JP3678608B2 - Shift control device for automatic transmission - Google Patents

Shift control device for automatic transmission Download PDF

Info

Publication number
JP3678608B2
JP3678608B2 JP15601999A JP15601999A JP3678608B2 JP 3678608 B2 JP3678608 B2 JP 3678608B2 JP 15601999 A JP15601999 A JP 15601999A JP 15601999 A JP15601999 A JP 15601999A JP 3678608 B2 JP3678608 B2 JP 3678608B2
Authority
JP
Japan
Prior art keywords
torque
engine
input shaft
engine torque
shaft torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15601999A
Other languages
Japanese (ja)
Other versions
JP2000346189A (en
Inventor
要 末広
芳和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15601999A priority Critical patent/JP3678608B2/en
Priority to PCT/JP2000/004214 priority patent/WO2002001094A1/en
Publication of JP2000346189A publication Critical patent/JP2000346189A/en
Application granted granted Critical
Publication of JP3678608B2 publication Critical patent/JP3678608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0628Inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/363Rate of change of input shaft speed, e.g. of engine or motor shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters

Abstract

An automatic speed change gear adapted to estimate the input shaft torque of a speed change gear from the engine torque and to control the oil pressure during speed change according to the input shaft torque, wherein the estimated value of the input shaft torque is retained at the value prevailing immediately before speed change decision for a period of time from the speed change decision till the rate of change of the engine rpm exceeds a predetermined value, and when the rate of change exceeds the predetermined value, the estimated value of engine torque is processed by a low-pass filter having a time constant corresponding to the engine rpm and an estimated value of input shaft torque is found on the basis of the estimated value of the engine torque that has passed through the low-pass filter.

Description

【0001】
【発明の属する技術分野】
本発明は自動変速機の変速制御装置に関し、詳しくは、異なる摩擦係合要素の締結制御と解放制御とを同時に行う摩擦係合要素の掛け替えによって変速を行うよう構成された装置に関する。
【0002】
【従来の技術】
従来から、異なる摩擦係合要素の締結制御と解放制御とを同時に行う摩擦係合要素の掛け替えによって変速を行うよう構成された装置が、特開平9−133205号公報や特開平5−164233号公報に開示されている。
【0003】
例えば、特開平9−133205号公報に開示されるものでは、掛け替えダウンシフトにおいて、変速初期の第1時間内において、高速側の摩擦係合要素の伝達トルク容量を出力軸トルクが負にならない値まで低下させる一方、その後の第2時間内において前記高速側の摩擦係合要素の伝達トルク容量を、入力軸トルクと同等にまで上昇させると共に、低速側の摩擦係合要素の伝達トルク容量を適切に制御し、前記第2時間経過後に、低速側の摩擦係合要素の伝達トルク容量を入力軸トルク以上に上昇させ、また、高速側の摩擦係合要素を解放させる構成となっている。
【0004】
また、特開平5−164233号公報に開示されるものでは、前記掛け替え変速を行わせる自動変速機において、入力軸トルクに応じた制御の精度を向上させるべく、エンジントルクの発生遅れ調整を行う構成となっており、具体的には、吸入空気量Q/回転速度Nに対応するエンジン出力が得られるまでに、若干の時間遅れがあることに整合させる調整を行っている。
【0005】
【発明が解決しようとする課題】
しかし、入力軸トルクが急激に変化する変速(例えば、アクセルの踏み込みに伴うダウンシフト:パワーオンダウンシフト)においては、比較的大きなむだ時間が発生し、また、入力軸トルクが応答変化し始めてからの応答速度も一定ではないため、発生遅れ調整を高精度に行わせることが困難であり、係合油圧が実際の入力軸トルクに対応しなくなって、変速性能が悪化するという問題があった。
【0006】
即ち、前記特開平5−164233号公報には、時間遅れの調整を行う構成についての開示はあるが、例えば吸入空気量Q/回転速度Nに対して入力軸トルクの推定値を一定特性の1次遅れで応答させる構成とすると、運転条件に応じて時定数が変化し、また、むだ時間が異なるため、特に、パワーオンダウンシフト時のように入力軸トルクの変化が急激であるときに、実際の入力軸トルクと推定値との間に大きな誤差を生じ、掛け替え変速時の係合油圧を精度良く制御することができなくなって、変速性能を損なう可能性があったものである。
【0007】
本発明は上記問題点に鑑みなされたものであり、前記発生遅れ調整を高精度に行えるようにし、以って、入力軸トルクの推定精度を向上させることで、掛け替え変速時における係合油圧の制御精度を向上させることを目的とする。
【0008】
【課題を解決するための手段】
そのため請求項1記載の発明は、異なる摩擦係合要素の締結制御と解放制御とを同時に行う摩擦係合要素の掛け替えによって変速を行うよう構成された自動変速機の変速制御装置において、
エンジントルクを変化させるパラメータに基づいてエンジントルクを推定するエンジントルク推定手段と、
変速判断からエンジン回転速度の変化速度が所定値を超えるまでを、前記パラメータの変化に対するエンジントルクの応答特性におけるむだ時間として判定し、前記むだ時間において前記エンジントルクに基づく変速機構の入力軸トルクの推定値を、変速判断直前の値に保持させるむだ時間処理手段と、
変速判断後にエンジン回転速度の変化速度が前記所定値を超えると、エンジン回転速度に応じて設定される時定数のローパスフィルタで前記エンジントルクを処理し、前記ローパスフィルタで処理された結果を前記入力軸トルクの推定値とするローパスフィルタ手段と、
前記入力軸トルクの推定値に基づいて、変速時における摩擦係合要素の係合油圧を制御する係合油圧制御手段と、
を含んで構成される。
【0011】
かかる構成によると、エンジントルクを変化させるパラメータからエンジントルクを推定するが、該推定値に対する実際の入力軸トルクの応答遅れ特性を、むだ時間及び時定数として特定し、前記パラメータが変化しても前記むだ時間が経過してから実際の変化が現れ、かつ、前記時定数に従って変化するものとして、入力軸トルクを推定する。
例えばパワーオンダウンシフト時であれば、スロットル開変化に基づき変速判断(シフトダウン要求)が行われてから、エンジン回転速度の変化速度が所定値を超えるまでの間をむだ時間とし、前記エンジン回転速度の変化速度が所定値を超えた時点から、そのときのエンジン回転速度に応じた時定数で実際の入力軸トルクの応答変化が生じるものとして、入力軸トルクを推定する。
【0012】
請求項記載の発明では、前記エンジントルク推定手段が、エンジントルクを変化させるパラメータとしてのエンジン吸入空気流量又はスロットル開度とエンジン回転速度とに基づいてエンジントルクを推定する構成とした。
【0013】
かかる構成によると、エンジンの吸入空気量とエンジン回転速度、又は、スロットル開度とエンジン回転速度とに基づいてエンジントルクが推定される。
【0016】
【発明の効果】
請求項1記載の発明によると、入力軸トルクの応答変化におけるむだ時間を簡便かつ確実に判定でき、むだ時間内での入力軸トルクの応答変化を誤って推定することを回避でき、更に、エンジン回転速度による入力軸トルクの応答時定数の違いに対応して、入力軸トルクを高精度に推定することができるという効果がある。
【0017】
請求項記載の発明によると、エンジントルクを簡便な構成で推定できるという効果がある。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図1は、実施形態の自動変速機における変速機構を示すものであり、トルクコンバータT/Cを介してエンジンのクランクシャフトC/Sから回転駆動力が伝達される入力軸I/Sと、該入力軸I/Sと同軸に配置された出力軸O/Sと、これら入出力軸上に同軸に設けられた第1遊星歯車組G1及び第2遊星歯車組G2と、各種流体式摩擦係合要素とで構成される。
【0020】
尚、L/Cは、トルクコンバータT/Cに備えられたロックアップクラッチを示す。
前記第1遊星歯車組G1は、サンギヤS1と、リングギヤR1と、これらに噛合するピニオンP1と、このピニオンP1を回転自在に支持するピニオンキャリアPC1とからなる単純遊星歯車組で構成されると共に、前記第2遊星歯車組G2も、サンギヤS2と、リングギヤR2と、これらに噛合するピニオンP2と、このピニオンP2を回転自在に支持するピニオンキャリアPC2とからなる単純遊星歯車組で構成される。
【0021】
また、前記各種流体式摩擦係合要素として、第1〜第3クラッチC1,C2,C3及び第1ブレーキB1,第2ブレーキB2と、ワンウェイクラッチOWCとを備える。
【0022】
前記キャリアPC1は、前記第2クラッチC2を介して入力軸I/Sに結合可能であり、サンギヤS1は、前記第2ブレーキB2により固定可能であり、また、第1クラッチC1により入力軸I/Sに固定であると共に、ワンウェイクラッチOWCを介して逆転を阻止するように構成されている。
【0023】
リングギヤR1は、前記キャリアPC2に一体結合されて出力軸O/Sに駆動可能に結合され、サンギヤS2を入力軸I/Sに結着している。また、リングギヤR2は、前記第3クラッチC3を介してキャリアPC1に結合可能に構成されている。
【0024】
前記第1〜第3クラッチC1,C2,C3と第1ブレーキB1,第2ブレーキB2は、それぞれ油圧の供給により作動されて前記結合及び固定を行うものであるが、図2に示すように、第1〜第3クラッチC1,C2,C3と第1ブレーキB1,第2ブレーキB2を種々の組み合わせで作動(○印で示す)させることにより、ワンウェイクラッチOWCの作動と相俟って、遊星歯車組G1,G2を構成する要素の回転状態を変え、これにより入力軸I/Sの回転速度に対する出力軸O/Sの回転速度比を変えて、前進4速・後退1速の変速段を得ることができる。
【0025】
尚、1速で第1ブレーキB1を作動させるのは、当該1速でエンジンブレーキが必要な場合で、第1ブレーキB1を作動させない場合は、ワンウェイクラッチOWCが反力受けとなって1速を実現するが、エンジンブレーキはワンウェイクラッチOWCの空転により不能となる。
【0026】
ここで、例えば3速→4速のアップシフト時には、第3クラッチC3の解放と、第2ブレーキB2の締結とが同時に行われることになり、また、4速→3速のダウンシフト時には、第3クラッチC3の締結と、第2ブレーキB2の解放とが同時に行われることになり、このような摩擦係合要素の掛け替えによって変速が行われる。
【0027】
前記掛け替え変速における摩擦係合要素の係合油圧の制御は、図3に示すような構成によって行われる。
図3において、入力軸トルク推定部Aでは、変速機構の入力軸トルクを推定する。尚、上記入力軸トルク推定の推定については、後で詳細に説明する。
【0028】
また、トルク分担比設定部Bは、変速中において解放側の摩擦係合要素から締結側の摩擦係合要素へとトルク伝達の分担を徐々に切り換えるためのトルク分担比を設定する。
【0029】
そして、必要トルク算出部Cでは、前記入力軸トルク推定部Aで推定演算された入力軸トルクと、前記トルク分担比設定部Bで設定されたトルク分担比とに基づき、下式に従って変速時における各摩擦係合要素の必要トルクを算出する。
【0030】
必要トルク=トルク分担比×推定入力軸トルク×ゲイン
必要油圧算出部Dでは、前記必要トルク算出部Cで算出された各摩擦係合要素の必要トルクを得るために要する油圧を、クラッチの場合を例とすると、下式に従って算出する。
【0031】
必要油圧=1/A{(T・i)/(N・μ・D)+F}
ここで、Aはクラッチピストン面積(cm2)、Tは推定入力軸トルク(kg・m)、μは摩擦係数、Dはフェーシング有効径、Nはクラッチ枚数、iはトルク分担比、Fはリターンスプリング反力である。
【0032】
必要油圧が算出されると、前記必要油圧に対応する制御信号を求め、該制御信号を摩擦係合要素に対する供給油圧を制御するソレノイドバルブに出力して、前記必要油圧に制御する(係合油圧制御手段)。
【0033】
図4のフローチャートは、前記入力軸トルク推定部Aにおける入力軸トルクTの推定処理を示すものであり、図5のタイムチャートを参照しつつ、以下に説明する。
【0034】
尚、前記図5のタイムチャートは、3速→2速のダウンシフト時を例として示してある。
ステップS21では、変速判断を行い、変速時であればステップS22へ進み、エンジンの吸入空気流量とエンジン回転速度とに基づいてエンジントルクを推定する(エンジントルク推定手段)。
【0035】
尚、上記ステップS22では、エンジントルクを変化させるパラメータである吸入空気流量とエンジン回転速度とに基づいてエンジントルクを推定させる構成としたが、吸入空気流量の代わりにスロットル開度を用いるようにしても良い。
【0036】
次のステップS23では、エンジン回転速度の単位時間当たりの変化量ΔN(変化速度)が、所定値ΔNsを超えたか否かを判別する。
そして、変化量ΔN(変化速度)が所定値ΔNsを超えるまでは、アクセル開度変化(スロットル開度変化)に対して入力軸トルクの変化が出始めるまでのむだ時間内であるものと判定し、ステップS24へ進んで、変速判断直前の入力軸トルク推定値を保持させる処理を行う(応答特性値判定手段)。
【0037】
前記入力軸トルク推定値を保持させる処理は、変速判断直前の吸入空気流量又はスロットル開度とそのときのエンジン回転速度から求められるエンジントルクを、トルクコンバータのトルク比で補正した値を、入力軸トルクとする処理であっても良い。
【0038】
一方、変化量ΔN(変化速度)が所定値ΔNsを超えたと判定されたときには、アクセル開度変化(スロットル開度変化)に対してエンジントルクの変化が出始めたものと判定し、ステップS25へ進む。
【0039】
ステップS25では、そのときのエンジン回転速度に基づいてエンジントルクの応答変化における時定数を設定する(応答特性値判定手段)。ここでは、図6に示すように、エンジン回転速度が低い時ほど遅れが大きくなるように時定数を設定する。
【0040】
ステップS26では、エンジントルクの推定値を、前記設定した時定数のローパスフィルタで処理し、ステップS27では、前記ローパスフィルタで処理された結果を入力軸トルクTに設定する(入力軸トルク推定手段)。
【0041】
ここで、ローパスフィルタで処理する前又は後で、トルクコンバータのトルク比に応じた補正を施し、該処理結果を入力軸トルクTに設定することが好ましい。
【0042】
尚、掛け替え変速における係合油圧制御を上記のものに限定するものではなく、入力軸トルクに応じて係合油圧を制御する構成であれば良い。また、変速機構の構成も、前記図1に示したものに限定されないことは明らかである。
【図面の簡単な説明】
【図1】実施の形態における自動変速機の変速機構を示す図。
【図2】前記変速機構における摩擦係合要素の作動状態の組み合わせと変速段との相関を示す図。
【図3】前記自動変速機の変速制御の概要を示す制御ブロック図。
【図4】入力軸トルクの推定制御を示すフローチャート。
【図5】前記入力軸トルクの推定における応答遅れ時定数の特性を示す線図。
【図6】前記入力軸トルクの推定の特性を示すタイムチャート。
【符号の説明】
A…入力軸トルク推定部
B…トルク分担比設定部
C…必要トルク算出部
D…必要油圧算出部
B1,B2…ブレーキ
C1,C2,C3…クラッチ
G1,G2…遊星歯車組
I/S…入力軸
O/S…出力軸
OWC…ワンウェイクラッチ
T/C…トルクコンバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shift control device for an automatic transmission, and more particularly to a device configured to perform a shift by changing friction engagement elements that simultaneously perform engagement control and release control of different friction engagement elements.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an apparatus configured to change gears by switching friction engagement elements that simultaneously perform engagement control and release control of different friction engagement elements is disclosed in Japanese Patent Laid-Open Nos. 9-133205 and 5-164233. Is disclosed.
[0003]
For example, in the one disclosed in Japanese Patent Laid-Open No. 9-133205, in the transmission downshift, the transmission torque capacity of the friction engagement element on the high speed side is a value at which the output shaft torque does not become negative within the first time at the beginning of shifting. In the second time thereafter, the transmission torque capacity of the friction engagement element on the high speed side is increased to the same level as the input shaft torque, and the transmission torque capacity of the friction engagement element on the low speed side is set appropriately. After the second time, the transmission torque capacity of the low speed side frictional engagement element is increased to the input shaft torque or more, and the high speed side frictional engagement element is released.
[0004]
Japanese Patent Laid-Open No. 5-164233 discloses a configuration in which an engine torque generation delay adjustment is performed in the automatic transmission that performs the change-over shift so as to improve the accuracy of control according to the input shaft torque. Specifically, adjustment is performed to match that there is a slight time delay until the engine output corresponding to the intake air amount Q / rotational speed N is obtained.
[0005]
[Problems to be solved by the invention]
However, in a shift where the input shaft torque changes abruptly (for example, a downshift associated with depression of the accelerator: a power-on downshift), a relatively large dead time occurs and the input shaft torque starts to change in response. Since the response speed is not constant, it is difficult to adjust the generation delay with high accuracy, and the engagement hydraulic pressure does not correspond to the actual input shaft torque, resulting in a problem that the transmission performance is deteriorated.
[0006]
That is, Japanese Patent Laid-Open No. 5-164233 discloses a configuration for adjusting the time delay. For example, the estimated value of the input shaft torque is set to a constant characteristic 1 with respect to the intake air amount Q / rotational speed N. With a configuration that responds with the next delay, the time constant changes according to the operating conditions, and the dead time is different, so especially when the change of the input shaft torque is abrupt, such as during power-on downshift, A large error is generated between the actual input shaft torque and the estimated value, and the engagement hydraulic pressure at the time of the change gear shift cannot be controlled with high accuracy, and the shift performance may be impaired.
[0007]
The present invention has been made in view of the above-mentioned problems, and enables the generation delay adjustment to be performed with high accuracy, thereby improving the estimation accuracy of the input shaft torque, so that the engagement hydraulic pressure at the time of change gearing can be improved. The purpose is to improve the control accuracy.
[0008]
[Means for Solving the Problems]
Therefore, the invention described in claim 1 is a shift control device for an automatic transmission configured to perform a shift by switching friction engagement elements that simultaneously perform engagement control and release control of different friction engagement elements .
Engine torque estimating means for estimating engine torque based on a parameter for changing engine torque;
The time from the shift determination until the change speed of the engine rotation speed exceeds a predetermined value is determined as a dead time in the response characteristic of the engine torque with respect to the change in the parameter, and the input shaft torque of the transmission mechanism based on the engine torque in the dead time is determined. Dead time processing means for maintaining the estimated value at a value immediately before the shift determination;
When the change speed of the engine rotation speed exceeds the predetermined value after the shift determination, the engine torque is processed by a low-pass filter having a time constant set according to the engine rotation speed, and the result processed by the low-pass filter is input. Low-pass filter means for estimating the shaft torque;
Engagement oil pressure control means for controlling the engagement oil pressure of the friction engagement element at the time of shifting based on the estimated value of the input shaft torque;
It is comprised including.
[0011]
According to such a configuration, estimates the engine torque from the parameters to change the engine torque, the response delay characteristics of the actual input shaft torque versus the estimated value, identified as dead time and the time constant, the parameter is changed However, the input shaft torque is estimated on the assumption that an actual change appears after the dead time elapses and changes according to the time constant.
For example, during a power-on downshift, the engine rotation speed is defined as a dead time from when a shift determination (shift down request) is made based on a change in throttle opening until the engine speed change speed exceeds a predetermined value. From the time when the speed change speed exceeds a predetermined value, the input shaft torque is estimated on the assumption that the actual response change of the input shaft torque occurs with a time constant corresponding to the engine speed at that time.
[0012]
According to a second aspect of the present invention, the engine torque estimating means estimates the engine torque based on an engine intake air flow rate or a throttle opening and an engine speed as a parameter for changing the engine torque.
[0013]
According to this configuration, the engine torque is estimated based on the intake air amount of the engine and the engine rotation speed, or the throttle opening and the engine rotation speed .
[0016]
【The invention's effect】
According to the first aspect of the present invention, it is possible to easily and reliably determine the dead time in the response change of the input shaft torque, to avoid erroneously estimating the response change of the input shaft torque within the dead time, and further to the engine There is an effect that the input shaft torque can be estimated with high accuracy corresponding to the difference in the response time constant of the input shaft torque depending on the rotation speed .
[0017]
According to the invention of claim 2, there is an effect that the engine torque can be estimated with a simple configuration .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 shows a speed change mechanism in an automatic transmission according to an embodiment. An input shaft I / S to which a rotational driving force is transmitted from a crankshaft C / S of an engine via a torque converter T / C, An output shaft O / S arranged coaxially with the input shaft I / S, a first planetary gear set G1 and a second planetary gear set G2 provided coaxially on these input / output shafts, and various fluid friction engagements Composed of elements.
[0020]
L / C denotes a lockup clutch provided in the torque converter T / C.
The first planetary gear set G1 includes a simple planetary gear set including a sun gear S1, a ring gear R1, a pinion P1 meshing with the sun gear S1, and a pinion carrier PC1 that rotatably supports the pinion P1. The second planetary gear set G2 is also a simple planetary gear set including a sun gear S2, a ring gear R2, a pinion P2 meshing with the sun gear S2, and a pinion carrier PC2 that rotatably supports the pinion P2.
[0021]
The various fluid frictional engagement elements include first to third clutches C1, C2, C3, a first brake B1, a second brake B2, and a one-way clutch OWC.
[0022]
The carrier PC1 can be coupled to the input shaft I / S via the second clutch C2, the sun gear S1 can be fixed by the second brake B2, and the input shaft I / S can be fixed by the first clutch C1. It is fixed to S and configured to prevent reverse rotation via a one-way clutch OWC.
[0023]
The ring gear R1 is integrally coupled to the carrier PC2 and is drivably coupled to the output shaft O / S, and the sun gear S2 is coupled to the input shaft I / S. The ring gear R2 is configured to be connectable to the carrier PC1 via the third clutch C3.
[0024]
The first to third clutches C1, C2, C3, the first brake B1, and the second brake B2 are each operated by supplying hydraulic pressure to perform the coupling and fixing. As shown in FIG. By operating the first to third clutches C1, C2, C3, the first brake B1, and the second brake B2 in various combinations (indicated by ◯), the planetary gear is coupled with the operation of the one-way clutch OWC. By changing the rotation state of the elements constituting the group G1, G2, and thereby changing the rotation speed ratio of the output shaft O / S with respect to the rotation speed of the input shaft I / S, the forward fourth speed and the reverse first speed are obtained. be able to.
[0025]
The first brake B1 is operated at the first speed when the engine brake is required at the first speed. When the first brake B1 is not operated, the one-way clutch OWC receives the reaction force and the first speed is increased. Realized, engine braking becomes impossible due to idling of the one-way clutch OWC.
[0026]
Here, for example, when the upshift from the third speed to the fourth speed is performed, the release of the third clutch C3 and the engagement of the second brake B2 are performed simultaneously, and when the downshift from the fourth speed to the third speed is performed, The engagement of the third clutch C3 and the release of the second brake B2 are performed at the same time, and a shift is performed by such a change of the friction engagement elements.
[0027]
Control of the engagement hydraulic pressure of the friction engagement element in the change gear shift is performed by a configuration as shown in FIG.
In FIG. 3, an input shaft torque estimation unit A estimates the input shaft torque of the speed change mechanism. The estimation of the input shaft torque estimation will be described in detail later.
[0028]
The torque sharing ratio setting unit B sets a torque sharing ratio for gradually switching the sharing of torque transmission from the disengagement side frictional engagement element to the engagement side frictional engagement element during gear shifting.
[0029]
Then, in the necessary torque calculation unit C, based on the input shaft torque estimated and calculated by the input shaft torque estimation unit A and the torque sharing ratio set by the torque sharing ratio setting unit B, the required torque calculation unit C at the time of shifting according to the following equation: The required torque of each friction engagement element is calculated.
[0030]
Necessary torque = Torque sharing ratio × Estimated input shaft torque × Gain required hydraulic pressure calculation unit D calculates the hydraulic pressure required to obtain the required torque of each friction engagement element calculated by the required torque calculation unit C in the case of a clutch. For example, the calculation is performed according to the following formula.
[0031]
Required oil pressure = 1 / A {(T · i) / (N · μ · D) + F}
Where A is the clutch piston area (cm 2 ), T is the estimated input shaft torque (kg · m), μ is the coefficient of friction, D is the effective facing diameter, N is the number of clutches, i is the torque sharing ratio, and F is the return Spring reaction force.
[0032]
When the required hydraulic pressure is calculated, a control signal corresponding to the required hydraulic pressure is obtained, and the control signal is output to a solenoid valve that controls the hydraulic pressure supplied to the friction engagement element to control the required hydraulic pressure (engagement hydraulic pressure). Control means).
[0033]
The flowchart of FIG. 4 shows the estimation process of the input shaft torque T in the input shaft torque estimation unit A, and will be described below with reference to the time chart of FIG.
[0034]
Note that the time chart of FIG. 5 shows an example of a downshift from the 3rd speed to the 2nd speed.
In step S21, a shift determination is made, and if it is a shift, the process proceeds to step S22, and the engine torque is estimated based on the intake air flow rate of the engine and the engine rotation speed (engine torque estimating means).
[0035]
In step S22, the engine torque is estimated based on the intake air flow rate and the engine rotation speed, which are parameters for changing the engine torque. However, the throttle opening is used instead of the intake air flow rate. Also good.
[0036]
In the next step S23, it is determined whether or not the change amount ΔN (change speed) per unit time of the engine rotation speed exceeds a predetermined value ΔNs.
Then, until the change amount ΔN (change speed) exceeds the predetermined value ΔNs, it is determined that it is within the dead time until the change of the input shaft torque starts to appear with respect to the accelerator opening change (throttle opening change). Then, the process proceeds to step S24, and a process for holding the input shaft torque estimated value immediately before the shift determination is performed (response characteristic value determining means).
[0037]
The process of holding the estimated input shaft torque is a value obtained by correcting the engine torque obtained from the intake air flow rate or throttle opening just before the shift determination and the engine rotational speed at that time by the torque ratio of the torque converter. Processing for torque may be used.
[0038]
On the other hand, when it is determined that the change amount ΔN (change speed) exceeds the predetermined value ΔNs, it is determined that the engine torque starts to change with respect to the accelerator opening change (throttle opening change), and the process proceeds to step S25. move on.
[0039]
In step S25, a time constant in the response change of the engine torque is set based on the engine speed at that time (response characteristic value determining means). Here, as shown in FIG. 6, the time constant is set so that the delay increases as the engine speed decreases.
[0040]
In step S26, the estimated value of the engine torque is processed by the low-pass filter having the set time constant. In step S27, the result processed by the low-pass filter is set as the input shaft torque T (input shaft torque estimating means). .
[0041]
Here, before or after processing with the low-pass filter, it is preferable to perform correction according to the torque ratio of the torque converter and set the processing result to the input shaft torque T.
[0042]
Note that the engagement hydraulic pressure control in the change gear shift is not limited to the above, and any configuration may be used as long as the engagement hydraulic pressure is controlled according to the input shaft torque. Obviously, the structure of the speed change mechanism is not limited to that shown in FIG.
[Brief description of the drawings]
FIG. 1 is a diagram showing a transmission mechanism of an automatic transmission according to an embodiment.
FIG. 2 is a diagram showing a correlation between a combination of operating states of friction engagement elements in the speed change mechanism and a gear position;
FIG. 3 is a control block diagram showing an outline of shift control of the automatic transmission.
FIG. 4 is a flowchart showing estimation control of input shaft torque.
FIG. 5 is a diagram showing characteristics of a response delay time constant in the estimation of the input shaft torque.
FIG. 6 is a time chart showing characteristics of estimation of the input shaft torque.
[Explanation of symbols]
A ... Input shaft torque estimation unit B ... Torque sharing ratio setting unit C ... Necessary torque calculation unit D ... Necessary oil pressure calculation unit B1, B2 ... Brake C1, C2, C3 ... Clutch G1, G2 ... Planetary gear set I / S ... Input Axis O / S ... Output shaft OWC ... One-way clutch T / C ... Torque converter

Claims (2)

異なる摩擦係合要素の締結制御と解放制御とを同時に行う摩擦係合要素の掛け替えによって変速を行うよう構成された自動変速機の変速制御装置において、
エンジントルクを変化させるパラメータに基づいてエンジントルクを推定するエンジントルク推定手段と、
変速判断からエンジン回転速度の変化速度が所定値を超えるまでを、前記パラメータの変化に対するエンジントルクの応答特性におけるむだ時間として判定し、前記むだ時間において前記エンジントルクに基づく変速機構の入力軸トルクの推定値を、変速判断直前の値に保持させるむだ時間処理手段と、
変速判断後にエンジン回転速度の変化速度が前記所定値を超えると、エンジン回転速度に応じて設定される時定数のローパスフィルタで前記エンジントルクを処理し、前記ローパスフィルタで処理された結果を前記入力軸トルクの推定値とするローパスフィルタ手段と、
前記入力軸トルクの推定値に基づいて、変速時における摩擦係合要素の係合油圧を制御する係合油圧制御手段と、
を含んで構成されたことを特徴とする自動変速機の変速制御装置。
In a shift control device for an automatic transmission configured to perform shift by changing friction engagement elements that simultaneously perform engagement control and release control of different friction engagement elements,
Engine torque estimating means for estimating engine torque based on a parameter for changing engine torque;
The time from the shift determination until the change speed of the engine rotation speed exceeds a predetermined value is determined as a dead time in the response characteristic of the engine torque with respect to the change in the parameter, and the input shaft torque of the transmission mechanism based on the engine torque in the dead time is determined. Dead time processing means for maintaining the estimated value at a value immediately before the shift determination;
When the change speed of the engine rotation speed exceeds the predetermined value after the shift determination, the engine torque is processed by a low-pass filter having a time constant set according to the engine rotation speed, and the result processed by the low-pass filter is input. Low-pass filter means for estimating the shaft torque;
Engagement oil pressure control means for controlling the engagement oil pressure of the friction engagement element at the time of shifting based on the estimated value of the input shaft torque ;
A shift control device for an automatic transmission, comprising:
前記エンジントルク推定手段が、エンジントルクを変化させるパラメータとしてのエンジン吸入空気流量又はスロットル開度とエンジン回転速度とに基づいてエンジントルクを推定することを特徴とする請求項記載の自動変速機の変速制御装置。2. The automatic transmission according to claim 1, wherein the engine torque estimating means estimates the engine torque based on an engine intake air flow rate or a throttle opening and an engine speed as a parameter for changing the engine torque. Shift control device.
JP15601999A 1999-06-03 1999-06-03 Shift control device for automatic transmission Expired - Fee Related JP3678608B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15601999A JP3678608B2 (en) 1999-06-03 1999-06-03 Shift control device for automatic transmission
PCT/JP2000/004214 WO2002001094A1 (en) 1999-06-03 2000-06-27 Speed change control method and device for automatic speed change gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15601999A JP3678608B2 (en) 1999-06-03 1999-06-03 Shift control device for automatic transmission
PCT/JP2000/004214 WO2002001094A1 (en) 1999-06-03 2000-06-27 Speed change control method and device for automatic speed change gear

Publications (2)

Publication Number Publication Date
JP2000346189A JP2000346189A (en) 2000-12-12
JP3678608B2 true JP3678608B2 (en) 2005-08-03

Family

ID=26344912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15601999A Expired - Fee Related JP3678608B2 (en) 1999-06-03 1999-06-03 Shift control device for automatic transmission

Country Status (2)

Country Link
JP (1) JP3678608B2 (en)
WO (1) WO2002001094A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544217B2 (en) * 2015-11-24 2019-07-17 トヨタ自動車株式会社 Control device of automatic transmission for vehicle
JP6663479B2 (en) * 2016-03-09 2020-03-13 ジヤトコ株式会社 Vehicle slip lock-up control device
CN109987040B (en) * 2019-03-26 2020-02-18 武汉理工大学 Automobile gear shifting signal identification method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194057A (en) * 1997-09-24 1999-04-09 Denso Corp Shift controller of automatic transmission

Also Published As

Publication number Publication date
JP2000346189A (en) 2000-12-12
WO2002001094A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
US6299565B1 (en) Control strategy for an automatic transmission
US6761664B2 (en) Shift control device and shift control method for vehicular automatic transmission
US20040186645A1 (en) Control apparatus and method for friction device of vehicle
JP2008045567A (en) Vehicle control device
JP3876838B2 (en) High-acceleration speed change control device for vehicle
JP2004150531A (en) Start control device for vehicle
WO2008126813A2 (en) Vehicle, and control method and control apparatus for an automatic transmission
JP2004291908A (en) Control device of automatic transmission and control method
JP3678608B2 (en) Shift control device for automatic transmission
JPH1163201A (en) Speed-change controller for automatic transmission
JP3427563B2 (en) Control device for automatic transmission
JP4158821B2 (en) Vehicle control device
JP2007071300A (en) Controller for automatic transmission
JP2007162856A (en) Control device for automatic transmission
JP2003042280A (en) Shift controller for vehicular automatic transmission
JP2005042809A (en) Transmission control unit of automatic transmission
JP3782942B2 (en) Hydraulic control device for automatic transmission
JP3562401B2 (en) Control device for automatic transmission
JPH10196776A (en) Control device for automatic transmission
US20020082140A1 (en) Speed change control method and device for automatic speed change gear
JP4929929B2 (en) Vehicle control device, control method, program for causing computer to execute the control method, and recording medium recording program
JP3844959B2 (en) Shift control device for automatic transmission
JP2976956B2 (en) Hydraulic control device for automatic transmission for vehicles
JPH02229960A (en) Liquid pressure control device for automatic speed change gear
JP4281766B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees