JP3676407B2 - Refrigerant supply device - Google Patents

Refrigerant supply device Download PDF

Info

Publication number
JP3676407B2
JP3676407B2 JP00351195A JP351195A JP3676407B2 JP 3676407 B2 JP3676407 B2 JP 3676407B2 JP 00351195 A JP00351195 A JP 00351195A JP 351195 A JP351195 A JP 351195A JP 3676407 B2 JP3676407 B2 JP 3676407B2
Authority
JP
Japan
Prior art keywords
refrigerant
chamber
sub
liquid
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00351195A
Other languages
Japanese (ja)
Other versions
JPH08189715A (en
Inventor
英夫 三田
哲哉 後藤
和伸 神田
泰司 藤本
俊之 天野
元昭 寺井
正壽 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Central Japan Railway Co
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Mitsubishi Electric Corp
Central Japan Railway Co
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Mitsubishi Electric Corp, Central Japan Railway Co, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP00351195A priority Critical patent/JP3676407B2/en
Publication of JPH08189715A publication Critical patent/JPH08189715A/en
Application granted granted Critical
Publication of JP3676407B2 publication Critical patent/JP3676407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液体窒素等の冷媒を送給して被冷却部を冷却した後にその冷媒を帰還させる冷媒供給装置に関する。本発明は、例えば、超電導磁石を収納している液体ヘリウムが装填された容器の極低温を維持するために容器を覆うシールド板を液体窒素等の冷媒で冷却する極低温装置に適用できる。
【0002】
【従来の技術】
従来技術として、特公平3−17057号公報に示す「クライオスタット用輻射シールド板の冷却装置」が知られている。このものは、超電導磁石を冷却する液体ヘリウム槽と、液体ヘリウム槽を覆いこれを低温に維持するためのシールド板と、シールド板と熱接触する導管と、導管に液体窒素を送給するためのインペラー式ポンプとを備えている。このインペラー式ポンプでは、液体窒素の送給源となる圧力ヘッドに主羽車の回転の運動エネルギーを変換するため、主羽車を常時回転させなければならない。
【0003】
【発明が解決しようとする課題】
しかし液体窒素等の低温の液状冷媒は潤滑性に欠けるため、主羽車を支えている軸受が摩耗し易く、インペラー式ポンプの寿命が短いという問題がある。更に主羽車を支える軸受における摩擦発熱も大きく、摩擦発熱に起因して低温の液状冷媒が蒸発し易く、冷却効率が低下するという問題がある。
【0004】
本発明は上記した実情に鑑みなされたものであり、その目的は、冷媒を主室に帰還させるにあたりインペラー式ポンプを廃止し得、液体窒素等の低温の液状冷媒を送給して帰還させる際における軸受の摩耗、軸受の摩擦発熱といった不具合を改善して冷却効率を向上させ得るのに有利な冷媒供給装置を提供することにある。
【0005】
【課題を解決する手段】
請求項1の冷媒供給装置は、液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される主室と、
液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される副室と、
主室と副室とをつなぐと共に途中に被冷却部を備え、副室から送給された液状冷媒で被冷却部を冷やした後に冷媒を主室に帰還させる冷媒帰還通路と、
主室の液状冷媒を副室に補給する供給通路と、
供給通路に配設され供給通路を流れる冷媒の流量を規制する規制手段と、
副室の冷媒を加熱し、加熱に伴い増圧した副室のガス状冷媒のガス圧により副室の液状冷媒を冷媒帰還通路に送給すると共に冷媒帰還通路を介して冷媒を該主室に帰還させる熱源手段と、
主室のガス状冷媒のガス圧と副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な圧力調整手段とを具備し、
前記圧力調整手段は、主室のガス状冷媒が収納される空間と副室のガス状冷媒が収納される空間とをつなぐ均圧通路と、該均圧通路を開閉する開閉弁とを備えていることを特徴とするものである。
【0006】
熱源手段は副室の液状冷媒を加熱できるものであればよく、例えば、電気ヒータ方式、装置外方の熱(外気温等)を伝熱する伝熱手段、ガス加熱方式、太陽光加熱方式等を採用できる。
請求項2の冷媒供給装置は、請求項1において、規制手段は、供給通路に配設された開閉弁、一方向弁、オリフィスのうちの何れかであることを特徴とする。
【0007】
請求項3の冷媒供給装置は、請求項1〜2において、冷媒帰還通路から副室への冷媒の流れを阻止する逆流防止弁が、冷媒帰還通路及び副室の少なくとも一方に配設されていることを特徴とする。従って何らかの原因で冷媒帰還通路が過剰に高圧となった場合においても、冷媒帰還通路の冷媒が副室に逆流することを防止できる。よって熱源によるポンプ作用を得るのに有利である。
【0008】
請求項の冷媒供給装置は、前記各請求項において、副室よりも容積の小さな小室が副室に連通して装備され、熱源手段は小室の冷媒を加熱することを特徴とする。
請求項の冷媒供給装置は、前記各請求項において、副室には、副室の液状冷媒に浮遊するフロートが装備されており、フロートは、副室の液状冷媒の一部が進入する小室を備え、熱源手段は小室の冷媒を加熱することを特徴とする。
請求項の冷媒供給装置は、液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される主室と、
液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納され、第1副室と第2副室とを有する副室と、
主室と第1副室とをつなぐと共に途中に被冷却部を備える主通路と、被冷却部の上流側と該第2副室とをつなぐ副通路とを有し、第1、第2副室から送給された液状冷媒で被冷却部を冷やした後に冷媒を主室に帰還させる冷媒帰還通路と、 主室の液状冷媒を第1副室に補給する第1供給通路と、主室の液状冷媒を第2副室に補給する第2供給通路とを有する供給通路と、
供給通路を流れる冷媒の流量を規制し、第1供給通路に配設された第1規制手段と、第2供給通路に配設された第2規制手段とを有する規制手段と、
第1副室の冷媒を加熱する第1熱源手段と、第2副室の冷媒を加熱する第2熱源手段とを有する熱源手段と、
主室のガス状冷媒のガス圧と第1副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な第1圧力調整手段と、主室のガス状冷媒のガス圧と第2副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な第2圧力調整手段とを有する圧力調整手段と、
冷媒帰還通路の主通路から第1副室への冷媒の流れを阻止する第1逆流防止弁と、冷媒帰還通路の副通路から第2副室への冷媒の流れを阻止する第2逆流防止弁とを有する逆流防止弁とを具備し、
第1圧力調整手段は、主室のガス状冷媒が収納される空間と第1副室のガス状冷媒が収納される空間とをつなぐ第1均圧通路と、第1均圧通路を開閉する第1開閉弁とを備え、
第2圧力調整手段は、主室のガス状冷媒が収納される空間と第2副室のガス状冷媒が収納される空間とをつなぐ第2均圧通路と、第2均圧通路を開閉する第2開閉弁とを備えていることを特徴とする。
【0009】
【作用及び発明の効果】
請求項1においては、熱源手段による熱により副室の液状冷媒が加熱される。その結果、副室の液状冷媒の蒸発が促進され、副室の液状冷媒の液面上のガス状冷媒のガス圧が増加する。従って副室のガス状冷媒のガス圧に起因するポンプ作用が得られ、これにより副室の液状冷媒は冷媒帰還通路に送給される。冷媒帰還通路に送給された液状冷媒は、被冷却部を冷却した後に主室に帰還する。帰還の際には、帰還先である主室のガス圧が副室のガス圧よりも低圧とする必要があるが、これは圧力調整手段により実行する。
【0010】
また副室のガス圧が主室のガス圧よりも過剰に増加すると、主室の液状冷媒を副室に補給するのに支障をきたす場合があるが、これは圧力調整手段により是正する。
また上記の様に副室のガス圧が過剰に増加すると、副室の液状冷媒が供給通路を介して主室に逆流するおそれがあるが、この逆流は、供給通路を流れる冷媒の流量を規制する機能をもつ規制手段により規制される。
【0011】
上記した様に請求項1においては熱源手段からの熱により副室の液状冷媒の蒸発を促進させることにより副室のガス圧を増加させ、これによりポンプ作用を生ぜしめ、副室の液状冷媒を冷媒帰還通路に送給し、主室に帰還させ、これにより冷媒を循環させるものである。この様に請求項1においてはインペラー式ポンプを使用せずとも冷媒を循環させ得るので、インペラー式ポンプを廃止でき、インペラー式ポンプを採用していたときに生じる軸受の摩耗や軸受の摩擦発熱等を回避でき、冷却効率を向上させ得る効果が得られる。
【0012】
請求項2においては、規制手段は、供給通路に配設された開閉弁、一方向弁またはオリフィスであるため、開閉弁、一方向弁やオリフィスの流量規制機能により、副室の液状冷媒が供給通路を介して主室へ逆流することを防止するのに有利である。規制手段として開閉弁や一方向弁を採用すれば、供給通路の閉塞を確実に行い得るので、副室の液状冷媒が供給通路を介して主室へ逆流することを防止するのに有利である。また規制手段としてオリフィスを採用すれば、オリフィスは絞り機構であるため機械的可動開閉機構が実質的になく、使用の際における摩耗の不具合を回避するのに一層有利である。
【0013】
請求項においては、圧力調整手段は、主室のガス状冷媒が収納される空間と副室のガス状冷媒が収納される空間とをつなぐ均圧通路と、均圧通路を開閉する開閉弁とで構成されている。そのため、開閉弁による開閉機能により均圧通路の開放を確実に行い得るので、副室のガス状冷媒を主室に短時間に移動でき、これにより主室のガス状冷媒と副室のガス状冷媒とを短時間のうちに同圧にできる。従って、主室の液状冷媒を供給通路を介して副室に補給するのに有利である。
【0014】
請求項においては、冷媒帰還通路から副室への冷媒の流れを阻止する逆流防止弁が配設されているため、万一、冷媒帰還通路側が高圧となった場合においても、冷媒帰還通路の冷媒が副室へ逆流することを防止できる。従って副室の冷媒を冷媒帰還通路に送給する送給性が確保され、被冷却部を冷却するのに有利である。
【0015】
上記した様に各請求項によれば、機械的可動部は、開閉弁、一方向弁、逆流防止弁だけであり、しかもこれらの弁は従来用いられているインペラー式ポンプとは異なり、24時間連続駆動しているのではなく、間欠的に僅かの時間動くだけである。例えば、主室の冷媒を副室に補給する時に開放作動させるものである。したがって、摩耗防止の面で有利であり、冷媒供給装置の耐久性を向上するのに有利である。
【0016】
ところで、副室の液状冷媒の量が多い場合には、熱源手段によって副室の液状冷媒を加熱して蒸発を促進させる効率が低下し、副室のガス状冷媒のガス圧を増す効率が低下する。例えば、熱源手段からの熱によって副室の液状冷媒を加熱したとしても、副室の液状冷媒の量が多い場合には、一旦加熱された液状冷媒は他の液状冷媒により冷やされ、短時間のうちに低温に戻り、液状冷媒の蒸発量が確保されず、副室のガス状冷媒のガス圧の増加の程度が低減される不具合がある。この点請求項においては、副室よりも容積の小さな小室が副室に連通して装備されており、熱源手段は小室の冷媒を加熱しその蒸発を促進させる。この様に冷媒量が少ない小室内の冷媒を加熱するので、冷媒の加熱効率が向上し、副室のガス状冷媒のガス圧を短時間のうちに高めるのに有利である。従って熱源手段によるポンプ作用の発揮に有利である。
【0017】
請求項においては、副室には、副室の液状冷媒に浮遊するフロートが装備されており、フロートは、副室の液状冷媒の一部が進入する小容積の小室を備え、熱源手段は小室の冷媒を加熱する。この様に副室の容積よりも冷媒量が少ない小室の冷媒を加熱するので、前述の様に冷媒の加熱効率が向上し、副室のガス状冷媒のガス圧を短時間のうちに高めるのに有利である。従って熱源手段によるポンプ作用の発揮に有利である。
【0018】
請求項によれば、主室から第1、第2副室の内の一方に液状冷媒を補給している際においても、他方の副室を加熱することで他方の副室内の液状冷媒を冷媒帰還通路に送給することができる。従って、被冷却部を効率良く冷却することができる。
【0019】
【実施例】
(実施例1)
図1は本発明の実施例1を示す。
図1に示す様に、主室を構成する大容積の冷媒主槽10、副室を構成する小容積の冷媒副槽3が配設されている。双方には、極低温の液体窒素からなる液状冷媒が収納されている。この冷媒主槽10の液相部10aは、開閉弁としての供給弁5及び供給通路5nを介して冷媒副槽3の下部に連通している。また冷媒主槽10は、開閉弁としての均圧弁4及び均圧通路4nを介して冷媒副槽3の上部に連通している。ここで図1から理解できる様に、供給通路5nと冷媒副槽3との接続口5xよりも高い位置に均圧通路4nの一端4aが接続しており、供給通路5nと冷媒主槽10との接続口5yよりも高い位置に均圧通路4nの他端4bが接続している。
【0020】
冷媒副槽3の液相部3aの底部には導管6が接続されている。導管6の中間部は被冷却部としてのシールド板11に熱的に接触している。導管6の他端は凝縮器7の入口に連通している。凝縮器7は熱交換面積が増加しており、冷凍を発生し得る冷凍機1pの低温部1との熱交換により冷却される。また冷媒主槽10のガス相部10bには、熱交換面積が増加した熱交換器9が設けられている。凝縮器7の出口は導管8を介して熱交換器9に連通している。なお導管6、8、凝縮器7、熱交換器9は、冷媒を冷媒主槽10に帰還させる冷媒帰還通路を構成する。
【0021】
更に、冷媒副槽3の液相部3aの液状冷媒を加熱できる様に、液状冷媒に浸漬した状態で熱源12(熱源手段)が設けられている。本実施例では熱源12は電気ヒータ方式であり、発熱線と、発熱線を被覆する絶縁被覆層とを備えている。熱源12は冷媒副槽3の内部に液状冷媒に浸漬状態で設けられているが、これに限らず冷媒副槽3の外部に設けても良いし、あるいは両方に設けても良い。
【0022】
さて、冷媒副槽3のガス相部3bのガス圧が冷媒主槽10のガス相部10bのガス圧よりも高い場合であっても、均圧弁4を開にすれば均圧通路4nが連通するので、冷媒副槽3のガス相部3bのガス圧と、冷媒主槽10のガス相部10bのガス圧とが基本的には同圧となる。従って均圧弁4は、冷媒副槽3のガス相部3b及び冷媒主槽10のガス相部10bのガス圧を調整する圧力調整手段として機能する。
【0023】
この様にガス相部3b及びガス相部10bを同圧にした状態で供給弁5を開にすれば、液面が高い冷媒主槽10の液相部10aの液状冷媒は、その液頭圧により、液面の低い冷媒副槽3に流入する。よって、冷媒副槽3の液相部3aの液状冷媒の液面は、冷媒主槽10の液相部10aの液状冷媒の液面と同じ高さになるまで自動的に補給される。
【0024】
次に均圧弁4及び供給弁5を閉にする。この状態で、熱源12からの熱により冷媒副槽3の液相部3aの液状冷媒を加熱すれば、液相部3aの液状冷媒の蒸発が促進される。その結果、冷媒副槽3のガス相部3bのガス圧P1が、帰還先である冷媒主槽10のガス相部10bのガス圧P2より高くなる。よって両者の差圧(P1−P2)に起因するポンプ作用が得られ、冷媒副槽3の液相部3aの液状冷媒は導管6に流入し、シールド板11を冷却する。
【0025】
このとき液状冷媒の一部又は全部がシールド板11との熱交換により蒸発し、凝縮器7に流入する。凝縮器7に流入した冷媒は、冷凍機1pの低温部1で発生している冷凍により更に一層冷却され、液化が促進される。よって、凝縮器7において冷媒は冷媒主槽10内のガス相部10bよりも低い温度となる。この様に低温部1で冷却された冷媒は、導管8を通って熱交換器9を経て冷媒主槽10に帰還する。この様にして冷媒の循環がなされる。
【0026】
ところで、外部より冷媒主槽10に侵入する熱(伝導熱、輻射熱等)の影響により、冷媒主槽10の液相部10aの液状冷媒は蒸発し、冷媒主槽10内のガス相部10bのガス圧が過剰に高くなり易い。この様にガス相部10bのガス圧が過剰に高くなれば、帰還先である冷媒主槽10のガス相部10bのガス圧P2が冷媒副槽3のガス相部3bのガス圧P1よりも高くなる。その結果、冷媒副槽3の冷媒は導管6、8を通って熱交換器9に流入できず、つまり冷媒副槽3から送給された冷媒は冷媒主槽10に帰還できない不具合が生じる。
【0027】
この点本実施例では熱交換器9に流入する冷媒は前述した様に冷凍機1pの低温部1で一層低温に冷却されるので、熱交換器9の低温性は維持される。よって熱交換器9において冷媒主槽10内のガス相部10bのガス状冷媒を効果的に冷却して液化させることができる。液化した冷媒は冷媒主槽10内の液相部10aに落下する。従って冷媒主槽10内のガス相部10bのガス圧の過剰の高圧化を防止でき、ひいては冷媒副槽3から冷媒主槽10への冷媒の帰還性は確保される。
【0028】
また本実施例では使用に伴い冷媒副槽3の液相部3aの液状冷媒が不足し、その液面が低下する。この場合には、冷媒副槽3に冷媒主槽10の液状冷媒を補給する必要がある。そこで再び均圧弁4を開とする。均圧弁4が開になると前述の様に均圧通路4nが連通するので、冷媒副槽3のガス相部3bのガス圧と冷媒主槽10のガス相部10bのガス圧とが短時間で同圧となる。この状態で供給弁5を開にすると供給通路5nが連通し、冷媒主槽10の液相部10aの液状冷媒は液頭圧により供給通路5n及び供給弁5を通って冷媒副槽3の液相部3aに直ちに補給される。
【0029】
上記の様にして本実施例では熱源12からの熱によるポンプ作用により冷媒主槽10の液状冷媒を循環させて再使用できるので、液状冷媒を外部より補給することなく操業でき、または補給するとしても液状冷媒の補給量を低減させ得、コスト低減に有利である。
ところで本実施例において機械式可動機構は均圧弁4及び供給弁5だけであり、しかも均圧弁4及び供給弁5は、従来のインペラー式ポンプの軸受と異なり、連続して動いているのではなく、冷媒主槽10の液状冷媒を冷媒副槽3に補給する際に一時的に開放作動するだけである。従って均圧弁4や供給弁5の作動時間が短くなり、均圧弁4や供給弁5における摩耗を無くし得るか大幅に低減でき、摩耗や摩擦発熱に起因する不具合を解消でき、冷却装置の耐久性の向上に有利である。
【0030】
上記した様に本実施例では熱源12に熱量を供給し、冷媒副槽3の液相部3aの液状冷媒を蒸発させれば、冷媒副槽3のガス相部3aのガス圧を増加させることができ、ポンプ圧力を得ることができる。この様にポンプ圧力を得ることができるので、導管6の冷媒が冷媒副槽3へ逆流することを回避または軽減でき、即ち、導管6へ液状冷媒を確実に送給でき、シールド板11を冷却する効率が高い。
【0031】
また上記の様に供給弁5及び均圧弁4が共に閉の時に熱源12により熱を加えると、冷媒副槽3のガス相部3bのガス圧を効果的に高圧にできる。よってポンプ効率が向上すると共に、導管6から冷媒副槽3への逆流を回避するのに有利である。
なお場合によっては熱源12を常時オンとして、冷媒副槽3へ熱を常時加える様にしても良い。
【0032】
本実施例では均圧弁4の開閉、供給弁5の開閉は手作業あるいは制御装置による制御により行い得る。
また図1に示す例において、冷媒主槽10を冷媒副槽3よりも高い位置に配置することもできる。この場合には冷媒主槽10内の液状冷媒の位置エネルギが増加する。よって供給弁5の開放時において冷媒主槽10の液状冷媒を冷媒副槽3に補給し易くなると共に、冷媒副槽3の液状冷媒が冷媒主槽10に逆流することを回避するのに有利である。
【0033】
尚、供給弁5、均圧弁4等が万一、故障するおそれもある。この対策として次の様にできる。即ち、導管6と凝縮器7との間に非常時用の大気開放弁を配設すると共に凝縮器7の下流に非常時用の開閉弁を配設すれば、万一、供給弁5及び均圧弁4のうち少なくとも一方が故障した場合でもシールド板11を冷却することができる。換言すれば、万一、供給弁5及び均圧弁4の内少なくとも一方が故障した場合であっても、供給弁5及び均圧弁4を開状態にし、前記非常時用の大気開放弁を開放すると共に前記非常時用の開閉弁を閉塞することにより、冷媒主糟10内の液状冷媒が空になるまで、冷媒主槽10内の液状冷媒を非常用の大気開放弁から大気に放出すれば、導管6を流れる冷媒によりシールド板11を冷却することが期待できる。
【0034】
(適用例)
図2は適用例を示す。この例は、超電導磁石21を収納している容器20と、容器20の外側に配置されている常温側の真空槽25と、液体ヘリウムが貯溜されている液体ヘリウム槽20aとを備えている。液体ヘリウム槽20aの液体ヘリウムが容器20に装填されており、これにより容器20に収納されている超電導磁石21が約4.4K程度の極低温に維持されている。
【0035】
更に真空槽25から容器20側に侵入する輻射熱、伝導熱を防ぐため、超電導磁石21を収納した容器20の周りを被冷却部としてのシールド板11が覆っている。この例では、シールド板11に熱的に接触している導管6に、冷媒副槽3内の液体窒素からなる液状冷媒を送給してシールド板11を冷却する。これにより容器20、超電導磁石21の極低温性が維持され易くなる。
【0036】
この例では、図2から理解できる様に、冷媒主槽10は断熱支持材16を介して真空槽25に固定されている。
ここで容器20は断熱支持材23、23a、シールド板11、断熱支持材24を介して真空槽25に固定されている。なお図2において30は液体ヘリウムを製造するジュールトムソン回路を備えた冷凍機であり、30aはコンプレッサ、32は極低温を生成する第1段の膨張空間、31はより低温の極低温を生成する第2段の膨張空間、33は予冷熱交換器、34aはヘリウムの低圧導管、34bはヘリウムの高圧導管、34wはジュールトムソン弁を示す。
【0037】
尚、図2に示す冷凍機1pとして、液体ヘリウムを作るジュールトムソン回路の冷凍機30を併用しても良い。即ち、冷媒帰還通路を構成する凝縮器7を冷凍機30の膨張空間32、33の少なくとも一方に熱的に接触させれば良い。これにより、図2に示す冷凍機1pが不要になることから、コスト、質量、占有空間及び所要電力等の点で一層有利になる。
【0038】
(均圧弁4、供給弁5の作動)
タイムチャートである図3を参照して均圧弁4、供給弁5の開閉作動について更に説明を加える。基本的には、均圧弁4の開と供給弁5の開とは時間的に重なるものであり、均圧弁4の閉と供給弁5の閉とは時間的に重なるものである。しかし図3(A)〜(E)に示す種々の形態で均圧弁4、供給弁5を開閉作動させることができる。
【0039】
図3(A)は、均圧弁4、供給弁5が時間的に同時に開閉した場合であり、均圧弁4、供給弁5が開直後に、冷媒副槽3のガス相部3bのガス状冷媒が均圧通路4n及び均圧弁4を通って冷媒主槽10のガス相部10bに流入し、ガス相部3bとガス相部10bとが同圧となる。これにより冷媒主槽10の液相部10aの液状冷媒が供給弁5を介して冷媒副槽3に流入する。
【0040】
図3(B)は、供給弁5を均圧弁4より僅かに遅れて(ΔT1)開にし、均圧弁4、供給弁5を同時に閉にせしめる場合である。この場合には、均圧弁4が開直後に、冷媒副槽3のガス相部3bのガス状冷媒が均圧弁4を通って冷媒主槽10に流入し、冷媒副槽3のガス相部3bと冷媒主槽10のガス相部10bとが同圧となる。図3(B)に示す形態では、この様に同圧となった後に供給弁5が開になるので、供給弁5の開直後において冷媒副槽3の液相部3aの液状冷媒が冷媒主槽10の液相部10aに逆流することを確実に防止できる。
【0041】
図3(C)は、供給弁5を均圧弁4より僅か早く(ΔT2)開にし、均圧弁4、供給弁5を同時に閉にする場合である。この場合には、供給弁5が開となった後、ΔT2経過後に均圧弁4が開になる。この様に均圧弁4の開がΔT2ぶん遅れるので、冷媒副槽3のガス相部3bと冷媒主槽10のガス相部10bの圧力が同圧になるまでの間、冷媒副槽3の液状冷媒は冷媒主槽10に逆流するおそれがある。なおかかる逆流は場合によっては次の様に利用することも可能である。即ち、熱源12により若干昇温した冷媒副槽3の余分の液状冷媒を極低温側の冷媒主槽10に逆流させて戻すのに有利である。
【0042】
図3(D)は、均圧弁4、供給弁5を同時に開とし、供給弁5を均圧弁4より僅か早く(ΔT3)閉にする場合である。ΔT3時間においては、均圧弁4は開であるものの供給弁5が既に閉になっているので、冷媒副槽3の液相部3aの液状冷媒は冷媒主槽10に逆流しない。
図3(E)は、均圧弁4、供給弁5を同時に開にし、供給弁5を均圧弁4より僅か遅く(ΔT4)閉にする場合である。
【0043】
冷媒副槽3のガス相部3bの圧力が上昇するのに、ある程度の時間を要するので、供給弁5が均圧弁4より僅かに遅く(△T4後に)閉になっても、ΔT4時間が短時間であれば、冷媒副糟3から冷媒主糟10に逆流する液状冷媒の量は、僅かであり、実質的に問題ない。
(実施例2)
図4は実施例2を示す。この例は基本的には前記した実施例1と同様の構成であり、同様の作用効果を奏する。更にこの例では次の特徴をもつ。即ち、被冷却部としてのシールド板11の熱容量が小さな場合にはシールド板11は外部の熱の影響を受けて昇温し易い。この場合、熱源12によるポンプ作用が休止している時、つまり冷却副槽3から導管6への液状冷媒の送給が休止すると(即ち、供給弁5、均圧弁4が開であり、冷媒主槽10の液状冷媒を冷媒副槽3に補給している時)、昇温したシールド板11からの伝熱により導管6内の冷媒が昇温蒸発して導管6内の圧力が急上昇し、導管6の圧力が冷媒副槽3の圧力より高くなるおそれがあり、正常なポンプ作用が得られない。この場合にはシールド板11に冷媒が正常に送給されず、導管6内の冷媒が冷媒副槽3に逆流するおそれがある。この場合、導管6への冷媒送給に支障をきたし、被冷却部であるシールド板11を冷却する効率が低下する。そこで図4に示す様に、冷媒副槽3と導管6の間に逆流防止弁13を設け、そして冷媒副槽3から導管6への液状冷媒の送給が休止する際に、逆流防止弁13を閉にし逆流防止作用を得る。
【0044】
この様にすれば被冷却部としてのシールド板11の熱容量が小さくシールド板11が昇温し易い場合であっても、導管6の冷媒が冷媒副槽3に逆流することを防止でき、シールド板11を効果的に冷却できる。
(実施例3)
図5は実施例3を示す。この例も基本的には前記した実施例1と同様の構成であり、同様の作用効果を奏する。
【0045】
この例では、図4に示す逆流防止弁13に代えて、一方向弁13aを採用し、冷媒副槽3から導管6の方向にのみ冷媒が流れる様にせしめ、導管6から冷媒副槽3へは冷媒が流れぬ様にしている。また、図5に示す如く供給弁5として一方向弁を採用すれば、冷媒副槽3のガス相部3bの圧力が冷媒主槽10のガス相部10bの圧力よりも高い時に、冷媒副槽3から冷媒主槽10に液状冷媒が逆流するのを防止できる。
【0046】
(実施例4)
図6は実施例4を示す。この例は基本的には前記した実施例1と同様の構成であり、同様の作用効果を奏する。この例では、冷媒主槽10のガス相部10bに連通する大気開放弁14を設け、冷媒主槽10のガス相部10bの圧力が所定の圧力以上になると、大気開放弁14を自動的に開にする様にしたものである。
【0047】
シールド板11より熱を受けて導管6内の冷媒は一部蒸発してガス化することがある。ここで、冷凍機1pの低温部1で発生する冷凍量が低下した場合、あるいは、冷凍機1pの冷凍能力が小さな場合には、導管6で一部蒸発した冷媒は凝縮器7で充分に液化されず、冷媒の一部は蒸発気体のまま導管8、熱交換器9を通って、冷媒主槽10のガス相部10bに流入するため、冷媒主槽10のガス相部10bの圧力が高くなる傾向となる。この結果、冷媒帰還先である冷媒主槽10のガス相部10bのガス圧が過剰に高くなると共に、循環する液状冷媒の温度が適温よりも上昇し、シールド板11の温度が高くなるという不具合が生じる。又、冷媒主槽10と冷媒副槽3のガス圧力が異常に上昇し、冷媒主槽10や冷媒副槽3が破壊する恐れがあるという不具合を生じる。そこでこの例では冷媒主槽10のガス相部10bが所定の圧力以上になると、大気開放弁14が自動的に開になり、冷媒主槽10のガス状冷媒の過剰の圧力が大気開放弁14を通って大気に放出される。よってこの例では冷凍機1pの低温部1で発生する冷凍量が低下した場合などであっても、冷媒主槽10や冷媒副槽3の破壊を防止できる。
【0048】
なお大気開放弁14は、冷媒主槽10のガス相部10bのガス圧を調整する圧力調整手段として機能する。この大気開放弁14は、所定の圧力以上になるとバネのバネ力に抗して自然に開になる圧力応答式のリリーフ弁でも良いし、電磁力、電動力、空圧、油圧等で作動する弁でも良い。
(実施例5)
図7に示す実施例5は実施例4の変形であり、大気開放弁14に代えて、常時において大気に連通している大気連通パイプ15(圧力調整手段)を採用したものである。
【0049】
導管6の液状冷媒はシールド板11を熱交換により冷却すると、冷媒の一部が蒸発し、液体と蒸気の二相流となって、冷媒主槽10のガス相部10bに流入することは前述の通りである。冷媒主槽10においては液状冷媒は液相部10aに溜まり、過剰のガス状冷媒だけが大気連通パイプ15を通って大気に放出される。したがって、冷媒主槽10のガス相部10bの過剰圧を防止しつつ液状冷媒を無駄に大気に放出せず、よって液状冷媒の有効利用に有利である。即ち冷凍機1pが設けられていない場合であっても、冷媒主槽10のガス相部10bの圧力の過剰化を防止できるので、熱源12による良好なポンプ循環作用が得られ、かかるポンプ循環作用により液状冷媒を導管6に確実に送給でき、シールド板11を効率良く冷却できる
(実施例6)
図8及び図9は実施例6を示す。この例も前記した実施例1と同様の構成であり、同様の作用効果を奏する。
【0050】
この例では、冷媒副槽102、103を2台並列に設けている。冷媒副槽102は第1副室として機能し、冷媒副槽103は第2副室として機能する。液体窒素等の低温の液状冷媒が入っている主室として機能する冷媒主槽112は、1個である。冷媒主槽112の液相部112aは、第1供給通路106n及び第1規制手段としての供給弁106を介して冷媒副槽102の液相部102aに接続しており、均圧通路104n及び第1圧力調整手段としての均圧弁104を介して冷媒副槽102のガス相部102bに接続している。
【0051】
また冷媒主槽112の液相部112aは、第2供給通路107n及び第2規制手段としての供給弁107を介して冷媒副槽103の液相部103aに接続しており、均圧通路105n及び第2圧力調整手段としての均圧弁105を介して冷媒副槽103のガス相部103bに接続している。
冷媒副槽102の液相部102aと導管108とをつなぐ導管108xには、第1逆流防止弁としての圧力応答式の一方向弁117が設けられている。冷媒副槽103の液相部103aと導管108とをつなぐ副通路118yには、第2逆流防止弁としての圧力応答式の一方向弁118が設けられている。従って冷媒副槽102、103から導管108に向かう方向にのみ液状冷媒が流れる様にされ、逆方向には流れぬ様にされている。
【0052】
この導管108は被冷却部としてのシールド板113に熱的に接触している。凝縮器109の出口は導管110を介して冷媒主槽112のガス相部112bの熱交換器111に連通している。従って図8において導管108x、108、凝縮器109、導管110、熱交換器111は、冷媒副槽102の液状冷媒を冷媒主槽112に帰還させる主通路を構成する。
【0053】
更に冷媒副槽102、103の液相部102a、103aに熱が伝わる様にそれぞれ第1熱源手段としての熱源114、第2熱源手段としての熱源115が設けられている。熱源114、115は、冷媒副槽102、103の内部に設けられているが、外部でも、あるいは両方に設けても良い。
図9に示す様に冷媒主槽112は断熱支持材116を介して真空槽25に固定されている。液体ヘリウム槽20aの液体ヘリウムが容器20に装填されており、超電導磁石21を約4.4Kに冷却している。被冷却部としてのシールド板113は、超電導磁石21を収納している容器20の周りを覆っており、これにより容器20、超電導磁石21の極低温性が維持され易くなっている。容器20は、断熱支持材23、23a、シールド板113、断熱支持材24を介して、常温側の真空槽25に固定されている。
【0054】
この例においても図8から理解できる様に冷媒主槽112の液相部112aの液状冷媒が、順次、各々の冷媒副槽102、103、一方向弁117、118、導管108、凝縮器109、導管110、熱交換器111に送給され、そして冷媒主槽112に帰還する。
この例では図8において一方の冷媒副槽102に冷媒主槽112の液状冷媒を補給している時(即ち、均圧弁104と供給弁106は開の時)には、熱源115の熱によるポンプ作用により他方の冷媒副槽103の液状冷媒が一方向弁118を通って導管108に送給され(即ち、均圧弁105と供給弁107は閉の時)ている。
【0055】
また逆に、他方の冷媒副槽103に冷媒主槽112の液状冷媒を補給している時(即ち、均圧弁105と供給弁107は開の時)には、熱源114によるポンプ作用により、一方の冷媒副槽102の液状冷媒が一方向弁117を通って導管108x、導管108に送給される(即ち、均圧弁104と供給弁106は閉の時)。
【0056】
この例では上記の様に冷媒副槽103及び102の双方で交互にポンプ作用が得られるので、液状冷媒を導管108x、導管108に途切れることなく連続的に送給できる。この例でも液状冷媒を冷媒主槽112に帰還させて循環させ得、従って前記した実施例同様に冷媒を再使用できるので、冷媒を外部より補給することを回避でき、また補給するとしても少なくて済む。
【0057】
図10は、前記した均圧弁104、供給弁106の開閉状態と均圧弁105、供給弁107の開閉状態を示したタイムチャートを示す。図10(A)〜(C)に示す種々の形態で各弁を開閉させ得る。
図10(A)は、均圧弁104、供給弁106が開の時において均圧弁105、供給弁107を閉とすると共に、均圧弁104、供給弁106が閉の時に均圧弁105、供給弁107を開とする様にしている場合である。図10(A)に示す形態では、冷媒副槽103及び102の双方で交互にポンプ作用が得られるので、液状冷媒を導管108x、導管108に途切れることなく連続的に送給するのに有利である。
【0058】
図10(B)は均圧弁104、供給弁106が開から閉になると同時に、均圧弁105、供給弁107が開となる様にした場合である。図10(B)に示す形態でも、冷媒副槽103及び102の双方で交互にポンプ作用が得られるので、液状冷媒を導管108に途切れることなく連続的に送給するのに有利である。
図10(C)は、均圧弁104、供給弁106が開から閉になる僅か(ΔT6)前に、均圧弁105、供給弁107を開になる様にした場合である。この形態では、均圧弁104と供給弁106、均圧弁105と供給弁107が同時に開となる短い時間(ΔT6)には導管108に液状冷媒が送給されない。
【0059】
なお図8に示す例は、2台の冷媒副槽102、103を設けた例であるが、これに限定されず、冷媒副槽は3台以上でも良い。
(実施例7)
図示しない実施例7では、図8に示す一方向弁117、118を電磁力、電動力、空圧、油圧等で作動する逆流防止弁(図4に示す逆流防止弁13と同じ形態のもの)に置き換えている。又、供給弁106、107を一方向弁に置き換えても良い。
【0060】
(実施例8)
図11に示す実施例8では冷媒主槽112のガス相部112bに大気開放弁121(図6に示す例の大気開放弁14と同じもの)を設けた例である。そして、冷媒主槽112のガス相部112bの圧力が所定の圧力以上になると大気開放弁121を開放する。大気開放弁121は、バネ力で所定の圧力以上になると開になるリリーフ弁でも、電磁力、電動力、空圧、油圧等で作動する弁でも良い。
【0061】
(実施例9)
図12は実施例9を示す。この例では、副槽としての冷媒副槽203のうち、ガス相部203bと液相部203aとを縦型の連通管202で連通する。連通管202の流路断面積を冷媒副槽203の断面積より小さくする。従って連通管202は小室を構成する。連通管202の外面に熱源205を設ける。この様にすれば、連通管202内の少量の液状冷媒を熱源205で加熱すれば良いため、加熱効率が向上し、少量の熱量を熱源205に供給するだけで、連通管202内の液状冷媒を短時間のうちに蒸発でき、従ってガス相部203bの圧力を短時間に増圧でき、良好なるポンプ作用を得ることができる。
【0062】
ところで、振動や衝撃等が作用して冷媒副槽203の液状冷媒の液面が揺れる場合には、冷媒副槽203の液状冷媒を熱源205で加熱したとしても、加熱された液状冷媒が液面の揺動に伴い攪拌され、再び低温となり、これにより冷媒の蒸発が促進されず、充分なポンプ作用が得られないおそれがある。この点この例では、冷媒副槽203の液状冷媒にフロート204を浮遊させているので、フロート204で液状冷媒の液面の揺れを効果的に防ぐことができ、上記不具合を軽減または回避できる。従って本冷却装置を走行車両例えば磁気浮上車両に適用する場合において、冷媒副槽203の液状冷媒の液面の揺れを効果的に防ぐことができ、有利である。なお200は冷凍機、201は冷凍発生部である。
【0063】
更にこの例では冷媒副槽203の液状冷媒の液面にフロート204が浮遊しており、液状冷媒の液面からのフロート204の高さH1(図12参照)が高い。そのため冷媒副槽203のガス相部203bの容積がそのぶん小さくなる。よって熱源205からの熱によりガス相部203bのガス圧を短時間のうちに増加するのに有利であり、ポンプ作用の応答性を高め得る。
【0064】
(実施例10)
図13に示す実施例10では、熱源として発熱ヒータ205aを採用し、発熱ヒータ205aを連通管202に固着せしめている。そして発熱ヒータ205aの両端のリード線207、208を、真空槽25に気密に固着されたハーメティックシール211を介して、真空槽25の外の電源209に接続している。
【0065】
この例においても前述同様にフロート204が浮遊しており、冷媒副槽203のガス相部203bの容積がそのぶん小さくなり、発熱ヒータ205aの発熱によりガス相部203bのガス圧を短時間のうちに増加するのに有利である。
(実施例11)
図14に示す実施例11では、熱源として、熱伝導性の良好な熱伝導板205b(銅板、アルミ板、平網銅線等)を装備している。そして熱伝導板205bの一端側を連通管202に固着せしめ、他端側を連通管202より温度の高い所、例えば、真空槽25に接続している。この例では、連通管202の容積は冷媒副室203の容積よりも小さいため、熱伝導板205bからの熱により連通管202の液状冷媒が効果的に加熱され、蒸発が促進される。
【0066】
(実施例12)
図15に示す実施例12では、冷媒副槽203の液状冷媒の液面にフロート204を浮遊させると共に、連通管202の液状冷媒の液面に小型のフロート217を浮遊させている。フロート217のうち液状冷媒に浸漬している軸状部分に、熱源として発熱ヒータ206をコイル状に巻き付け、発熱ヒータ206の両端をリード線207、208、ハーメティックシール210、211を介して、真空槽25の外に設けた電源209に接続している。
【0067】
この例では連通管202の液状冷媒の液面に浮遊するフロート217に発熱ヒータ206を装備するので、連通管202の液面付近の液状冷媒を集中的に加熱でき、従って液状冷媒の蒸発性の確保に有利であり、良好なるホンプ作用を得るのに有利である。なおこの例では冷媒副槽203が1台装備されているが、これに限らず2台以上でも良い。
【0068】
(実施例13)
図16は実施例13を示す。冷媒副槽203の外面、又は、内部に熱源215を設けている。熱源215は冷媒副槽203の液状冷媒の液面付近に位置しているので、液面付近の液状冷媒を集中的に加熱でき、冷媒副槽203のガス相部203bの圧力を効率よく増加させるのに有利となり、これにより良好なポンブ作用が得られ、液状冷媒を導管212に送給し得る。なお熱源215は発熱ヒータでも、熱伝導の良好な部材、例えば銅板、アルミ板、平網銅線等の伝導板でも良い。
【0069】
(実施例14)
図17は実施例14を示す。この例では冷媒副槽203の液状冷媒にフロート214が浮遊しており、フロート214の内部には小さな容積の小室214bが設けられている。小室214bの液状冷媒に熱源として発熱ヒータ216を配置している。そして、小室214bの下面に連通孔214a、上面にガス相部203bに連通するガス孔214cを設けている。そして、発熱ヒータ216の両端のリード線207、208をハーメティックシール210、211を介して、真空槽25の外の電源209に接続している。
【0070】
なお発熱ヒータ216によって加熱されて蒸発したガス状冷媒が、極低温の液相部203aに流入すると、一旦加熱された冷媒が他の液状冷媒に触れて再び冷却され、液化されるので、ガス相部203bの圧力が高くなりにくく、良好なるポンプ作用が得られにくい。この点この例では、発熱ヒータ216によって加熱され蒸発したガス状冷媒は、フロート214に形成したガス孔214cを通って冷媒副槽203のガス相部203bに流入し、ガス相部203bの圧力を増加させ、良好なるポンプ作用を獲得するのに有利である。ポンプ作用により冷媒副槽203の液状冷媒は、逆流防止弁としての一方向弁13aを介して導管6に送給される。
【0071】
更にこの例では、小室214bの少量の液状冷媒を加熱すれば良いので、少量の熱量を発熱ヒータ216に供給するだけで、ガス相部203bの圧力を短時間のうちに増圧できポンプ作用を発揮できる。
(実施例15)
図18は実施例15を示す。冷媒主槽223の外面のうち真空槽25と対面している領域に第1のスーパーインシュレイション224を多層に巻く。更に第1のスーパーインシュレイション224の外面に導管212、212xを熱的に接触せしめる。更に導管212、212xの外面側に第2のスーパーインシュレイション225を多層に巻く。スーパーインシュレイション224、225は、輻射熱を反射するアルミ蒸着フィルムと、断熱性をもつ樹脂製スペーサとを積層したものである。ここで、冷媒副槽203より圧送された液状冷媒は導管212、212x内を流れている。この様にすれば、スーパーインシュレイション224、225は、導管212、212x内を流れる液状冷媒で冷却されるので、第1のスーパーインシュレイション224の外面温度は、冷媒主槽223の液相部223aの液状冷媒の温度にほぼ等しくなる。その結果、外部の熱が第1のスーパーインシュレイション224から冷媒主槽223に侵入することを効果的に防止でき、冷媒主槽223の極低温の維持に有利となる。
【0072】
なお冷媒主槽223は断熱支持材222、シールド板220、断熱支持材222を介して真空槽25に固定されている。
その他、本発明は上記しかつ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で必要に応じて適宜選択できるものである。
【図面の簡単な説明】
【図1】実施例1を示し、装置の模式的構成図である。
【図2】適用例を示し、超電導磁石装置の断面図である。
【図3】均圧弁及び供給弁の開閉形態を示すタイムチャートである。
【図4】実施例2を示し、装置の模式的構成図である。
【図5】実施例3を示し、装置の模式的構成図である。
【図6】実施例4を示し、装置の模式的構成図である。
【図7】実施例5を示し、装置の模式的構成図である。
【図8】実施例6を示し、装置の模式的構成図である。
【図9】実施例6の適用例を示し、超電導磁石装置の断面図である。
【図10】均圧弁及び供給弁の開閉形態を示すタイムチャートである。
【図11】実施例8を示し、装置の模式的構成図である。
【図12】実施例9を示し、装置の模式的構成図である。
【図13】実施例10を示し、装置の模式的構成図である。
【図14】実施例11を示し、装置の模式的構成図である。
【図15】実施例12を示し、装置の模式的構成図である。
【図16】実施例13の適用例を示し、超電導磁石装置の断面図である。
【図17】実施例14を示し、装置の模式的構成図である。
【図18】実施例15を示し、装置の模式的構成図である。
【符号の説明】
図中、3は冷媒副槽(副室)、4は均圧弁(圧力調整手段、開閉弁)、4nは均圧通路、5は供給弁(開閉弁)、5nは供給通路、6及び8は導管(冷媒帰還通路)、10は冷媒主槽(主室)、11はシールド板(被冷却部)、12は熱源(熱源手段)、13は逆流防止弁、14は大気開放弁(圧力調整手段)、202は連通管(小室)、204及び217はフロート、214bは小室を示す。
[0001]
[Industrial application fields]
The present invention relates to a refrigerant supply device that feeds a refrigerant such as liquid nitrogen and cools a portion to be cooled and then returns the refrigerant. The present invention can be applied to, for example, a cryogenic apparatus that cools a shield plate that covers a container with a refrigerant such as liquid nitrogen in order to maintain the cryogenic temperature of the container in which liquid helium containing a superconducting magnet is loaded.
[0002]
[Prior art]
As a prior art, “a cooling device for a radiation shield plate for cryostat” disclosed in Japanese Patent Publication No. 3-17057 is known. This includes a liquid helium tank for cooling the superconducting magnet, a shield plate for covering and maintaining the liquid helium tank at a low temperature, a conduit in thermal contact with the shield plate, and for supplying liquid nitrogen to the conduit. And an impeller pump. In this impeller pump, the main impeller must be constantly rotated in order to convert the kinetic energy of the rotation of the main impeller into a pressure head that is a supply source of liquid nitrogen.
[0003]
[Problems to be solved by the invention]
However, since a low-temperature liquid refrigerant such as liquid nitrogen lacks lubricity, there is a problem that the bearing supporting the main impeller is easily worn and the life of the impeller pump is short. Further, the frictional heat generation in the bearing supporting the main impeller is large, and there is a problem that the low-temperature liquid refrigerant easily evaporates due to the frictional heat generation and the cooling efficiency is lowered.
[0004]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to eliminate the impeller-type pump when returning the refrigerant to the main chamber, and when returning by supplying a low-temperature liquid refrigerant such as liquid nitrogen. It is an object of the present invention to provide a refrigerant supply device that is advantageous in improving the cooling efficiency by improving problems such as bearing wear and frictional heat generation of the bearing.
[0005]
[Means for solving the problems]
  The refrigerant supply device according to claim 1, wherein a main chamber in which a liquid refrigerant is stored and a gaseous refrigerant is stored on a liquid surface of the liquid refrigerant;
  A sub-chamber in which the liquid refrigerant is stored and the gaseous refrigerant is stored on the liquid surface of the liquid refrigerant;
  A refrigerant return passage that connects the main chamber and the sub chamber and includes a cooled portion in the middle, and cools the cooled portion with the liquid refrigerant fed from the sub chamber, and then returns the refrigerant to the main chamber;
  A supply passage for supplying liquid refrigerant in the main chamber to the sub chamber;
  A restricting means for restricting a flow rate of the refrigerant disposed in the supply passage and flowing through the supply passage;
  The refrigerant in the subchamber is heated, and the liquid refrigerant in the subchamber is supplied to the refrigerant return passage by the gas pressure of the gaseous refrigerant in the subchamber that is increased as a result of heating, and the refrigerant is supplied to the main chamber via the refrigerant return passage. Heat source means to return,
  Pressure adjusting means capable of adjusting at least one of the gas pressure of the gaseous refrigerant in the main chamber and the gas pressure of the gaseous refrigerant in the sub chamber with respect to the other;And
The pressure adjusting means includes a pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the sub chamber is stored, and an on-off valve that opens and closes the pressure equalizing passage. HaveIt is characterized by this.
[0006]
Any heat source means may be used as long as it can heat the liquid refrigerant in the sub chamber. For example, an electric heater method, a heat transfer means for transferring heat outside the apparatus (external temperature, etc.), a gas heating method, a solar heating method, etc. Can be adopted.
According to a second aspect of the present invention, there is provided the refrigerant supply device according to the first aspect, wherein the restricting means is any one of an on-off valve, a one-way valve, and an orifice disposed in the supply passage.
[0007]
  A refrigerant supply device according to a third aspect is the one according to the first or second aspect.ColdA backflow prevention valve for blocking the flow of the refrigerant from the medium return passage to the sub chamber is provided in at least one of the refrigerant return passage and the sub chamber. Therefore, even when the refrigerant return passage becomes excessively high for some reason, it is possible to prevent the refrigerant in the refrigerant return passage from flowing back into the sub chamber. Therefore, it is advantageous to obtain a pump action by a heat source.
[0008]
  Claim4The refrigerant supply device ofIn each claimThe small chamber having a smaller volume than the sub chamber is provided in communication with the sub chamber, and the heat source means heats the refrigerant in the small chamber.
  Claim5The refrigerant supply device ofIn each claimThe sub chamber is equipped with a float that floats on the liquid refrigerant in the sub chamber. The float includes a small chamber into which a part of the liquid refrigerant in the sub chamber enters, and the heat source means heats the refrigerant in the small chamber. It is characterized by that.
  Claim6The refrigerant supply device includes a main chamber in which a liquid refrigerant is stored and a gaseous refrigerant is stored on a liquid surface of the liquid refrigerant;
  A sub-chamber having a first sub-chamber and a second sub-chamber, wherein the liquid refrigerant is housed and a gaseous refrigerant is housed on a liquid surface of the liquid refrigerant;
  A main passage provided between the main chamber and the first sub-chamber and provided with a cooled portion in the middle; a sub-passage connecting the upstream side of the cooled portion and the second sub-chamber; A refrigerant return passage for returning the refrigerant to the main chamber after cooling the cooled portion with the liquid refrigerant fed from the chamber, a first supply passage for supplying the liquid refrigerant in the main chamber to the first sub chamber, A supply passage having a second supply passage for supplying the liquid refrigerant to the second sub chamber;
  A regulating means for regulating the flow rate of the refrigerant flowing through the supply passage, and having a first restriction means disposed in the first supply passage and a second restriction means disposed in the second supply passage;
  Heat source means having first heat source means for heating the refrigerant in the first subchamber and second heat source means for heating the refrigerant in the second subchamber;
  A first pressure adjusting means capable of adjusting at least one of a gas pressure of the gaseous refrigerant in the main chamber and a gas pressure of the gaseous refrigerant in the first sub chamber with respect to the other; a gas pressure of the gaseous refrigerant in the main chamber; Pressure adjusting means having second pressure adjusting means capable of adjusting at least one of the gas pressure of the gaseous refrigerant in the second sub chamber with respect to the other;
  The 1st backflow prevention valve which blocks | prevents the flow of the refrigerant | coolant from the main path of a refrigerant | coolant return path to a 1st subchamber, and the 2nd backflow prevention valve which blocks | prevents the flow of the refrigerant | coolant from the subpath of a refrigerant | coolant return path to a 2nd subchamber And a backflow prevention valve havingAnd
The first pressure adjusting means opens and closes a first pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the first sub chamber is stored, and the first pressure equalizing passage. A first on-off valve;
The second pressure adjusting means opens and closes the second pressure equalizing passage that connects the space in which the gaseous refrigerant in the main chamber is stored and the space in which the gaseous refrigerant in the second sub chamber is stored, and the second pressure equalizing passage. A second on-off valveIt is characterized by that.
[0009]
[Operation and effect of the invention]
In the first aspect, the liquid refrigerant in the sub chamber is heated by the heat from the heat source means. As a result, the evaporation of the liquid refrigerant in the sub chamber is promoted, and the gas pressure of the gaseous refrigerant on the liquid surface of the liquid refrigerant in the sub chamber increases. Accordingly, a pumping action resulting from the gas pressure of the gaseous refrigerant in the sub chamber is obtained, whereby the liquid refrigerant in the sub chamber is fed to the refrigerant return passage. The liquid refrigerant fed to the refrigerant return passage returns to the main chamber after cooling the cooled part. When returning, the gas pressure in the main chamber, which is the return destination, needs to be lower than the gas pressure in the sub chamber. This is performed by the pressure adjusting means.
[0010]
Further, if the gas pressure in the sub chamber increases excessively than the gas pressure in the main chamber, it may hinder the supply of liquid refrigerant in the main chamber to the sub chamber, but this is corrected by the pressure adjusting means.
In addition, if the gas pressure in the sub chamber increases excessively as described above, the liquid refrigerant in the sub chamber may flow backward to the main chamber through the supply passage. This reverse flow regulates the flow rate of the refrigerant flowing through the supply passage. It is regulated by regulation means with the function to do.
[0011]
As described above, in claim 1, the gas pressure in the sub chamber is increased by promoting the evaporation of the liquid refrigerant in the sub chamber by the heat from the heat source means, thereby generating a pump action, and the liquid refrigerant in the sub chamber is The refrigerant is fed to the refrigerant return passage and returned to the main room, thereby circulating the refrigerant. Thus, in claim 1, since the refrigerant can be circulated without using the impeller type pump, the impeller type pump can be abolished, and the wear of the bearing, the frictional heat generation of the bearing, etc. caused when the impeller type pump is adopted. Can be avoided, and the effect of improving the cooling efficiency can be obtained.
[0012]
According to the second aspect of the present invention, since the restricting means is an on-off valve, a one-way valve or an orifice disposed in the supply passage, the sub-chamber liquid refrigerant is supplied by a flow restricting function of the on-off valve, the one-way valve and the orifice. It is advantageous to prevent backflow through the passage into the main chamber. If an on-off valve or a one-way valve is used as the restricting means, the supply passage can be reliably closed, which is advantageous in preventing the liquid refrigerant in the sub chamber from flowing back to the main chamber through the supply passage. . Further, if an orifice is adopted as the restricting means, the orifice is a throttle mechanism, so that there is substantially no mechanical movable opening / closing mechanism, which is more advantageous for avoiding wear problems during use.
[0013]
  Claim1The pressure adjusting means includes a pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the sub chamber is stored, and an on-off valve that opens and closes the pressure equalizing passage. Has been. Therefore, the pressure equalization passage can be reliably opened by the opening / closing function by the on-off valve, so that the gaseous refrigerant in the sub chamber can be moved to the main chamber in a short time, and thereby the gaseous refrigerant in the main chamber and the gaseous refrigerant in the sub chamber can be moved. The refrigerant can be made to have the same pressure in a short time. Therefore, it is advantageous for supplying the liquid refrigerant in the main chamber to the sub chamber through the supply passage.
[0014]
  Claim3Since a backflow prevention valve for preventing the flow of refrigerant from the refrigerant return passage to the sub chamber is provided in the refrigerant return passage, the refrigerant in the refrigerant return passage is It is possible to prevent backflow into the room. Therefore, it is possible to secure the feeding property of feeding the refrigerant in the sub chamber to the refrigerant return passage, which is advantageous for cooling the cooled part.
[0015]
  As aboveIn each claimAccording to this, the mechanically movable parts are only an on-off valve, a one-way valve, and a backflow prevention valve, and these valves are not continuously driven for 24 hours, unlike the impeller pumps used conventionally. It moves only for a short time intermittently. For example, when the refrigerant in the main chamber is supplied to the sub chamber, the opening operation is performed. Therefore, it is advantageous in terms of wear prevention and is advantageous in improving the durability of the refrigerant supply device.
[0016]
  By the way, when the amount of liquid refrigerant in the sub chamber is large, the efficiency of heating the liquid refrigerant in the sub chamber by the heat source means to promote evaporation is reduced, and the efficiency of increasing the gas pressure of the gaseous refrigerant in the sub chamber is reduced. To do. For example, even if the liquid refrigerant in the sub chamber is heated by heat from the heat source means, if the amount of liquid refrigerant in the sub chamber is large, the liquid refrigerant once heated is cooled by another liquid refrigerant, In the meantime, the temperature returns to a low temperature, and the evaporation amount of the liquid refrigerant is not secured, and there is a problem that the degree of increase in the gas pressure of the gaseous refrigerant in the sub chamber is reduced. This point claim4, A small chamber having a volume smaller than that of the sub chamber is provided in communication with the sub chamber, and the heat source means heats the refrigerant in the small chamber and promotes its evaporation. In this way, since the refrigerant in the small chamber with a small amount of refrigerant is heated, the heating efficiency of the refrigerant is improved, which is advantageous for increasing the gas pressure of the gaseous refrigerant in the sub chamber in a short time. Therefore, it is advantageous for exerting the pump action by the heat source means.
[0017]
  Claim5, The sub chamber is equipped with a float that floats on the liquid refrigerant in the sub chamber, the float has a small volume small chamber into which a part of the liquid refrigerant in the sub chamber enters, and the heat source means is the refrigerant in the small chamber Heat. As described above, since the refrigerant in the small chamber whose amount of refrigerant is smaller than the volume of the sub chamber is heated, the heating efficiency of the refrigerant is improved as described above, and the gas pressure of the gaseous refrigerant in the sub chamber is increased in a short time. Is advantageous. Therefore, it is advantageous for exerting the pump action by the heat source means.
[0018]
  Claim6According to the above, even when the liquid refrigerant is being replenished from the main chamber to one of the first and second sub chambers, the other sub chamber is heated to transfer the liquid refrigerant in the other sub chamber to the refrigerant return passage. Can be sent to. Therefore, the part to be cooled can be efficiently cooled.
[0019]
【Example】
Example 1
FIG. 1 shows a first embodiment of the present invention.
As shown in FIG. 1, a large-volume refrigerant main tank 10 constituting a main chamber and a small-volume refrigerant sub-tank 3 constituting a sub chamber are arranged. Both sides contain a liquid refrigerant composed of cryogenic liquid nitrogen. The liquid phase part 10a of the refrigerant main tank 10 communicates with the lower part of the refrigerant sub tank 3 through a supply valve 5 and a supply passage 5n as on-off valves. The refrigerant main tank 10 communicates with the upper part of the refrigerant sub tank 3 through a pressure equalizing valve 4 and a pressure equalizing passage 4n serving as on-off valves. As can be understood from FIG. 1, one end 4a of the pressure equalizing passage 4n is connected to a position higher than the connection port 5x between the supply passage 5n and the refrigerant sub-tank 3, and the supply passage 5n, the refrigerant main tank 10, The other end 4b of the pressure equalizing passage 4n is connected to a position higher than the connection port 5y.
[0020]
A conduit 6 is connected to the bottom of the liquid phase portion 3 a of the refrigerant sub tank 3. The middle part of the conduit 6 is in thermal contact with the shield plate 11 as a part to be cooled. The other end of the conduit 6 communicates with the inlet of the condenser 7. The condenser 7 has an increased heat exchange area and is cooled by heat exchange with the low temperature portion 1 of the refrigerator 1p that can generate refrigeration. Further, the gas phase portion 10b of the refrigerant main tank 10 is provided with a heat exchanger 9 having an increased heat exchange area. The outlet of the condenser 7 communicates with the heat exchanger 9 via a conduit 8. The conduits 6, 8, the condenser 7, and the heat exchanger 9 constitute a refrigerant return passage for returning the refrigerant to the refrigerant main tank 10.
[0021]
Further, a heat source 12 (heat source means) is provided so as to be immersed in the liquid refrigerant so that the liquid refrigerant in the liquid phase portion 3a of the refrigerant sub-tank 3 can be heated. In this embodiment, the heat source 12 is an electric heater system, and includes a heating wire and an insulating coating layer that covers the heating wire. The heat source 12 is provided in the refrigerant sub-tank 3 so as to be immersed in the liquid refrigerant. However, the heat source 12 may be provided outside the refrigerant sub-tank 3 or both.
[0022]
Now, even if the gas pressure of the gas phase portion 3b of the refrigerant sub-tank 3 is higher than the gas pressure of the gas phase portion 10b of the refrigerant main tank 10, the pressure equalizing passage 4n communicates if the pressure equalizing valve 4 is opened. Therefore, the gas pressure of the gas phase part 3b of the refrigerant sub tank 3 and the gas pressure of the gas phase part 10b of the refrigerant main tank 10 are basically the same pressure. Therefore, the pressure equalizing valve 4 functions as pressure adjusting means for adjusting the gas pressure of the gas phase portion 3b of the refrigerant sub tank 3 and the gas phase portion 10b of the refrigerant main tank 10.
[0023]
Thus, if the supply valve 5 is opened with the gas phase portion 3b and the gas phase portion 10b being at the same pressure, the liquid refrigerant in the liquid phase portion 10a of the refrigerant main tank 10 having a high liquid level will have its liquid head pressure. Thus, the refrigerant flows into the refrigerant sub-tank 3 having a low liquid level. Therefore, the liquid level of the liquid refrigerant in the liquid phase part 3 a of the refrigerant sub-tank 3 is automatically supplied until the liquid level of the liquid refrigerant in the liquid phase part 10 a of the refrigerant main tank 10 becomes the same level.
[0024]
Next, the pressure equalizing valve 4 and the supply valve 5 are closed. In this state, if the liquid refrigerant in the liquid phase portion 3a of the refrigerant sub-tank 3 is heated by the heat from the heat source 12, evaporation of the liquid refrigerant in the liquid phase portion 3a is promoted. As a result, the gas pressure P1 of the gas phase part 3b of the refrigerant sub tank 3 becomes higher than the gas pressure P2 of the gas phase part 10b of the refrigerant main tank 10 as a return destination. Therefore, the pump action resulting from the differential pressure (P1-P2) between the two is obtained, and the liquid refrigerant in the liquid phase portion 3a of the refrigerant sub tank 3 flows into the conduit 6 and cools the shield plate 11.
[0025]
At this time, part or all of the liquid refrigerant evaporates due to heat exchange with the shield plate 11 and flows into the condenser 7. The refrigerant flowing into the condenser 7 is further cooled by refrigeration generated in the low temperature part 1 of the refrigerator 1p, and liquefaction is promoted. Therefore, in the condenser 7, the refrigerant has a lower temperature than the gas phase portion 10 b in the refrigerant main tank 10. Thus, the refrigerant cooled in the low temperature part 1 returns to the refrigerant main tank 10 through the conduit 8 and the heat exchanger 9. In this way, the refrigerant is circulated.
[0026]
By the way, the liquid refrigerant in the liquid phase part 10a of the refrigerant main tank 10 evaporates due to the influence of heat (conduction heat, radiant heat, etc.) entering the refrigerant main tank 10 from the outside, and the gas phase part 10b in the refrigerant main tank 10 evaporates. The gas pressure tends to be excessively high. Thus, if the gas pressure of the gas phase portion 10b becomes excessively high, the gas pressure P2 of the gas phase portion 10b of the refrigerant main tank 10 as a return destination is higher than the gas pressure P1 of the gas phase portion 3b of the refrigerant subtank 3. Get higher. As a result, the refrigerant in the refrigerant sub-tank 3 cannot flow into the heat exchanger 9 through the conduits 6 and 8, that is, the refrigerant fed from the refrigerant sub-tank 3 cannot be returned to the refrigerant main tank 10.
[0027]
In this respect, in this embodiment, the refrigerant flowing into the heat exchanger 9 is cooled to a lower temperature in the low temperature portion 1 of the refrigerator 1p as described above, so that the low temperature property of the heat exchanger 9 is maintained. Therefore, in the heat exchanger 9, the gaseous refrigerant in the gas phase portion 10b in the refrigerant main tank 10 can be effectively cooled and liquefied. The liquefied refrigerant falls to the liquid phase part 10 a in the refrigerant main tank 10. Accordingly, it is possible to prevent an excessive increase in the gas pressure of the gas phase portion 10 b in the refrigerant main tank 10, and as a result, return of the refrigerant from the refrigerant sub tank 3 to the refrigerant main tank 10 is ensured.
[0028]
Further, in this embodiment, the liquid refrigerant in the liquid phase portion 3a of the refrigerant sub tank 3 becomes insufficient with use, and the liquid level is lowered. In this case, it is necessary to replenish the refrigerant sub tank 3 with the liquid refrigerant in the refrigerant main tank 10. Therefore, the pressure equalizing valve 4 is opened again. When the pressure equalizing valve 4 is opened, the pressure equalizing passage 4n is communicated as described above, so that the gas pressure in the gas phase portion 3b of the refrigerant sub-tank 3 and the gas pressure in the gas phase portion 10b of the refrigerant main tank 10 are reduced in a short time. It becomes the same pressure. When the supply valve 5 is opened in this state, the supply passage 5n communicates, and the liquid refrigerant in the liquid phase portion 10a of the refrigerant main tank 10 passes through the supply passage 5n and the supply valve 5 due to liquid head pressure, and the liquid in the refrigerant sub tank 3 The phase part 3a is immediately replenished.
[0029]
As described above, in the present embodiment, the liquid refrigerant in the refrigerant main tank 10 can be circulated and reused by the pump action by the heat from the heat source 12, so that the liquid refrigerant can be operated without being replenished from the outside, or is replenished. However, the replenishment amount of the liquid refrigerant can be reduced, which is advantageous for cost reduction.
By the way, in this embodiment, the mechanical movable mechanism is only the pressure equalizing valve 4 and the supply valve 5, and the pressure equalizing valve 4 and the supply valve 5 are not continuously moving unlike the bearings of the conventional impeller type pump. When the liquid refrigerant in the refrigerant main tank 10 is replenished to the refrigerant sub tank 3, it is only temporarily opened. Accordingly, the operation time of the pressure equalizing valve 4 and the supply valve 5 is shortened, and the wear in the pressure equalizing valve 4 and the supply valve 5 can be eliminated or greatly reduced. Problems caused by wear and frictional heat generation can be eliminated, and the durability of the cooling device can be reduced. It is advantageous for improvement.
[0030]
As described above, in this embodiment, when the amount of heat is supplied to the heat source 12 and the liquid refrigerant in the liquid phase portion 3a of the refrigerant subtank 3 is evaporated, the gas pressure in the gas phase portion 3a of the refrigerant subtank 3 is increased. The pump pressure can be obtained. Since the pump pressure can be obtained in this way, it is possible to avoid or reduce the backflow of the refrigerant in the conduit 6 to the refrigerant subtank 3, that is, the liquid refrigerant can be reliably supplied to the conduit 6 and the shield plate 11 is cooled. High efficiency.
[0031]
As described above, when heat is applied by the heat source 12 when both the supply valve 5 and the pressure equalizing valve 4 are closed, the gas pressure in the gas phase portion 3b of the refrigerant sub-tank 3 can be effectively increased. Therefore, the pump efficiency is improved, and it is advantageous for avoiding the back flow from the conduit 6 to the refrigerant sub tank 3.
In some cases, the heat source 12 may be always turned on to constantly apply heat to the refrigerant sub-tank 3.
[0032]
In this embodiment, the pressure equalizing valve 4 and the supply valve 5 can be opened and closed manually or controlled by a control device.
In the example shown in FIG. 1, the refrigerant main tank 10 can also be arranged at a position higher than the refrigerant sub tank 3. In this case, the potential energy of the liquid refrigerant in the refrigerant main tank 10 increases. Therefore, when the supply valve 5 is opened, the liquid refrigerant in the refrigerant main tank 10 can be easily replenished to the refrigerant sub tank 3, and it is advantageous for avoiding the liquid refrigerant in the refrigerant sub tank 3 from flowing back to the refrigerant main tank 10. is there.
[0033]
The supply valve 5, the pressure equalizing valve 4, etc. may break down. This can be done as follows. That is, if an emergency air release valve is disposed between the conduit 6 and the condenser 7 and an emergency on-off valve is disposed downstream of the condenser 7, the supply valve 5 and the leveling valve should be provided. Even when at least one of the pressure valves 4 fails, the shield plate 11 can be cooled. In other words, even if at least one of the supply valve 5 and the pressure equalizing valve 4 fails, the supply valve 5 and the pressure equalizing valve 4 are opened, and the emergency atmosphere release valve is opened. If the liquid refrigerant in the refrigerant main tank 10 is discharged from the emergency air release valve to the atmosphere until the liquid refrigerant in the refrigerant main tank 10 is emptied by closing the emergency on-off valve, It can be expected that the shield plate 11 is cooled by the refrigerant flowing through the conduit 6.
[0034]
(Application example)
FIG. 2 shows an application example. This example includes a container 20 that contains a superconducting magnet 21, a room-temperature-side vacuum tank 25 disposed outside the container 20, and a liquid helium tank 20a in which liquid helium is stored. The liquid helium in the liquid helium tank 20a is loaded in the container 20, whereby the superconducting magnet 21 accommodated in the container 20 is maintained at an extremely low temperature of about 4.4K.
[0035]
Further, in order to prevent radiant heat and conduction heat entering the container 20 from the vacuum chamber 25, the shield plate 11 as a portion to be cooled is covered around the container 20 housing the superconducting magnet 21. In this example, the shield plate 11 is cooled by supplying liquid refrigerant composed of liquid nitrogen in the refrigerant sub-tank 3 to the conduit 6 that is in thermal contact with the shield plate 11. Thereby, the cryogenic properties of the container 20 and the superconducting magnet 21 are easily maintained.
[0036]
In this example, as can be understood from FIG. 2, the refrigerant main tank 10 is fixed to the vacuum tank 25 via the heat insulating support 16.
Here, the container 20 is fixed to the vacuum chamber 25 via the heat insulating support members 23 and 23 a, the shield plate 11, and the heat insulating support member 24. In FIG. 2, 30 is a refrigerator equipped with a Joule-Thomson circuit for producing liquid helium, 30a is a compressor, 32 is a first stage expansion space for generating a cryogenic temperature, and 31 is a cryogenic cryogenic temperature. The second stage expansion space, 33 is a precooling heat exchanger, 34a is a helium low pressure conduit, 34b is a helium high pressure conduit, and 34w is a Joule Thomson valve.
[0037]
As the refrigerator 1p shown in FIG. 2, a Joule-Thompson circuit refrigerator 30 for producing liquid helium may be used in combination. That is, the condenser 7 constituting the refrigerant return passage may be brought into thermal contact with at least one of the expansion spaces 32 and 33 of the refrigerator 30. Thereby, since the refrigerator 1p shown in FIG. 2 becomes unnecessary, it becomes more advantageous in terms of cost, mass, occupied space, required power, and the like.
[0038]
(Operation of pressure equalization valve 4 and supply valve 5)
The opening / closing operation of the pressure equalizing valve 4 and the supply valve 5 will be further described with reference to FIG. Basically, the opening of the pressure equalizing valve 4 and the opening of the supply valve 5 overlap in time, and the closing of the pressure equalizing valve 4 and the closing of the supply valve 5 overlap in time. However, the pressure equalizing valve 4 and the supply valve 5 can be opened and closed in various forms shown in FIGS.
[0039]
FIG. 3A shows a case where the pressure equalizing valve 4 and the supply valve 5 are opened and closed simultaneously in time, and immediately after the pressure equalizing valve 4 and the supply valve 5 are opened, the gaseous refrigerant in the gas phase portion 3b of the refrigerant subtank 3 is shown. Flows into the gas phase portion 10b of the refrigerant main tank 10 through the pressure equalizing passage 4n and the pressure equalizing valve 4, and the gas phase portion 3b and the gas phase portion 10b have the same pressure. As a result, the liquid refrigerant in the liquid phase portion 10 a of the refrigerant main tank 10 flows into the refrigerant sub tank 3 through the supply valve 5.
[0040]
FIG. 3B shows a case where the supply valve 5 is opened (ΔT1) slightly behind the pressure equalizing valve 4 and the pressure equalizing valve 4 and the supply valve 5 are simultaneously closed. In this case, immediately after the pressure equalizing valve 4 is opened, the gaseous refrigerant in the gas phase portion 3 b of the refrigerant subtank 3 flows into the refrigerant main tank 10 through the pressure equalizing valve 4, and the gas phase portion 3 b of the refrigerant subtank 3. And the gas phase portion 10b of the refrigerant main tank 10 have the same pressure. In the form shown in FIG. 3B, the supply valve 5 is opened after the pressure becomes the same as described above. Backflow to the liquid phase part 10a of the tank 10 can be reliably prevented.
[0041]
FIG. 3C shows a case where the supply valve 5 is opened slightly earlier (ΔT2) than the pressure equalizing valve 4 and the pressure equalizing valve 4 and the supply valve 5 are simultaneously closed. In this case, after the supply valve 5 is opened, the pressure equalizing valve 4 is opened after lapse of ΔT2. Since the opening of the pressure equalizing valve 4 is delayed by ΔT2 in this manner, the liquid in the refrigerant sub-tank 3 is kept until the pressure of the gas phase part 3b of the refrigerant sub-tank 3 and the gas phase part 10b of the refrigerant main tank 10 become the same pressure. The refrigerant may flow back to the refrigerant main tank 10. Such a backflow can be used as follows depending on circumstances. That is, it is advantageous for returning the excess liquid refrigerant in the refrigerant sub-tank 3 whose temperature is slightly raised by the heat source 12 to the refrigerant main tank 10 on the cryogenic temperature side.
[0042]
FIG. 3D shows a case where the pressure equalizing valve 4 and the supply valve 5 are simultaneously opened and the supply valve 5 is closed slightly earlier (ΔT3) than the pressure equalizing valve 4. In ΔT3 time, although the pressure equalizing valve 4 is open but the supply valve 5 is already closed, the liquid refrigerant in the liquid phase portion 3a of the refrigerant sub tank 3 does not flow back to the refrigerant main tank 10.
FIG. 3E shows a case where the pressure equalizing valve 4 and the supply valve 5 are simultaneously opened and the supply valve 5 is closed slightly later (ΔT4) than the pressure equalizing valve 4.
[0043]
Since a certain amount of time is required for the pressure in the gas phase portion 3b of the refrigerant sub tank 3 to rise, even if the supply valve 5 is closed slightly later than the pressure equalizing valve 4 (after ΔT4), the ΔT4 time is short. If it is time, the amount of the liquid refrigerant that flows back from the refrigerant secondary cup 3 to the refrigerant main pipe 10 is very small, and there is substantially no problem.
(Example 2)
FIG. 4 shows a second embodiment. This example has basically the same configuration as that of the first embodiment, and has the same effects. Furthermore, this example has the following features. That is, when the heat capacity of the shield plate 11 as the cooled portion is small, the shield plate 11 is easily heated by the influence of external heat. In this case, when the pumping action by the heat source 12 is suspended, that is, when the supply of the liquid refrigerant from the cooling sub-tank 3 to the conduit 6 is suspended (that is, the supply valve 5 and the pressure equalizing valve 4 are opened, the refrigerant main When the liquid refrigerant in the tank 10 is replenished to the refrigerant sub-tank 3), the refrigerant in the conduit 6 is heated and evaporated by the heat transfer from the heated shield plate 11, and the pressure in the conduit 6 rapidly rises. The pressure of 6 may be higher than the pressure of the refrigerant sub-tank 3, so that a normal pumping action cannot be obtained. In this case, the refrigerant is not normally supplied to the shield plate 11, and the refrigerant in the conduit 6 may flow backward to the refrigerant sub tank 3. In this case, the refrigerant supply to the conduit 6 is hindered, and the efficiency of cooling the shield plate 11 that is the part to be cooled is reduced. Therefore, as shown in FIG. 4, a backflow prevention valve 13 is provided between the refrigerant subtank 3 and the conduit 6, and when the supply of the liquid refrigerant from the refrigerant subtank 3 to the conduit 6 is stopped, the backflow prevention valve 13 is provided. To prevent backflow.
[0044]
In this way, even if the heat capacity of the shield plate 11 as the cooled portion is small and the shield plate 11 is likely to rise in temperature, the refrigerant in the conduit 6 can be prevented from flowing back into the refrigerant sub-tank 3, and the shield plate 11 can be effectively cooled.
(Example 3)
FIG. 5 shows a third embodiment. This example also basically has the same configuration as that of the first embodiment, and has the same effects.
[0045]
In this example, instead of the check valve 13 shown in FIG. 4, a one-way valve 13 a is adopted so that the refrigerant flows only in the direction from the refrigerant subtank 3 to the conduit 6, and from the conduit 6 to the refrigerant subtank 3. Keeps the refrigerant from flowing. If a one-way valve is employed as the supply valve 5 as shown in FIG. 5, the refrigerant subtank when the pressure of the gas phase part 3 b of the refrigerant subtank 3 is higher than the pressure of the gas phase part 10 b of the refrigerant main tank 10. 3 can prevent the liquid refrigerant from flowing back to the refrigerant main tank 10.
[0046]
Example 4
FIG. 6 shows a fourth embodiment. This example has basically the same configuration as that of the first embodiment, and has the same effects. In this example, an atmosphere release valve 14 that communicates with the gas phase portion 10b of the refrigerant main tank 10 is provided, and when the pressure of the gas phase portion 10b of the refrigerant main tank 10 exceeds a predetermined pressure, the atmosphere release valve 14 is automatically turned on. It was designed to be open.
[0047]
When the heat is received from the shield plate 11, the refrigerant in the conduit 6 may partially evaporate and gasify. Here, when the amount of refrigeration generated in the low temperature portion 1 of the refrigerator 1p is reduced or when the refrigeration capacity of the refrigerator 1p is small, the refrigerant partially evaporated in the conduit 6 is sufficiently liquefied in the condenser 7. However, a part of the refrigerant flows in the gas phase part 10b of the refrigerant main tank 10 through the conduit 8 and the heat exchanger 9 as evaporative gas, so that the pressure of the gas phase part 10b of the refrigerant main tank 10 is high. Tend to be. As a result, the gas pressure of the gas phase portion 10b of the refrigerant main tank 10 that is the refrigerant return destination becomes excessively high, the temperature of the circulating liquid refrigerant rises above the appropriate temperature, and the temperature of the shield plate 11 becomes high. Occurs. Moreover, the gas pressure of the refrigerant | coolant main tank 10 and the refrigerant | coolant subtank 3 rises abnormally, and the malfunction that the refrigerant | coolant main tank 10 and the refrigerant | coolant subtank 3 may destroy will arise. Therefore, in this example, when the gas phase portion 10b of the refrigerant main tank 10 reaches a predetermined pressure or higher, the atmosphere release valve 14 is automatically opened, and the excess pressure of the gaseous refrigerant in the refrigerant main tank 10 is increased to the atmosphere release valve 14. Through to the atmosphere. Therefore, in this example, even if the amount of refrigeration generated in the low temperature portion 1 of the refrigerator 1p is reduced, the refrigerant main tank 10 and the refrigerant sub tank 3 can be prevented from being destroyed.
[0048]
The air release valve 14 functions as a pressure adjusting means for adjusting the gas pressure in the gas phase portion 10b of the refrigerant main tank 10. The air release valve 14 may be a pressure-responsive relief valve that opens naturally against the spring force of the spring when a predetermined pressure or higher is reached, or operates by electromagnetic force, electric force, pneumatic pressure, hydraulic pressure, or the like. A valve may be used.
(Example 5)
The fifth embodiment shown in FIG. 7 is a modification of the fourth embodiment, and employs an atmosphere communication pipe 15 (pressure adjusting means) that is always in communication with the atmosphere instead of the atmosphere release valve 14.
[0049]
When the shield plate 11 is cooled by heat exchange, the liquid refrigerant in the conduit 6 evaporates a part of the refrigerant to form a two-phase flow of liquid and vapor and flows into the gas phase portion 10b of the refrigerant main tank 10 as described above. It is as follows. In the refrigerant main tank 10, the liquid refrigerant is accumulated in the liquid phase portion 10 a, and only the excess gaseous refrigerant is discharged to the atmosphere through the atmosphere communication pipe 15. Therefore, while preventing excessive pressure in the gas phase portion 10b of the refrigerant main tank 10, the liquid refrigerant is not wastefully discharged into the atmosphere, which is advantageous for effective use of the liquid refrigerant. In other words, even when the refrigerator 1p is not provided, it is possible to prevent the pressure of the gas phase portion 10b of the refrigerant main tank 10 from being excessive, so that a good pump circulation action by the heat source 12 can be obtained. By this, the liquid refrigerant can be reliably fed to the conduit 6 and the shield plate 11 can be cooled efficiently.
(Example 6)
8 and 9 show a sixth embodiment. This example also has the same configuration as that of the first embodiment, and has the same effects.
[0050]
In this example, two refrigerant subtanks 102 and 103 are provided in parallel. The refrigerant sub tank 102 functions as a first sub chamber, and the refrigerant sub tank 103 functions as a second sub chamber. There is one refrigerant main tank 112 functioning as a main chamber containing a low-temperature liquid refrigerant such as liquid nitrogen. The liquid phase portion 112a of the refrigerant main tank 112 is connected to the liquid phase portion 102a of the refrigerant subtank 102 via the first supply passage 106n and the supply valve 106 as the first regulating means, and the pressure equalization passage 104n and the first pressure passage 104n. 1 It connects to the gas phase part 102b of the refrigerant | coolant subtank 102 via the pressure equalization valve 104 as a pressure adjustment means.
[0051]
The liquid phase part 112a of the refrigerant main tank 112 is connected to the liquid phase part 103a of the refrigerant sub tank 103 via the second supply passage 107n and the supply valve 107 as the second regulating means, and the pressure equalization passage 105n and It is connected to the gas phase portion 103b of the refrigerant sub tank 103 through a pressure equalizing valve 105 as a second pressure adjusting means.
A pressure-responsive one-way valve 117 as a first backflow prevention valve is provided in the conduit 108x that connects the liquid phase portion 102a of the refrigerant sub tank 102 and the conduit 108. A pressure-responsive one-way valve 118 as a second backflow prevention valve is provided in the sub-passage 118y that connects the liquid phase portion 103a of the refrigerant sub-tank 103 and the conduit 108. Therefore, the liquid refrigerant flows only in the direction from the refrigerant sub tanks 102 and 103 toward the conduit 108, and does not flow in the opposite direction.
[0052]
The conduit 108 is in thermal contact with a shield plate 113 as a part to be cooled. The outlet of the condenser 109 communicates with the heat exchanger 111 of the gas phase portion 112b of the refrigerant main tank 112 via the conduit 110. Accordingly, in FIG. 8, the conduits 108 x and 108, the condenser 109, the conduit 110, and the heat exchanger 111 constitute a main passage for returning the liquid refrigerant in the refrigerant sub tank 102 to the refrigerant main tank 112.
[0053]
Further, a heat source 114 as a first heat source means and a heat source 115 as a second heat source means are provided so that heat is transmitted to the liquid phase portions 102a and 103a of the refrigerant subtanks 102 and 103, respectively. The heat sources 114 and 115 are provided inside the refrigerant sub tanks 102 and 103, but may be provided outside or both.
As shown in FIG. 9, the refrigerant main tank 112 is fixed to the vacuum tank 25 via a heat insulating support material 116. Liquid helium in the liquid helium tank 20a is charged in the container 20, and the superconducting magnet 21 is cooled to about 4.4K. The shield plate 113 as a part to be cooled covers the periphery of the container 20 containing the superconducting magnet 21, thereby making it easy to maintain the cryogenicity of the container 20 and the superconducting magnet 21. The container 20 is fixed to the vacuum chamber 25 on the room temperature side through the heat insulating support members 23 and 23 a, the shield plate 113, and the heat insulating support member 24.
[0054]
In this example as well, as can be understood from FIG. 8, the liquid refrigerant in the liquid phase portion 112a of the refrigerant main tank 112 is sequentially supplied to the refrigerant sub tanks 102 and 103, the one-way valves 117 and 118, the conduit 108, the condenser 109, It is fed to the conduit 110 and the heat exchanger 111 and returns to the refrigerant main tank 112.
In this example, when the liquid refrigerant in the refrigerant main tank 112 is replenished to one refrigerant sub tank 102 in FIG. 8 (that is, when the pressure equalizing valve 104 and the supply valve 106 are open), the pump by the heat of the heat source 115 is used. As a result, the liquid refrigerant in the other refrigerant sub-tank 103 is fed to the conduit 108 through the one-way valve 118 (that is, when the pressure equalizing valve 105 and the supply valve 107 are closed).
[0055]
Conversely, when liquid refrigerant in the refrigerant main tank 112 is being supplied to the other refrigerant sub tank 103 (that is, when the pressure equalizing valve 105 and the supply valve 107 are open), The liquid refrigerant in the refrigerant sub tank 102 is fed to the conduit 108x and the conduit 108 through the one-way valve 117 (that is, when the pressure equalizing valve 104 and the supply valve 106 are closed).
[0056]
In this example, as described above, the pump action is alternately obtained in both the refrigerant sub-tanks 103 and 102, so that the liquid refrigerant can be continuously supplied to the conduit 108x and the conduit 108 without interruption. In this example as well, the liquid refrigerant can be returned to the refrigerant main tank 112 and circulated. Therefore, the refrigerant can be reused in the same manner as in the above-described embodiment, so that it is possible to avoid replenishing the refrigerant from the outside. That's it.
[0057]
FIG. 10 is a time chart showing the open / close state of the pressure equalizing valve 104 and the supply valve 106 and the open / closed state of the pressure equalizing valve 105 and the supply valve 107. Each valve can be opened and closed in various forms shown in FIGS.
10A shows that the pressure equalizing valve 105 and the supply valve 107 are closed when the pressure equalizing valve 104 and the supply valve 106 are open, and the pressure equalizing valve 105 and the supply valve 107 are closed when the pressure equalizing valve 104 and the supply valve 106 are closed. It is a case where it is made to open. In the form shown in FIG. 10 (A), the pump action is obtained alternately in both the refrigerant sub-tanks 103 and 102, which is advantageous for continuously feeding the liquid refrigerant to the conduit 108x and the conduit 108 without interruption. is there.
[0058]
FIG. 10B shows a case where the pressure equalizing valve 104 and the supply valve 106 are opened and closed, and at the same time the pressure equalizing valve 105 and the supply valve 107 are opened. The form shown in FIG. 10B is also advantageous for continuously feeding the liquid refrigerant to the conduit 108 without interruption because the pump action is obtained alternately in both the refrigerant sub-tanks 103 and 102.
FIG. 10C shows a case where the pressure equalizing valve 105 and the supply valve 107 are opened slightly before the pressure equalizing valve 104 and the supply valve 106 are closed from opening (ΔT6). In this embodiment, the liquid refrigerant is not supplied to the conduit 108 in a short time (ΔT6) when the pressure equalizing valve 104 and the supply valve 106, and the pressure equalizing valve 105 and the supply valve 107 are simultaneously opened.
[0059]
In addition, although the example shown in FIG. 8 is an example which provided the two refrigerant | coolant subtanks 102 and 103, it is not limited to this, Three or more refrigerant | coolant subtanks may be sufficient.
(Example 7)
In Example 7 (not shown), the one-way valves 117 and 118 shown in FIG. 8 are operated with electromagnetic force, electric force, pneumatic pressure, hydraulic pressure, etc. (the same type as the check valve 13 shown in FIG. 4). Has been replaced. The supply valves 106 and 107 may be replaced with one-way valves.
[0060]
(Example 8)
In Example 8 shown in FIG. 11, an atmosphere release valve 121 (same as the atmosphere release valve 14 in the example shown in FIG. 6) is provided in the gas phase portion 112 b of the refrigerant main tank 112. Then, when the pressure of the gas phase portion 112b of the refrigerant main tank 112 becomes equal to or higher than a predetermined pressure, the atmosphere release valve 121 is opened. The air release valve 121 may be a relief valve that opens when a predetermined pressure is exceeded by a spring force, or a valve that is operated by electromagnetic force, electric force, pneumatic pressure, hydraulic pressure, or the like.
[0061]
Example 9
FIG. 12 shows a ninth embodiment. In this example, the gas phase portion 203b and the liquid phase portion 203a are communicated with each other by a vertical communication pipe 202 in the refrigerant subtank 203 as the subtank. The cross-sectional area of the communication pipe 202 is made smaller than the cross-sectional area of the refrigerant sub tank 203. Therefore, the communication pipe 202 constitutes a small chamber. A heat source 205 is provided on the outer surface of the communication pipe 202. In this way, since a small amount of liquid refrigerant in the communication pipe 202 may be heated by the heat source 205, the heating efficiency is improved, and the liquid refrigerant in the communication pipe 202 can be simply supplied to the heat source 205. Can be evaporated in a short time, and therefore the pressure of the gas phase portion 203b can be increased in a short time, and a good pumping action can be obtained.
[0062]
By the way, when the liquid level of the liquid refrigerant in the refrigerant sub-tank 203 is shaken due to vibration or impact, even if the liquid refrigerant in the refrigerant sub-tank 203 is heated by the heat source 205, the heated liquid refrigerant remains at the liquid level. The mixture is agitated along with the swinging of the liquid and becomes a low temperature again, whereby the evaporation of the refrigerant is not promoted, and a sufficient pumping action may not be obtained. In this respect, in this example, since the float 204 is suspended in the liquid refrigerant in the refrigerant sub-tank 203, the float 204 can effectively prevent the liquid refrigerant from shaking, and the above-described problems can be reduced or avoided. Therefore, when the present cooling device is applied to a traveling vehicle such as a magnetically levitated vehicle, the liquid level of the liquid refrigerant in the refrigerant sub-tank 203 can be effectively prevented, which is advantageous. Reference numeral 200 denotes a refrigerator, and 201 denotes a refrigeration generator.
[0063]
Furthermore, in this example, the float 204 floats on the liquid refrigerant level in the refrigerant sub-tank 203, and the height H1 (see FIG. 12) of the float 204 from the liquid refrigerant level is high. Therefore, the volume of the gas phase portion 203b of the refrigerant sub tank 203 is reduced that much. Therefore, it is advantageous to increase the gas pressure of the gas phase portion 203b in a short time by the heat from the heat source 205, and the responsiveness of the pump action can be improved.
[0064]
(Example 10)
In the tenth embodiment shown in FIG. 13, a heating heater 205 a is employed as a heat source, and the heating heater 205 a is fixed to the communication pipe 202. The lead wires 207 and 208 at both ends of the heater 205a are connected to a power source 209 outside the vacuum chamber 25 through a hermetic seal 211 that is airtightly fixed to the vacuum chamber 25.
[0065]
Also in this example, the float 204 is floating as described above, the volume of the gas phase portion 203b of the refrigerant sub-tank 203 is reduced by that amount, and the gas pressure of the gas phase portion 203b is reduced within a short time due to the heat generated by the heater 205a. It is advantageous to increase.
(Example 11)
In Example 11 shown in FIG. 14, a heat conductive plate 205b (a copper plate, an aluminum plate, a flat mesh copper wire, etc.) having a good thermal conductivity is provided as a heat source. One end of the heat conducting plate 205 b is fixed to the communication pipe 202, and the other end is connected to a place where the temperature is higher than the communication pipe 202, for example, the vacuum chamber 25. In this example, since the volume of the communication pipe 202 is smaller than the volume of the refrigerant sub chamber 203, the liquid refrigerant in the communication pipe 202 is effectively heated by the heat from the heat conduction plate 205b, and evaporation is promoted.
[0066]
(Example 12)
In Example 12 shown in FIG. 15, the float 204 is floated on the liquid refrigerant level in the refrigerant sub-tank 203, and the small float 217 is floated on the liquid refrigerant level in the communication pipe 202. A heat generating heater 206 is wound around the shaft portion of the float 217 immersed in the liquid refrigerant in a coil shape as a heat source, and both ends of the heat generating heater 206 are connected via lead wires 207 and 208 and hermetic seals 210 and 211, The power supply 209 provided outside the vacuum chamber 25 is connected.
[0067]
In this example, since the float 217 floating on the liquid refrigerant liquid level of the communication pipe 202 is equipped with the heat generating heater 206, the liquid refrigerant in the vicinity of the liquid level of the communication pipe 202 can be heated intensively. It is advantageous for securing, and it is advantageous for obtaining a good pumping action. In this example, one refrigerant sub-tank 203 is provided, but not limited to this, two or more refrigerant sub-tanks 203 may be used.
[0068]
(Example 13)
FIG. 16 shows a thirteenth embodiment. A heat source 215 is provided on the outer surface or inside of the refrigerant sub tank 203. Since the heat source 215 is located near the liquid level of the liquid refrigerant in the refrigerant sub tank 203, the liquid refrigerant near the liquid level can be intensively heated, and the pressure of the gas phase portion 203b of the refrigerant sub tank 203 is efficiently increased. This provides a good pumping action and can deliver liquid refrigerant to the conduit 212. The heat source 215 may be a heat generating heater or a member having good heat conduction, for example, a conductive plate such as a copper plate, an aluminum plate, or a flat mesh copper wire.
[0069]
(Example 14)
FIG. 17 shows a fourteenth embodiment. In this example, the float 214 floats in the liquid refrigerant in the refrigerant sub tank 203, and a small chamber 214 b having a small volume is provided inside the float 214. A heating heater 216 is disposed as a heat source in the liquid refrigerant in the small chamber 214b. A communication hole 214a is provided in the lower surface of the small chamber 214b, and a gas hole 214c in communication with the gas phase portion 203b is provided in the upper surface. The lead wires 207 and 208 at both ends of the heater 216 are connected to a power source 209 outside the vacuum chamber 25 via hermetic seals 210 and 211.
[0070]
Note that when the gaseous refrigerant heated and evaporated by the heater 216 flows into the cryogenic liquid phase portion 203a, the once heated refrigerant comes into contact with another liquid refrigerant to be cooled again and liquefied. It is difficult for the pressure of the portion 203b to increase, and it is difficult to obtain a good pumping action. In this respect, in this example, the gaseous refrigerant heated and evaporated by the heater 216 flows into the gas phase part 203b of the refrigerant sub tank 203 through the gas hole 214c formed in the float 214, and the pressure of the gas phase part 203b is increased. It is advantageous to increase and obtain a good pumping action. The liquid refrigerant in the refrigerant sub-tank 203 is fed to the conduit 6 through the one-way valve 13a as a backflow prevention valve by the pump action.
[0071]
Furthermore, in this example, since a small amount of liquid refrigerant in the small chamber 214b only needs to be heated, the pressure of the gas phase portion 203b can be increased in a short time by simply supplying a small amount of heat to the heater 216. Can demonstrate.
(Example 15)
FIG. 18 shows a fifteenth embodiment. A first super-insulation 224 is wound in multiple layers on the outer surface of the refrigerant main tank 223 in a region facing the vacuum tank 25. Furthermore, the conduits 212 and 212x are brought into thermal contact with the outer surface of the first super-insulation 224. Further, the second super insulation 225 is wound in multiple layers on the outer surface side of the conduits 212 and 212x. The super-insulations 224 and 225 are obtained by laminating an aluminum vapor deposition film that reflects radiant heat and a resin spacer having heat insulation properties. Here, the liquid refrigerant pumped from the refrigerant sub tank 203 flows in the conduits 212 and 212x. In this way, since the super-insulations 224 and 225 are cooled by the liquid refrigerant flowing in the conduits 212 and 212x, the outer surface temperature of the first super-insulation 224 is the liquid phase part 223a of the refrigerant main tank 223. It becomes substantially equal to the temperature of the liquid refrigerant. As a result, it is possible to effectively prevent external heat from entering the refrigerant main tank 223 from the first super insulation 224, which is advantageous for maintaining the cryogenic temperature of the refrigerant main tank 223.
[0072]
The refrigerant main tank 223 is fixed to the vacuum tank 25 via a heat insulating support member 222, a shield plate 220, and a heat insulating support member 222.
In addition, the present invention is not limited only to the embodiments described above and shown in the drawings, and can be appropriately selected as necessary without departing from the scope of the invention.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus according to a first embodiment.
FIG. 2 is a cross-sectional view of a superconducting magnet device according to an application example.
FIG. 3 is a time chart showing opening / closing modes of a pressure equalizing valve and a supply valve.
FIG. 4 is a schematic configuration diagram illustrating an apparatus according to a second embodiment.
FIG. 5 is a schematic configuration diagram of an apparatus according to a third embodiment.
FIG. 6 is a schematic configuration diagram of an apparatus according to a fourth embodiment.
FIG. 7 is a schematic configuration diagram illustrating an apparatus according to a fifth embodiment.
FIG. 8 is a schematic configuration diagram of an apparatus according to a sixth embodiment.
9 is a cross-sectional view of a superconducting magnet device according to an application example of Example 6. FIG.
FIG. 10 is a time chart showing opening / closing modes of a pressure equalizing valve and a supply valve.
FIG. 11 is a schematic configuration diagram of an apparatus according to an eighth embodiment.
FIG. 12 is a schematic configuration diagram of an apparatus according to the ninth embodiment.
FIG. 13 is a schematic configuration diagram of an apparatus according to the tenth embodiment.
FIG. 14 is a schematic configuration diagram of an apparatus according to an eleventh embodiment.
FIG. 15 is a schematic configuration diagram of an apparatus according to a twelfth embodiment.
FIG. 16 is a cross-sectional view of a superconducting magnet device, showing an application example of Example 13;
FIG. 17 is a schematic configuration diagram of an apparatus according to a fourteenth embodiment.
FIG. 18 is a schematic configuration diagram of an apparatus according to a fifteenth embodiment.
[Explanation of symbols]
In the figure, 3 is a refrigerant sub tank (sub chamber), 4 is a pressure equalizing valve (pressure adjusting means, on / off valve), 4n is a pressure equalizing passage, 5 is a supply valve (open / close valve), 5n is a supply passage, and 6 and 8 are Conduit (refrigerant return passage), 10 is a refrigerant main tank (main chamber), 11 is a shield plate (cooled part), 12 is a heat source (heat source means), 13 is a backflow prevention valve, 14 is an air release valve (pressure adjusting means) ), 202 are communication pipes (small chambers), 204 and 217 are floats, and 214b is a small chamber.

Claims (6)

液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される主室と、
液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される副室と、
該主室と該副室とをつなぐと共に途中に被冷却部を備え、該副室から送給された液状冷媒で該被冷却部を冷やした後に冷媒を該主室に帰還させる冷媒帰還通路と、
該主室の液状冷媒を該副室に補給する供給通路と、
該供給通路に配設され該供給通路を流れる冷媒の流量を規制する規制手段と、
該副室の冷媒を加熱し、加熱に伴い増圧した該副室のガス状冷媒のガス圧により該副室の液状冷媒を該冷媒帰還通路に送給すると共に該冷媒帰還通路を介して冷媒を該主室に帰還させる熱源手段と、
該主室のガス状冷媒のガス圧と該副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な圧力調整手段とを具備し、
前記圧力調整手段は、前記主室のガス状冷媒が収納される空間と前記副室のガス状冷媒が収納される空間とをつなぐ均圧通路と、該均圧通路を開閉する開閉弁とを備えていることを特徴とする冷媒供給装置。
A main chamber in which a liquid refrigerant is stored and a gaseous refrigerant is stored on a liquid surface of the liquid refrigerant;
A subchamber in which the liquid refrigerant is stored and the gaseous refrigerant is stored on the liquid surface of the liquid refrigerant;
A refrigerant return passage that connects the main chamber and the sub chamber and includes a cooled portion in the middle, and cools the cooled portion with the liquid refrigerant fed from the sub chamber, and then returns the refrigerant to the main chamber. ,
A supply passage for supplying liquid refrigerant in the main chamber to the sub chamber;
Regulating means for regulating the flow rate of the refrigerant that is disposed in the supply passage and flows through the supply passage;
The refrigerant in the subchamber is heated, and the liquid refrigerant in the subchamber is supplied to the refrigerant return passage by the gas pressure of the gaseous refrigerant in the subchamber that is increased with the heating, and the refrigerant is passed through the refrigerant return passage. Heat source means for returning to the main room,
Pressure adjusting means capable of adjusting at least one of the gas pressure of the gaseous refrigerant in the main chamber and the gas pressure of the gaseous refrigerant in the sub chamber with respect to the other ;
The pressure adjusting means includes: a pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the sub chamber is stored; and an on-off valve that opens and closes the pressure equalizing passage. coolant supply device, characterized in that it comprises.
規制手段は、開閉弁、一方向弁、オリフィスのうちの何れかであることを特徴とする請求項1に記載の冷媒供給装置。The refrigerant supply device according to claim 1, wherein the restricting means is one of an on-off valve, a one-way valve, and an orifice. 冷媒帰還通路から前記副室への冷媒の流れを阻止する逆流防止弁が、該冷媒帰還通路及び該副室の少なくとも一方に配設されていることを特徴とする請求項1又は2に記載の冷媒供給装置。The backflow prevention valve which blocks | prevents the flow of the refrigerant | coolant from a refrigerant | coolant return path to the said subchamber is arrange | positioned in at least one of this refrigerant | coolant return path | route and this subchamber, The Claim 1 or 2 characterized by the above-mentioned. Refrigerant supply device. 前記副室は、該副室よりも容積の小さくかつ該副室の液状冷媒が進入する小室を備えており、熱源手段は該小室の冷媒を加熱することを特徴とする請求項1〜に記載の冷媒供給装置。The auxiliary chamber has a chamber in which the liquid refrigerant in small and sub chamber volume than the sub-chamber enters the heat source means to claim 1-3, characterized by heating the coolant of the small chamber The refrigerant supply device described. 前記副室には、該副室の液状冷媒に浮遊するフロートが装備されており、該フロートは、該副室の液状冷媒の一部が進入すると共に副室よりも容積の小さな小室を備え、熱源手段は該小室の冷媒を加熱することを特徴とする請求項1〜に記載の冷媒供給装置。The sub-chamber is equipped with a float that floats on the liquid refrigerant in the sub-chamber, and the float includes a small chamber that has a smaller volume than the sub-chamber as part of the liquid refrigerant in the sub-chamber enters. heat source means coolant supply apparatus of claim 1-4, characterized by heating the coolant of the small chamber. 液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納される主室と、
液状冷媒が収納されると共に液状冷媒の液面上にガス状冷媒が収納され、第1副室と第2副室とを有する副室と、
該主室と該第1副室とをつなぐと共に途中に被冷却部を備える主通路と、該被冷却部の上流側と該第2副室とをつなぐ副通路とを有し、該第1、第2副室から送給された液状冷媒で該被冷却部を冷やした後に冷媒を該主室に帰還させる冷媒帰還通路と、
該主室の液状冷媒を該第1副室に補給する第1供給通路と、該主室の液状冷媒を該第2副室に補給する第2供給通路とを有する供給通路と、
該供給通路を流れる冷媒の流量を規制し、該第1供給通路に配設された第1規制手段と、該第2供給通路に配設された第2規制手段とを有する規制手段と、
該第1副室の冷媒を加熱する第1熱源手段と、該第2副室の冷媒を加熱する第2熱源手段とを有する熱源手段と、
該主室のガス状冷媒のガス圧と該第1副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な第1圧力調整手段と、該主室のガス状冷媒のガス圧と該第2副室のガス状冷媒のガス圧との少なくとも一方を他方に対して調整可能な第2圧力調整手段とを有する圧力調整手段と、
該冷媒帰還通路の主通路から第1副室への冷媒の流れを阻止する第1逆流防止弁と、該冷媒帰還通路の副通路から第2副室への冷媒の流れを阻止する第2逆流防止弁とを有する逆流防止弁とを具備し、
前記第1圧力調整手段は、前記主室のガス状冷媒が収納される空間と前記第1副室のガス状冷媒が収納される空間とをつなぐ第1均圧通路と、該第1均圧通路を開閉する第1開 閉弁とを備え、
前記第2圧力調整手段は、前記主室のガス状冷媒が収納される空間と前記第2副室のガス状冷媒が収納される空間とをつなぐ第2均圧通路と、該第2均圧通路を開閉する第2開閉弁とを備えていることを特徴とする冷媒供給装置。
A main chamber in which a liquid refrigerant is stored and a gaseous refrigerant is stored on a liquid surface of the liquid refrigerant;
A sub-chamber having a first sub-chamber and a second sub-chamber, wherein the liquid refrigerant is housed and a gaseous refrigerant is housed on a liquid surface of the liquid refrigerant;
A main passage that connects the main chamber and the first sub-chamber and includes a cooled portion in the middle; a sub-passage that connects the upstream side of the cooled portion and the second sub-chamber; A refrigerant return passage for returning the refrigerant to the main chamber after cooling the cooled part with the liquid refrigerant fed from the second sub chamber;
A supply passage having a first supply passage for supplying liquid refrigerant in the main chamber to the first sub chamber, and a second supply passage for supplying liquid refrigerant in the main chamber to the second sub chamber;
A regulating means for regulating the flow rate of the refrigerant flowing through the supply passage, and having a first regulating means disposed in the first supply passage and a second regulating means disposed in the second supply passage;
Heat source means having first heat source means for heating the refrigerant in the first sub chamber and second heat source means for heating the refrigerant in the second sub chamber;
A first pressure adjusting means capable of adjusting at least one of a gas pressure of the gaseous refrigerant in the main chamber and a gas pressure of the gaseous refrigerant in the first sub chamber with respect to the other; Pressure adjusting means having second pressure adjusting means capable of adjusting at least one of the gas pressure and the gas pressure of the gaseous refrigerant in the second sub chamber with respect to the other;
A first backflow prevention valve for blocking the flow of refrigerant from the main passage of the refrigerant return passage to the first sub chamber; and a second backflow for blocking the flow of refrigerant from the sub passage of the refrigerant return passage to the second sub chamber. A backflow prevention valve having a prevention valve ,
The first pressure adjusting means includes a first pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the first sub chamber is stored, and the first pressure equalizing passage. and a first opening closed for opening and closing the passage,
The second pressure adjusting means includes: a second pressure equalizing passage that connects a space in which the gaseous refrigerant in the main chamber is stored and a space in which the gaseous refrigerant in the second sub chamber is stored; A refrigerant supply device comprising: a second on-off valve that opens and closes the passage .
JP00351195A 1995-01-12 1995-01-12 Refrigerant supply device Expired - Fee Related JP3676407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00351195A JP3676407B2 (en) 1995-01-12 1995-01-12 Refrigerant supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00351195A JP3676407B2 (en) 1995-01-12 1995-01-12 Refrigerant supply device

Publications (2)

Publication Number Publication Date
JPH08189715A JPH08189715A (en) 1996-07-23
JP3676407B2 true JP3676407B2 (en) 2005-07-27

Family

ID=11559394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00351195A Expired - Fee Related JP3676407B2 (en) 1995-01-12 1995-01-12 Refrigerant supply device

Country Status (1)

Country Link
JP (1) JP3676407B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848532A (en) * 1997-04-23 1998-12-15 American Superconductor Corporation Cooling system for superconducting magnet
US6376943B1 (en) 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
US6489701B1 (en) 1999-10-12 2002-12-03 American Superconductor Corporation Superconducting rotating machines
JP4960049B2 (en) * 2006-09-14 2012-06-27 三菱電機株式会社 Ice concentration meter
US20090241558A1 (en) * 2008-03-31 2009-10-01 Jie Yuan Component cooling system
JP5315102B2 (en) * 2009-03-19 2013-10-16 日立アプライアンス株式会社 Refrigerator and refrigeration air conditioning system
DE102012201108A1 (en) 2012-01-26 2013-08-01 Siemens Aktiengesellschaft Device for cooling a superconducting machine
RU2630818C1 (en) * 2016-11-25 2017-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Thermosyphon heater with electrode electrolyte heater and integrated pump
CN106824032A (en) * 2017-03-17 2017-06-13 瑞金市瑞谷科技发展有限公司 A kind of conduction oil temperature control system
JP6929743B2 (en) * 2017-09-06 2021-09-01 大陽日酸株式会社 Space environment test equipment and liquid nitrogen recovery method for the space environment test equipment

Also Published As

Publication number Publication date
JPH08189715A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP3676407B2 (en) Refrigerant supply device
US7528510B2 (en) Superconducting machine device with a superconducting winding and thermosiphon cooling
EP1248933B2 (en) Cooling method for high temperature superconducting machines
EP1477755B1 (en) Liquid helium recondensation device and transfer line used therefor
US20070006598A1 (en) System and method for cooling superconducting devices
US6895765B2 (en) Method for providing cooling to superconducting cable
CN1942979A (en) Circulation cooling system for cryogenic cable
JP6527353B2 (en) Superconductor cooling system
US6418729B1 (en) Domestic refrigerator with peltier effect, heat accumulators and evaporative thermosyphons
CN114087290B (en) Air supply system and refrigerating system for suspension bearing
US20110120147A1 (en) Pressurized Superfluid Helium Cryostat
JP2002039695A (en) Liquefied gas vaporization system utilizing waste heat, and waste heat supply method
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
KR102533384B1 (en) Multi-Purpose Thermal Energy Storage and Discharge System
US5247811A (en) Production and heat storage system for low-temperature chilled water
JP3448326B2 (en) Cooling system
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
CN103999338A (en) Cooling device for a superconductor of a superconductive synchronous dynamoelectric machine
CN117238870B (en) Active refrigerating device for chip heat dissipation
JP7519815B2 (en) Heating system and heating method
US9109843B1 (en) Radiator systems
JP2001173598A (en) Liquid refrigerant pump
JP3176087B2 (en) Cryogenic refrigeration equipment
JPH07176424A (en) Superconducting coil apparatus
JP2009085453A (en) Cooling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

LAPS Cancellation because of no payment of annual fees