JP3679574B2 - Manufacturing method of ultra-thin niobium and copper single crystal multilayer film - Google Patents

Manufacturing method of ultra-thin niobium and copper single crystal multilayer film Download PDF

Info

Publication number
JP3679574B2
JP3679574B2 JP28855297A JP28855297A JP3679574B2 JP 3679574 B2 JP3679574 B2 JP 3679574B2 JP 28855297 A JP28855297 A JP 28855297A JP 28855297 A JP28855297 A JP 28855297A JP 3679574 B2 JP3679574 B2 JP 3679574B2
Authority
JP
Japan
Prior art keywords
single crystal
film
substrate
multilayer film
substrate temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28855297A
Other languages
Japanese (ja)
Other versions
JPH11116379A (en
Inventor
春也 山本
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP28855297A priority Critical patent/JP3679574B2/en
Publication of JPH11116379A publication Critical patent/JPH11116379A/en
Application granted granted Critical
Publication of JP3679574B2 publication Critical patent/JP3679574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一層あたり5nm〜1μmの膜厚でNb層、Cu層を単結晶で積層し多層膜化する方法に関するものである。
【0002】
【従来の技術】
真空蒸着によって蒸着中の真空度、基板温度、蒸着速度等を制御することによりサファイア基板上に単結晶Nb膜を成長させることが知られている。Cu−Nb系は、お互いほとんど溶け合わないため、金属多層膜のモデル材料として物性研究に用いられてきた。このCuーNb系の金属多層膜は、多層膜スパッター蒸着法や電子ビーム蒸着法により製作されているが、その構造は多結晶である。しかし、従来、金属多層膜の構造および膜厚を正確に計測する方法がないので、厚さ100nm以下の制御された薄膜を製造することは困難であった。
【0003】
【発明が解決しようとする課題】
ナノメータ(nm)領域の膜厚から成る多層膜材料の物性の研究において、各層の界面の平滑性、膜の結晶構造が多層膜材料の物性に大きく影響する。本発明の課題は、膜厚の制御された高品質な単結晶層から成るCuーNb系の多層膜を製造することにある。
【0004】
【課題を解決しようとするための手段】
本発明は、大きな面積の金属単結晶多層膜を作製する手段として、電子ビーム蒸着法によりサファイア単結晶基板の上に面積の大きいNb単結晶膜を成膜し、その上にCuおよびNbを蒸着中の基板温度、蒸着速度を制御し、単結晶で積層して多層膜を製作するものである。サファイア基板は、耐熱性、化学的安定性に優れ、1500℃程度の高温での蒸着ができるため、その基板上に結晶性の高い単結晶膜が製造できる。蒸着は超高真空下で行うため多層膜への不純物の混入を極めて少なく抑えられた。本発明は、膜厚をイオンビーム解析法により0.lnmの精度で計測できる方法を開発したので、厚さの制御された薄膜の製造が可能となった。
【0005】
【発明の実施の形態】
超高真空下で電子ビーム蒸着法によりサファイア基板上に基板温度、蒸着速度を制御しNb単結晶の成膜を行った。さらにNb膜上にCuの単結晶膜の積層を行った。製作した多層膜は低速電子回折、X線回折、ラザフオード後方散乱法を用いて構造解析を行った。
【0006】
即ち、本発明は、1.0×l0-6torrより低い高真空下で、電子ビーム蒸着法により、サファイア基板上に薄膜の蒸着速度を0.05〜1nm/秒に制御し、厚さが5nm(ナノメータ)から1μmの範囲に制御されたニオブ(Nb)と鋼(Cu)の単結晶多層膜を製造するものである。
【0007】
基板温度としては、蒸着により、サファイア基板上にNb単結晶薄膜を形成させる場合の基板温度は500℃〜900℃に制御され、又Cu単結晶上にNb単結晶膜を形成させる場合のCu基板温度は450℃〜800℃に制御され、更に又Nb単結晶上にCu単結晶を形成させる場合のNb基板温度は、30℃〜500℃に制御される。以下、本発明を実施例に基づいて説明する。
【0008】
【実施例1】
基板導入室、成長室、分析室の3つの真空容器から構成される電子ビーム蒸着装置を用いてNbーCu系単結晶多層膜の製造を行った。モリブデン製の基板ホルダーに取り付けた大きさ10mm×10mmのサファイア単結晶基板
【数1】

Figure 0003679574
を基板導入室に入れ、真空排気を24時間程度行い真空度が5×10-7torr程度に達したところで成長室へ移動した。成長室の真空度が7×10-9torrに達したところでタンタル抵抗加熱ヒーターにより基板の加熱を開始する。1時間かけて750℃まで加熱を行い15分間保持した後に、真空度5×10-8torrで基板温度 750℃、蒸着速度 0.1nm/秒でNbの電子ビーム蒸着を行った。500秒間の蒸着で膜厚50nm蒸着した。蒸着速度および蒸着膜の膜厚は水晶振動子膜厚計により測定を行った。基板温度は背面に設けられたタングステン熱電対で測定した。
【0009】
蒸着後に基板温度を1時間かけてを200℃まで下げ15分間保持した後に真空度8×10-9torrで基板温度200℃、蒸着速度0.lnm/秒で500秒間で50nmの膜厚のCu膜を蒸着した。その後、基板温度を15分間で500℃まで上げ10分間保持した後に真空度4×10-8torrで基板温度500℃、蒸着速度0.1nm/秒で500秒間の蒸着で膜厚50nmのNb膜の蒸着を行った。
【0010】
その後、基板温度を1時間で室温まで下げた。この試料を分析室に移動し低速電子回折測定を行った。電子の回折スポットの対称性から最表面のNb膜の結晶面方位はNb(110)面であることを確認した。この各層の厚さが50nmのNb/Cu/Nb多層膜の結晶性を2.7MeV4Heイオンを用いたラザフオード後方散乱・チャネリグ法により評価した。最表面のNb層は完全結晶に対して89%の結晶性の単結晶であることを確認した。
【0011】
以上の成膜条件で厚さ50nmのNb膜だけの場合の結晶性、および各層が50nmから成る2層膜(Cu/Nb/基板)のCu膜の結晶性は、完全結晶に対してそれぞれ99.5%および95%の単結晶であることを確認した。以上の試料をX線回折法(θ‐2θ)により結晶面方位を調べた結果、Cu(111)面およびNb(110)面の成長が確認できた。
【0012】
【実施例2】
実施例1と同様の条件で基板温度の条件を600℃、700℃、800℃として厚さ10nmのNb膜をサファイア単結晶基板上に作製し、実施例1と同様にNb膜の結晶性を評価した。基板温度が700℃、800℃で蒸着した試料の結晶性は完全結晶に対して99.5%の結晶性であること確認した。600℃の試料は700℃の試料に比べて結晶性が23%低下していた。
【0013】
実施例1と同様の条件で、厚さ50nmのNb膜をサファイア単結晶基板上に作製し、その上に室温(30℃)、100℃、200℃の基板温度条件で蒸着速度0.1nm/秒で500秒間蒸着し、厚さ50nmのCu膜を作製した。実施例1と同様な評価を行った結果、Cu層の結晶性は完全結晶に対して69%(室温)、80%(100℃)、90%(200℃)であることを確認した。
【0014】
実施例1と同様の条件で、サファイア単結晶基板上にNb:50nmの蒸着膜、Cu:50nmの蒸着膜を作製し、その上に室温(30℃)、400℃、600℃の基板温度条件で蒸着速度0.1nm/秒で500秒間蒸着し、50nmの膜厚のNb膜を作製した。実施例1と同様な評価を行った結果、最表面のNb層の結晶性は完全結晶に対して18%(室温)、54%(400℃)、91%(600℃)であることを確認した。
【0015】
【発明の効果】
本発明により得られた、単結晶で積層した CuーNb系多層膜は、金属人工格子等の新しい材料や多層膜ミラー等の光学材料の開発に用いられる。また、本発明においては、電子ビーム蒸着法を用いているため蒸着基板をマスキングすることによりあらゆる形状の単結晶多層膜の製造できる。更にまた、この高品位なNb単結晶膜の上には、Cuを含めた他の金属元素のエピタキシャル膜を形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of forming a multilayer film by laminating a Nb layer and a Cu layer with a single crystal at a film thickness of 5 nm to 1 μm per layer.
[0002]
[Prior art]
It is known to grow a single crystal Nb film on a sapphire substrate by controlling the degree of vacuum during deposition, the substrate temperature, the deposition rate, and the like by vacuum deposition. Since Cu—Nb systems hardly dissolve each other, they have been used for physical property studies as model materials for metal multilayer films. This Cu—Nb-based metal multilayer film is manufactured by a multilayer film sputtering deposition method or an electron beam deposition method, but its structure is polycrystalline. However, conventionally, since there is no method for accurately measuring the structure and film thickness of the metal multilayer film, it has been difficult to produce a controlled thin film having a thickness of 100 nm or less.
[0003]
[Problems to be solved by the invention]
In the study of physical properties of a multilayer film material having a film thickness in the nanometer (nm) region, the smoothness of the interface of each layer and the crystal structure of the film greatly affect the physical properties of the multilayer film material. An object of the present invention is to produce a Cu—Nb-based multilayer film composed of a high-quality single crystal layer with a controlled film thickness.
[0004]
[Means for solving problems]
In the present invention, as a means for producing a metal single crystal multilayer film having a large area, an Nb single crystal film having a large area is formed on a sapphire single crystal substrate by electron beam evaporation, and Cu and Nb are vapor-deposited thereon. The substrate temperature and vapor deposition rate are controlled, and a multilayer film is manufactured by laminating single crystals. Since the sapphire substrate is excellent in heat resistance and chemical stability and can be deposited at a high temperature of about 1500 ° C., a single crystal film having high crystallinity can be manufactured on the substrate. Vapor deposition was performed under ultra-high vacuum, so that contamination of impurities into the multilayer film was extremely reduced. In the present invention, the film thickness is reduced to 0.1 by the ion beam analysis method. Since a method capable of measuring with an accuracy of 1 nm was developed, it was possible to manufacture a thin film with a controlled thickness.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An Nb single crystal was formed on the sapphire substrate by controlling the substrate temperature and the deposition rate under an ultrahigh vacuum by an electron beam deposition method. Further, a Cu single crystal film was stacked on the Nb film. The fabricated multilayer film was subjected to structural analysis using low-energy electron diffraction, X-ray diffraction, and Razaford backscattering.
[0006]
That is, the present invention controls the deposition rate of a thin film on a sapphire substrate to 0.05 to 1 nm / second by an electron beam deposition method under a high vacuum lower than 1.0 × 10 −6 torr, A single crystal multilayer film of niobium (Nb) and steel (Cu) controlled in the range of 5 nm (nanometer) to 1 μm is manufactured.
[0007]
As the substrate temperature, the substrate temperature when the Nb single crystal thin film is formed on the sapphire substrate by vapor deposition is controlled to 500 ° C. to 900 ° C., and the Cu substrate when the Nb single crystal film is formed on the Cu single crystal. The temperature is controlled to 450 ° C. to 800 ° C., and the Nb substrate temperature when forming a Cu single crystal on the Nb single crystal is controlled to 30 ° C. to 500 ° C. Hereinafter, the present invention will be described based on examples.
[0008]
[Example 1]
An Nb—Cu-based single crystal multilayer film was manufactured using an electron beam evaporation apparatus composed of three vacuum vessels, ie, a substrate introduction chamber, a growth chamber, and an analysis chamber. 10 mm x 10 mm sapphire single crystal substrate attached to a molybdenum substrate holder
Figure 0003679574
Was placed in the substrate introduction chamber, and evacuation was performed for about 24 hours. When the degree of vacuum reached about 5 × 10 −7 torr, the substrate moved to the growth chamber. When the degree of vacuum in the growth chamber reaches 7 × 10 −9 torr, heating of the substrate is started by a tantalum resistance heater. After heating to 750 ° C. over 1 hour and holding for 15 minutes, Nb electron beam deposition was performed at a substrate temperature of 750 ° C. and a deposition rate of 0.1 nm / second at a vacuum degree of 5 × 10 −8 torr. A film thickness of 50 nm was deposited by vapor deposition for 500 seconds. The vapor deposition rate and the film thickness of the vapor deposition film were measured with a quartz oscillator film thickness meter. The substrate temperature was measured with a tungsten thermocouple provided on the back surface.
[0009]
After the deposition, the substrate temperature is lowered to 200 ° C. over 1 hour and held for 15 minutes, and then the substrate temperature is 200 ° C. at a degree of vacuum of 8 × 10 −9 torr, the deposition rate is 0. A Cu film having a thickness of 50 nm was deposited at a rate of 1 nm / second for 500 seconds. Thereafter, the substrate temperature is raised to 500 ° C. over 15 minutes and held for 10 minutes, and then the Nb film having a film thickness of 50 nm is deposited by vapor deposition for 500 seconds at a substrate temperature of 500 ° C. and a deposition rate of 0.1 nm / second at a vacuum degree of 4 × 10 −8 torr. The vapor deposition was performed.
[0010]
Thereafter, the substrate temperature was lowered to room temperature in 1 hour. The sample was moved to the analysis chamber and low-energy electron diffraction measurement was performed. From the symmetry of the electron diffraction spot, it was confirmed that the crystal plane orientation of the outermost Nb film was the Nb (110) plane. The crystallinity of the Nb / Cu / Nb multilayer film having a thickness of 50 nm for each layer was evaluated by the Razaford backscattering and channeling method using 2.7 MeV 4 He ions. The outermost Nb layer was confirmed to be 89% crystalline single crystal with respect to the complete crystal.
[0011]
The crystallinity in the case of only the Nb film having a thickness of 50 nm under the above-described film formation conditions and the crystallinity of the Cu film of the two-layer film (Cu / Nb / substrate) each having a thickness of 50 nm are 99% with respect to the complete crystal. .5% and 95% single crystals were confirmed. As a result of examining the crystal plane orientation of the above sample by the X-ray diffraction method (θ-2θ), growth of the Cu (111) plane and the Nb (110) plane could be confirmed.
[0012]
[Example 2]
A Nb film having a thickness of 10 nm was formed on a sapphire single crystal substrate under the same conditions as in Example 1 and the substrate temperature conditions were 600 ° C., 700 ° C., and 800 ° C. The crystallinity of the Nb film was changed as in Example 1. evaluated. It was confirmed that the crystallinity of the sample deposited at substrate temperatures of 700 ° C. and 800 ° C. was 99.5% of the complete crystal. The 600 ° C. sample had 23% lower crystallinity than the 700 ° C. sample.
[0013]
A Nb film having a thickness of 50 nm is formed on a sapphire single crystal substrate under the same conditions as in Example 1, and a deposition rate of 0.1 nm / min is obtained on the substrate temperature conditions of room temperature (30 ° C.) , 100 ° C., and 200 ° C. Vapor deposition was performed for 500 seconds to produce a Cu film having a thickness of 50 nm. As a result of performing the same evaluation as in Example 1, it was confirmed that the crystallinity of the Cu layer was 69% (room temperature), 80% (100 ° C.), and 90% (200 ° C.) with respect to the complete crystal.
[0014]
Under the same conditions as in Example 1, an Nb: 50 nm vapor deposition film and a Cu: 50 nm vapor deposition film were produced on a sapphire single crystal substrate, and substrate temperature conditions of room temperature (30 ° C.) , 400 ° C., and 600 ° C. were formed thereon. Was deposited for 500 seconds at a deposition rate of 0.1 nm / second to produce a Nb film with a thickness of 50 nm. As a result of performing the same evaluation as in Example 1, it was confirmed that the crystallinity of the outermost Nb layer was 18% (room temperature), 54% (400 ° C.), and 91% (600 ° C.) with respect to the complete crystal. did.
[0015]
【The invention's effect】
The Cu—Nb-based multilayer film obtained by the present invention and laminated with a single crystal is used for the development of new materials such as metal artificial lattices and optical materials such as multilayer mirrors. In the present invention, since the electron beam evaporation method is used, single crystal multilayer films of any shape can be manufactured by masking the evaporation substrate. Furthermore, an epitaxial film of other metal elements including Cu can be formed on the high-quality Nb single crystal film.

Claims (2)

蒸着法により超薄膜のニオブ(Nb)と銅(Cu)の単結晶多層膜を製造する方法において、サファイア基板の上に基板温度500〜900℃でNb単結晶薄膜を成膜し、その上にNb基板温度30〜500℃でCu単結晶薄膜を成膜する際に、1.0×10−6torrより低い高真空下で薄膜の成長速度を0.05〜1nm/秒で制御することにより、厚さが5nm〜1μmの範囲に制御された単結晶多層膜を製造する方法。In a method for producing an ultra-thin niobium (Nb) and copper (Cu) single crystal multilayer film by vapor deposition , an Nb single crystal thin film is formed on a sapphire substrate at a substrate temperature of 500 to 900 ° C. When a Cu single crystal thin film is formed at an Nb substrate temperature of 30 to 500 ° C., the growth rate of the thin film is controlled at 0.05 to 1 nm / second under a high vacuum lower than 1.0 × 10 −6 torr. A method for producing a single crystal multilayer film having a thickness controlled in the range of 5 nm to 1 μm. 蒸着法により超薄膜のニオブ(Nb)と銅(Cu)の単結晶多層膜を製造する方法において、サファイア基板の上に基板温度500〜900℃でNb単結晶薄膜を成膜し、その上にNb基板温度30〜500℃でCu単結晶薄膜を成膜し、更にその上にCu基板温度450〜800℃でNb単結晶薄膜を成膜する際に、1.0×10−6torrより低い高真空下で薄膜の成長速度を0.05〜1nm/秒で制御することにより、厚さが5nm〜1μmの範囲に制御された単結晶多層膜を製造する方法。In a method for producing an ultra-thin niobium (Nb) and copper (Cu) single crystal multilayer film by vapor deposition , an Nb single crystal thin film is formed on a sapphire substrate at a substrate temperature of 500 to 900 ° C. Lower than 1.0 × 10 −6 torr when a Cu single crystal thin film is formed at an Nb substrate temperature of 30 to 500 ° C. and further an Nb single crystal thin film is formed thereon at a Cu substrate temperature of 450 to 800 ° C. A method for producing a single crystal multilayer film having a thickness controlled in the range of 5 nm to 1 μm by controlling the growth rate of the thin film at 0.05 to 1 nm / second under high vacuum.
JP28855297A 1997-10-21 1997-10-21 Manufacturing method of ultra-thin niobium and copper single crystal multilayer film Expired - Fee Related JP3679574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28855297A JP3679574B2 (en) 1997-10-21 1997-10-21 Manufacturing method of ultra-thin niobium and copper single crystal multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28855297A JP3679574B2 (en) 1997-10-21 1997-10-21 Manufacturing method of ultra-thin niobium and copper single crystal multilayer film

Publications (2)

Publication Number Publication Date
JPH11116379A JPH11116379A (en) 1999-04-27
JP3679574B2 true JP3679574B2 (en) 2005-08-03

Family

ID=17731731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28855297A Expired - Fee Related JP3679574B2 (en) 1997-10-21 1997-10-21 Manufacturing method of ultra-thin niobium and copper single crystal multilayer film

Country Status (1)

Country Link
JP (1) JP3679574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761090B2 (en) * 2000-08-14 2011-08-31 独立行政法人 日本原子力研究開発機構 Method for producing epitaxial multilayer film for soft X-ray mirror

Also Published As

Publication number Publication date
JPH11116379A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
Colin et al. On the origin of the metastable β-Ta phase stabilization in tantalum sputtered thin films
Adamov et al. Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering
Jin et al. Localized epitaxial growth of α-Al 2 O 3 thin films on Cr 2 O 3 template by sputter deposition at low substrate temperature
JPH05507115A (en) Method and structure for forming alpha Ta in thin film form
Dai et al. Epitaxial (100) iridium on A-plane sapphire: A system for wafer-scale diamond heteroepitaxy
Fox et al. Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis
Schmidl et al. The influence of deposition parameters on Ti/Pt film growth by confocal sputtering and the temperature dependent resistance behavior using SiOx and Al2O3 substrates
JP3679574B2 (en) Manufacturing method of ultra-thin niobium and copper single crystal multilayer film
JPS5868923A (en) Manufacture of crystalline thin film
Jardine et al. Investigation into the thin-film fabrication of intermetallic NiTi
Haefke et al. Thin film growth of silver sulphide I: Initial stages of heteroepitaxy on NaCl
Naumov et al. The effect of low-energy ion bombardment on the density and crystal structure of thin films
Jankowski et al. Synthesis and characterization of nanophase face-centered-cubic titanium
JP4761090B2 (en) Method for producing epitaxial multilayer film for soft X-ray mirror
Shimaoka et al. The structure of tin thin films evaporated onto a clean NaCl substrate
Demczyk Structure and morphology of magnetron sputtered CoCr thin films
JP2777599B2 (en) Manufacturing method of single crystal thin film
Vook et al. Work function changes in the (111) Pd/(111) Cu and CO/(111) Pd/(111) Cu systems
JP3074712B2 (en) Method for producing silver single crystal thin film and metal artificial lattice
Schwabe et al. Surface diffusion of adatoms and clusters of gold on alkali halide cleavage planes
Parfitt et al. Origins of residual stress in Mo and Ta films: The role of impurities, microstructural evolution, and phase transformations
Bretschneider et al. Influence of the substrate temperature on the properties of MoSi2 thin films
Poppa et al. The sticking coefficient of Pd on planar alumina supports
Dhawan et al. Effect of discharge current and deposition temperature on roughness and density of NbC films fabricated by ion beam sputtering technique
Gotoh et al. Growth of Ag crystals on Si (111) surface observed by SEM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees