and is connected to a coupler 50 attached to the lid 31. ing. Further, a branch portion (not shown) is provided in the middle of the pipe line 49, and the pipe line 52 extending from the branch part to the front side through the hollow portion of the rear cylinder part 32 is provided as a tip device. 1 is connected to a coupler 51 that can be attached to and detached from the hydraulic system of the front portion 4.
[0021]
In FIG. 6, reference numeral 53 denotes a key-shaped detent member protruding from the rear end of the first outer cylinder 16 of the front cylindrical portion 12 in the propelling direction D1, and the detent member 53 is a rear cylindrical portion. 13 is engaged with a notch-shaped guide means 54 provided at the front end in the propulsion direction D1 of the second outer cylinder 20, so that the front cylindrical portion 12 does not rotate in the circumferential direction during propulsion. It is regulated.
[0022]
On the other hand, a hydraulic circuit for changing the direction of the front cylindrical portion 12, that is, the propulsion direction D1 of the tip device 1 by the hydraulic jack 26 is shown in FIG. 8, 60 is a hydraulic unit, and 61 is a hydraulic circuit for tilting. is there.
[0023]
The hydraulic unit 60 is installed on the ground. On the discharge side of the hydraulic pump 63 driven by the electric motor 62, a check valve 64 and a check valve 65 with a variable throttle are provided in the middle, and the oil flow direction D2 A pipe line 67 provided with a coupler 66 is connected to the downstream end. The hydraulic unit 60 includes a return pipe 70 connected to the coupler 68 at the upstream end in the oil flow direction D2 and configured to return the oil to the tank 69. The hydraulic pump 63 sucks oil from the tank 69. The suction pipe 71 is connected.
[0024]
In addition, a switching valve 72 is connected to the midway part of the check line 64 downstream of the check valve 64 in the oil flow direction D2 and the other end of the pipe 73 connected to the return line 70 is connected to the other end. Yes. A relief valve 74 is provided in the middle of the pipeline connecting the pipeline 67 and the return pipeline 70 of the hydraulic unit 60 to release oil to the return pipeline 70 when the pressure on the pipeline 67 exceeds a set value. It is provided.
[0025]
Each device constituting the hydraulic circuit 61 is housed in the rear cylinder portion 32, and the coupler 43 that can be connected to the coupler 66 of the hydraulic unit 60 via the pipe line 75 is provided in front of the tip device 1. A feed pipe 47 leading to a coupler 45 connectable to a hydraulic unit (not shown) of the section 4 is connected, and a coupler 44 that can be connected to a coupler 68 of the hydraulic unit 60 via a pipe 76. A return line 48 is connected to the coupler 46 which can be connected to a hydraulic unit (not shown) in the front part 4 of the tip device 1.
[0026]
Further, a pipe 41 connected to the two electromagnetic control valves 34 is connected to the middle part of the feed pipe 47, and the two electromagnetic control valves 34 are connected to a middle part of the return pipe 48. The pipelines 42 are collectively connected to a single pipeline 77, and a relief valve 78 serving as a first valve is provided in the collected single pipeline 77.
[0027]
On the other hand, the electromagnetic control valve 34 is connected to a pipe line 81 that is connected to a pipe line 40 that leads to the head-side hydraulic chamber 79 of each hydraulic jack 26 and has a check valve 80 with a variable throttle in the middle. The check valve 80 with a variable throttle controls the flow rate of oil returning from the head side hydraulic chamber 79 of the hydraulic jack 26.
[0028]
In addition, a pipe 83 having a check valve 82 is branched and connected in the middle from the connection position of the pipe 81 to the pipe 40 to the check valve 80 with a variable throttle. The two pipes 84 are combined and connected to the return pipe 48 via a relief valve 85 as a second valve.
[0029]
Here, the relief valve 78 is configured such that when the predetermined hydraulic jack 26 presses the inner cylinder 17 and the hydraulic jack 26 facing it is pressed by the inner cylinder 17, the opposing hydraulic jack on the return side is opposed. The pressure in the series of flow paths including the head side hydraulic pressure chamber 79, the pipe 40, the pipe 81, the electromagnetic control valve 34, and the pipe 42 is set to a predetermined pressure.
[0030]
A control device for tilting the front cylindrical portion 12 via the hydraulic jack 26 is shown in FIG. 9, and the hydraulic jack pressure P1 that is the thrust of each hydraulic jack 26 detected by the pressure sensor 35 is shown. The inner cylinder 17 detected by the stroke detector 29 and the displacement direction X1 of the front cylindrical portion 12 and the earth pressure P2 acting on the second outer cylinder 20 of the rear cylindrical portion 13 detected by the earth pressure detector 30 are: Each can be provided as a detection signal to the arithmetic control unit 91 of the control device 90 installed on the ground.
[0031]
The selection Sa of the hydraulic jack 26 and the extension amount La of the hydraulic jack 26 when the front cylindrical portion 12 is tilted can be set in the arithmetic control unit 91 of the control device 90 by a host system control device 92 such as a CPU or an operator. Thus, the other operation command C1 can be given to the arithmetic control unit 91 of the control device 90. The operation state information I can be given from the arithmetic control unit 91 of the control device 90 to the host system control device 92.
[0032]
Further, based on various data given from the host system control device 92 or the like, a switching command V can be given to the electromagnetic control valve 34 from the arithmetic control unit 91 in the control device 90. In FIG. 9, reference numeral 93 denotes a display unit for displaying operation state data from the arithmetic control unit 91 in the control device 90.
[0033]
Next, the operation of the direction correcting device 6 will be described.
[0034]
When the direction of the tip device 1 is changed, the relief valve 78 and the relief valve 85 of the hydraulic circuit 61 shown in FIG. 8 are always set when the set pressure of the relief valve 78 is PO1 and the set pressure of the relief valve 85 is PO2. The pressure is adjusted so that PO1 <PO2. In the hydraulic unit 60, the hydraulic pump 63 is driven by the electric motor 62 in a state where the switching valve 72 is switched so that the oil flows, and the hydraulic pump 63 discharges from the hydraulic pump 63. The oil thus circulated to the tank 69 through the pipelines 67 and 73, the switching valve 72 and the return pipeline 70.
[0035]
Further, from the host system control device 92, the selection device Sa of the hydraulic jack 26 corresponding to the displacement direction and the displacement amount of the tip device 1, that is, the front cylindrical portion 12, the extension amount La of the hydraulic jack 26, other operation commands C1, etc. A signal is given to the arithmetic control unit 91 of the control device 90. For this reason, when the operation button for starting the change in the propulsion direction D1 is turned on, a switching command is given to the switching valve 72 of the hydraulic unit 60 from the arithmetic control unit 91 of the control device 90, and the oil in the conduit 73 is discharged. At the same time, a switching command is given to at least one of the two electromagnetic control valves 34 of the hydraulic circuit 61 to feed one pipe 81 of the pair of hydraulic jacks 26. Connect to the supply line 41 and connect the other line 81 to the return line 42, or connect the other line 81 to the supply line 41 and one line 81. The electromagnetic control valve 34 is switched so that is connected to the return-side pipeline 42.
[0036]
For this reason, in one electromagnetic control valve 34 of the two electromagnetic control valves 34, one pipe line 81 connected to the head side hydraulic pressure chamber 79 of the pair of hydraulic jacks 26 is connected to the feed line 41. When switching is performed so that the other pipe 81 is connected to the return-side pipe 42, the oil discharged from the hydraulic pump 63 passes through the pipes 67, 75, 47, 41. Then, it passes through the electromagnetic control valve 34, is introduced from the pipe 81 through the pipe 40 to the head side hydraulic chamber 79 of the hydraulic jack 26, and presses the inner cylinder 17 by extending the hydraulic jack 26. At the same time, the oil in the head-side hydraulic chamber 79 of the opposing hydraulic jack 26 is discharged, passes through the other conduits 40 and 81, passes through the electromagnetic control valve 34, passes from the conduit 42 through the conduit 77 and the relief valve 78. Through the return line 48 and lines 76 and 70 It is returned to the tank 69.
[0037]
Further, in one electromagnetic control valve 34 of the two electromagnetic control valves 34, the other pipe line 81 connected to the head side hydraulic chamber 79 of the pair of hydraulic jacks 26 is connected to the feed line 41. In addition, when switching is performed so that one of the pipes 81 is connected to the return pipe 42, the oil discharged from the hydraulic pump 63 passes through the pipes 67, 75, 47, and 41. It passes through the electromagnetic control valve 34 and is introduced from the other pipe 81 in the above case through the pipe 40 to the head side hydraulic chamber 79 of the reverse hydraulic jack 26 to extend the reverse hydraulic jack 26. As a result, the inner cylinder 17 is pressed in the opposite direction, and at the same time, the oil in the head-side hydraulic chamber 79 of the opposing hydraulic jack 26 is discharged and electromagnetically controlled via one of the pipes 40 and 81 in the above case. Passing through the valve 34, the pipe 42 through the pipe 77 and the relief valve 78 Through, return line 48, through a conduit 76,70, is returned to the tank 69.
[0038]
Further, when the other pair of hydraulic jacks 26 is operated in the other electromagnetic control valve 34 of the two electromagnetic control valves 34, the operation is substantially the same as that of the one electromagnetic control valve 34 described above. When the electromagnetic control valves 34 are actuated simultaneously, two pairs of hydraulic jacks 26 arranged in directions orthogonal to each other extend and contract in the required direction, and the pressing direction of the inner cylinder 17 at this time is two. The extension directions of the pair of hydraulic jacks 26 are combined.
[0039]
Here, the tilting angle of the inner cylinder 17 is detected by two stroke detectors 29 arranged at substantially right angles with the phase shifted in the circumferential direction of the inner cylinder 17, and the detected value is expressed as It is obtained by calculating.
[0040]
Thus, when the predetermined hydraulic jack 26 is extended by a predetermined amount, the hydraulic jack 26 presses the inner cylinder 17 of the front cylindrical portion 12 in the radial direction and rotates around the spherical center of the convex spherical seat 18. The front cylindrical portion 12 is tilted by a predetermined displacement amount as the center, and the front portion 4 of the tip device 1 is directed in a desired direction.
[0041]
Subsequently, when the propulsion direction D1 of the tip device 1 is further changed, the hydraulic pressure P1 is detected by the pressure sensor 35, and the displacement direction X1 of the front cylindrical portion 12 is further detected by the stroke detector 29. The earth pressure P2 acting on the outer peripheral surface of the rear cylindrical portion 13 is detected by the detector 30 and applied to the calculation control unit 91 in the control device 90, and a predetermined calculation is performed. The valve 34 is controlled to an appropriate state.
[0042]
For this reason, the control device 90 arbitrarily sets the selection Sa of the hydraulic jack 26 corresponding to the displacement direction and the displacement amount of the front cylindrical portion 12 at the time of tilting, the extension amount La of the hydraulic jack 26, and other operation commands C1. In addition, the tilting can be performed by controlling the tilting direction of the front cylindrical portion 12 to a predetermined state based on the detection data described above.
[0043]
On the other hand, when the tip device 1 is pressed so as to form a tunnel by the main pushing device 8 shown in FIG. 10, the thrust applied to the tip device 1, the force applied in the radial direction of the tip device 1, etc. are applied to the convex spherical seat 18. Through the concave spherical seat 21 of the rear cylindrical portion 13.
[0044]
Therefore, in order to make the stroke direction of the hydraulic jack 26 necessary for tilting the front cylindrical portion 12 not the propelling direction D1 of the tip device 1 but the radial direction of the inner cylinder 17 of the front cylindrical portion 12, the propulsion direction of the tip device 1 The total length of D1 can be shortened, and as a result, it becomes easy to carry into the shaft 9 as a starting point, and the controllability for controlling the direction of the tip device 1 can be improved. Further, since the thrust applied to the tip device 1 is supported by the convex spherical seat 18, the hydraulic jack 26 can be downsized to reduce the occupation of the installation space and to effectively use the space inside the direction correcting device 6.
[0045]
Further, even when the hydraulic jack 26 extends and the contact angle between the inner cylinder 17 and the hydraulic jack 26 changes, the hydraulic jack 26 is made to be the inner cylinder of the front cylindrical portion 12 by the spherical seat 28 and the sliding bearing plate 27. Since surface contact is maintained with respect to 17 instead of point contact, damage to the peripheral surface of the hydraulic jack 26 and the inner cylinder 17 of the front cylindrical portion 12 can be prevented.
[0046]
Moreover, in order to eliminate the need for lubrication such as grease by the solid lubricating coatings 19 and 22 provided on the sliding surfaces of the convex spherical seat 18 and the concave spherical seat 21, the convex spherical seat 18 and the concave spherical seat 21 The structure of the apparatus can be simplified by eliminating the need for an oil seal or the like, and the hydraulic jack 26 is provided at a position away from the rotational center of the convex spherical seat 18 in the propulsion direction D1. The tilting moment for tilting the cylindrical portion 12 can be increased to easily tilt the front cylindrical portion 12.
[0047]
Further, since the front cylindrical portion 12 is not rotated in the circumferential direction by the rotation preventing member 53, the wiring and the piping stored in the hollow portions of the front cylindrical portion 12 and the rear cylindrical portion 13 are twisted. In addition, the packing 24 prevents the earth and sand from entering between the front cylindrical portion 12 and the rear cylindrical portion 13, and as a result, durability can be improved.
[0048]
Further, since the tilt angle of the front cylindrical portion 12 in the bent portion 5 is detected from the detection value of the stroke detector 29 in contact with the inner cylinder 17, the direction control of the tip device 1 can be performed accurately, Since the hydraulic jack 26 includes the pressure sensor 35 and detects the moment generated by the tilt of the front cylindrical portion 12, the direction control of the tip device 1 can be performed more accurately.
[0049]
Further, since the electromagnetic control valve 34 for controlling the hydraulic jack 26 is provided inside the direction correcting device 6, the pipe lines 40 are gathered inside the direction correcting device 6 and extend outside the direction correcting device 6. As a result, the operability of the tip device 1 can be improved. Furthermore, since wiring and piping can be passed through the inner cylinder 17, electrical signals, oil, and the like necessary for the front portion 4 of the tip device 1 can be obtained without taking out wiring and piping outside the tip device 1. Lubricant etc. can be supplied.
[0050]
As described above, the direction correcting device 6 already invented and filed by the present inventors is small in size and has good durability and operability.
[0051]
By the way, when the soil is hard or when the surrounding soil is pressed and pressed as in the press-fitting method, the front cylindrical portion 12 is centered on the spherical center of the convex spherical seat 18 by the hydraulic jack 26. It has been confirmed that it is advantageous to increase the tilting moment acting on the.
[0052]
In order to increase the tilting moment, as one means, it is necessary to increase the thrust by increasing the inner diameter of the hydraulic jack 26. However, the second outer cylinder of the rear cylindrical portion 13 of the tip device 1 is required. If the hydraulic jack 26 as a separate component is disposed in the inside 20, the second outer cylinder 20 is limited to the limited mounting space, and the inner diameter of the hydraulic jack 26 is made too large. It was impossible.
[0053]
As another means, if the distance from the spherical center of the convex spherical seat 18 to the position where the hydraulic jack 26 is disposed, that is, the length of the arm of the tilting moment is increased, the tilting moment can be increased. In this case, the stroke of the hydraulic jack 26 needs to be increased. However, in the same manner as described above, if the hydraulic jack 26 as a separate object is disposed in the second outer cylinder 20 of the rear cylindrical portion 13 of the tip device 1, the second outer cylinder 20 is also limited. It is difficult to make the stroke of the hydraulic jack 26 too large due to restrictions on the mounting space. On the other hand, if the stroke of the hydraulic jack 26 cannot be taken sufficiently, a sufficient tilt angle may not be obtained. It was.
[0054]
On the other hand, when the operating pressure per hydraulic jack 26 that presses the inner cylinder 17 in the radial direction is increased to increase the thrust, the load is concentrated in one place. The required strength of the action portion is increased, and it is necessary to take measures such as increasing the thickness of the member in the load action portion of the hydraulic jack 26, and a large mounting space is required. When the mounting space is limited as described above, it is difficult to increase the operating pressure of the hydraulic jack 26 so much that the tilting moment cannot be increased.
[0055]
In view of such circumstances, the present invention can generate a larger tilting moment in a limited space, and when the soil is hard and a very high load is applied, or when the surrounding soil is pushed like a press-fitting method. It is an object of the present invention to provide a direction correcting device that can be effectively applied even when it is hardened and a very high load is applied.
[0056]
[Means for Solving the Problems]
A direction correcting device according to a first aspect of the present invention is provided on a convex spherical seat disposed in a first outer cylinder that forms a part of a tip device that propels the underground, and a second outer cylinder. In addition, the pushing direction of the front part of the tip device is corrected through the convex spherical seat by pressing the concave spherical seat fitted on the convex spherical seat and the inner cylinder connected to the convex spherical seat in the radial direction. In a direction correcting device provided with a required pair of hydraulic jacks arranged in the second outer cylinder,
The present invention is directed to a direction correcting device in which a hydraulic jack is integrally incorporated in a second outer cylinder so that the body of the hydraulic jack forms a part of the second outer cylinder.
[0057]
In the direction correcting device, it is effective to arrange a plurality of hydraulic jacks side by side in the axial direction of the second outer cylinder as in claim 2, and in this case, as in claim 3 It is desirable to connect the hydraulic chambers of a plurality of hydraulic jacks arranged in parallel in the axial direction of the second outer cylinder.
[0058]
[0059]
According to the above means, the following operation can be obtained.
[0060]
When the hydraulic jack is integrated into the second outer cylinder so that the body of the hydraulic jack forms a part of the second outer cylinder as in the direction correcting device according to claim 1 of the present invention, Unlike disposing a hydraulic jack as a separate item in the second outer cylinder of the device, it is less subject to the limited mounting space of the second outer cylinder, and the inner diameter of the hydraulic jack is reduced. The thrust can be increased to increase the stroke of the hydraulic jack, and the stroke of the hydraulic jack is increased so that the distance from the spherical center of the convex spherical seat to the position where the hydraulic jack is disposed, that is, the arm of the tilting moment. This makes it possible to increase the length, thereby increasing the tilting moment for tilting the inner cylinder and obtaining a sufficient tilting angle.
[0061]
In the direction correcting device, as in claim 2, when a plurality of hydraulic jacks are arranged side by side in the axial direction of the second outer cylinder, each hydraulic jack that presses the inner cylinder in the radial direction. The load of the hydraulic jack is dispersed without being concentrated in one place, so that the required strength of the load acting portion of the hydraulic jack is reduced, the thickness of the member in the load acting portion of the hydraulic jack is increased, etc. This eliminates the need to take measures such as the need for a large mounting space and increases the inner diameter and stroke per hydraulic jack even when the mounting space is limited like the second outer cylinder. It is easy to increase the total thrust of the hydraulic jack per direction, which is useful for increasing the tilting moment. In this case, as in claim 3, when the hydraulic chambers of a plurality of hydraulic jacks arranged in parallel in the axial direction of the second outer cylinder are communicated, the same hydraulic pressure is applied to the hydraulic jacks. Even if a large load is applied from outside, a large load does not act on only one hydraulic jack, so the required strength of the load acting part of the hydraulic jack can be further reduced, Helps to secure mounting space.
[0062]
[0063]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0064]
1 to 4 show an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 5 to 10 denote the same components, and the basic configuration is shown in FIGS. 10 is the same as that shown in FIG. 10, but the feature of the illustrated example is that, as shown in FIGS. 1 to 4, a hydraulic jack 26 is attached to the second outer cylinder 20, and the body of the hydraulic jack 26 is used. 26a is integrally incorporated so as to constitute a part of the second outer cylinder 20.
[0065]
In the case of the illustrated example, each hydraulic jack 26 is configured by arranging a plurality of units (two in the illustrated example) side by side in the axial direction of the second outer cylinder 20, and the axial direction of the second outer cylinder 20. The head-side hydraulic chambers 79 of the plurality of hydraulic jacks 26 arranged side by side are communicated with each other via a flow path 94 formed in the body 26a of the hydraulic jack 26.
[0066]
Next, the operation of the illustrated example will be described.
[0067]
As described above, when the hydraulic jack 26 is integrated into the second outer cylinder 20 and the body 26 a of the hydraulic jack 26 is integrated so as to form a part of the second outer cylinder 20, the rear stage of the tip device 1. Unlike disposing a separate hydraulic jack 26 in the second outer cylinder 20 of the cylindrical portion 13, the second outer cylinder 20 is less likely to be limited by the limited mounting space, The internal diameter of the pressure jack 26 can be increased to increase its thrust, and the stroke of the hydraulic jack 26 is increased so that the hydraulic jack 26 is disposed from the spherical center of the convex spherical seat 18. It is possible to increase the distance of the arm, that is, the length of the arm of the tilting moment, thereby increasing the tilting moment for tilting the inner cylinder 17, that is, the front cylindrical portion 12, and obtaining a sufficient tilting angle. .
[0068]
In the case of this illustrated example, each hydraulic jack 26 is formed by arranging a plurality of hydraulic jacks 26 in the axial direction of the second outer cylinder 20, and therefore, the hydraulic jack 26 that presses the inner cylinder 17 in the radial direction. Since the load per base is distributed without being concentrated in one place, the required strength of the load acting portion of the hydraulic jack 26 is reduced, and the thickness of the member in the load acting portion of the hydraulic jack 26 is reduced. It is not necessary to take measures such as increasing the thickness, and a large mounting space is not required, and even if the mounting space is limited like the second outer cylinder 20, the hydraulic jack 26 per unit It is easy to increase the inner diameter and stroke, and the total thrust of the hydraulic jack 26 per direction can be increased, which helps to increase the tilting moment.
[0069]
Moreover, in the illustrated example, the head-side hydraulic chambers 79 of the plurality of hydraulic jacks 26 arranged in parallel in the axial direction of the second outer cylinder 20 are formed in the flow formed in the body 26 a of the hydraulic jack 26. Since the same hydraulic pressure is applied to the plurality of hydraulic jacks 26 and a large load is applied from the outside, only one hydraulic jack 26 is large because the plurality of hydraulic jacks 26 are communicated with each other through the path 94. Since no load acts, the required strength of the load acting portion of the hydraulic jack 26 can be further reduced, which helps to secure a mounting space. In addition, a switching valve (not shown) is provided in the middle of the flow path 94, and a plurality of hydraulic jacks juxtaposed in the axial direction of the second outer cylinder 20 according to the soil or the like by operating the switching valve. It is also possible to operate such that only one of 26 is operated and the inner cylinder 17 is tilted.
[0070]
Thus, according to the direction correcting device 6 in the illustrated example, it is possible to generate a larger tilting moment in a limited space, and when the soil is hard and a very high load is applied, or in the surroundings as in the press-fitting method. It can be effectively applied even when the soil is pressed and very high load is applied.
[0071]
[0072]
Note that the direction correcting device of the present invention is not limited to the illustrated examples described above, and it is needless to say that various changes can be made without departing from the scope of the present invention.
[0073]
【The invention's effect】
As described above, according to the direction correcting device of claim 1 of the present invention, a larger tilting moment can be generated in a limited space, and the soil is hard and a very high load is applied. Alternatively, it is possible to achieve an excellent effect that it can be effectively applied even when the surrounding soil is pressed and compacted as in the press-fitting method and a very high load is applied.
[0074]
According to the direction correcting device of the second aspect of the present invention, the load per hydraulic jack that presses the inner cylinder in the radial direction can be dispersed without being concentrated in one place. The required strength of the action part can be reduced to eliminate the need for a large mounting space, and the inner diameter and stroke per hydraulic jack can be increased even when the mounting space is limited like the second outer cylinder. The total thrust of the hydraulic jack per direction can be increased, and an excellent effect of helping to increase the tilting moment can be achieved.
[0075]
According to the direction correcting device of the third aspect of the present invention, the same hydraulic pressure can be applied to a plurality of hydraulic jacks, and even when a large load is applied from the outside, one hydraulic jack can be applied. Since it is possible to prevent only a large load from acting, the required strength of the load acting portion of the hydraulic jack can be further reduced, and an excellent effect of helping to secure a mounting space can be obtained.
[0076]
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an example of an embodiment for carrying out the present invention.
FIG. 2 is a plan view of an example of an embodiment for carrying out the present invention.
3 is a view taken in the direction of arrows III-III in FIG. 1;
4 is a view taken in the direction of arrows IV-IV in FIG. 1;
FIG. 5 is a longitudinal sectional view of an example of a direction correcting device that has already been invented by the present inventors.
FIG. 6 is a plan view of an example of a direction correcting device that the inventors have already invented.
7 is a VII-VII direction arrow view of FIG. 5;
FIG. 8 is a hydraulic circuit diagram applied to the direction correcting device already invented by the inventors.
FIG. 9 is a control system diagram applied to the direction correcting device already invented by the inventors.
10 is a side view showing an outline of a pipe embedding device to which the direction correcting device shown in FIG. 5 is applied.
FIG. 11 is a side view showing an outline of a vibration generator used in a conventional press-fitting method.
12 is a side view showing an outline of a pipe embedding device to which the vibration generating device shown in FIG. 11 is applied.
FIG. 13 is a side view showing an outline of a direction correcting device used in a conventional direction correcting method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tip apparatus 4 Front part 5 Bending part 6 Direction correction apparatus 7 Insertion pipe 8 Main pushing apparatus 9 Shaft 16 First outer cylinder 17 Inner cylinder 18 Convex spherical seat 20 Second outer cylinder 21 Concave spherical seat 26 Hydraulic jack 26a body 79 head side hydraulic chamber (hydraulic chamber)
94 flow path

Claims (3)

地中を推進する先端装置の一部を形成する第一の外筒内に配設された凸状球面座と、第二の外筒に設けられると共に前記凸状球面座に外嵌された凹状球面座と、前記凸状球面座に連なる内筒を径方向へ押圧することにより凸状球面座を介して先端装置の前部の推進方向を修正するよう前記第二の外筒内に配設された所要対の液圧ジャッキとを備えた方向修正装置において、
第二の外筒に液圧ジャッキを、該液圧ジャッキのボディが第二の外筒の一部を構成するよう一体に組み込んだことを特徴とする方向修正装置。
A convex spherical seat disposed in the first outer cylinder that forms a part of the tip device that propels the underground, and a concave shape that is provided in the second outer cylinder and is externally fitted to the convex spherical seat A spherical seat and an inner cylinder connected to the convex spherical seat are arranged in the second outer cylinder so as to correct the propulsion direction of the front portion of the tip device via the convex spherical seat by pressing in the radial direction. In the direction correcting device provided with the required pair of hydraulic jacks,
A direction correcting device in which a hydraulic jack is integrally incorporated in a second outer cylinder so that a body of the hydraulic jack forms a part of the second outer cylinder.
各液圧ジャッキを第二の外筒の軸線方向へ複数台並設して構成した請求項1記載の方向修正装置。  The direction correcting apparatus according to claim 1, wherein a plurality of hydraulic jacks are arranged side by side in the axial direction of the second outer cylinder. 第二の外筒の軸線方向へ並設した複数台の液圧ジャッキの液圧室を連通させた請求項2記載の方向修正装置。  The direction correcting device according to claim 2, wherein the hydraulic chambers of a plurality of hydraulic jacks arranged side by side in the axial direction of the second outer cylinder are communicated.
JP2001151470A 2001-05-21 2001-05-21 Direction correction device Expired - Fee Related JP3679728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151470A JP3679728B2 (en) 2001-05-21 2001-05-21 Direction correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151470A JP3679728B2 (en) 2001-05-21 2001-05-21 Direction correction device

Publications (2)

Publication Number Publication Date
JP2002349184A JP2002349184A (en) 2002-12-04
JP3679728B2 true JP3679728B2 (en) 2005-08-03

Family

ID=18996309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151470A Expired - Fee Related JP3679728B2 (en) 2001-05-21 2001-05-21 Direction correction device

Country Status (1)

Country Link
JP (1) JP3679728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650913B1 (en) * 2015-01-21 2016-08-24 주식회사 승지토건 Tilting type excavation apparatus for propulsion pipes

Also Published As

Publication number Publication date
JP2002349184A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP3679728B2 (en) Direction correction device
JP3670983B2 (en) Direction correction device
JP3363135B2 (en) Direction correction device
JP3679729B2 (en) Direction correction control device in dynamic press-fitting method.
JP3390739B2 (en) Direction correction device
JP3400422B2 (en) Advanced equipment
JP2009008136A (en) Rotation control device for construction machine
KR0155429B1 (en) Drilling direction control method of small bore diameter pipe propulsive machine and its device
JP4381995B2 (en) Pipe propulsion embedding equipment
JP2878180B2 (en) Guidance pipe for curved propulsion method
JP4035842B2 (en) Small-diameter propulsion machine hydraulic control method and apparatus
JP2003269083A (en) Dynamic press-in method and vibration generator for use in the same
JP2609435B2 (en) Consolidated pipe propulsion burial equipment
JP3920726B2 (en) Large diameter gravel crusher for tunnel excavator
JP2003328680A (en) Pipe jacking machine and pipe jacking method
JP2000136694A (en) Small caliber pipe jacking machine and control unit therefor
JPH0519437Y2 (en)
JP2005201301A (en) Inclining and rolling controller of variable displacement hydraulic pump
JP3369054B2 (en) Piping device of the leading pipe in small diameter pipe propulsion machine
JP2002121995A (en) Dynamic pressing method and vibration generator used therefor
JPH09189193A (en) Small-bore pipe jacking machine
NO20221225A1 (en) An apparatus for performing operations inside a cylindrical body.
JP3693286B2 (en) Small caliber machine
JPH1181870A (en) Pusher device
JP5463049B2 (en) Synthetic pipe bending equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees