JP3676401B2 - Manufacturing method for grinding wheel - Google Patents

Manufacturing method for grinding wheel Download PDF

Info

Publication number
JP3676401B2
JP3676401B2 JP28086394A JP28086394A JP3676401B2 JP 3676401 B2 JP3676401 B2 JP 3676401B2 JP 28086394 A JP28086394 A JP 28086394A JP 28086394 A JP28086394 A JP 28086394A JP 3676401 B2 JP3676401 B2 JP 3676401B2
Authority
JP
Japan
Prior art keywords
abrasive grains
grindstone
particle size
average particle
solid kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28086394A
Other languages
Japanese (ja)
Other versions
JPH08141915A (en
Inventor
真司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP28086394A priority Critical patent/JP3676401B2/en
Publication of JPH08141915A publication Critical patent/JPH08141915A/en
Application granted granted Critical
Publication of JP3676401B2 publication Critical patent/JP3676401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ボンド材にて砥粒を固定してなる研磨用砥石の製造方法に関する。
【0002】
【従来の技術】
従来、砥粒をボンド材により固定してなる研磨用砥石の製造方法として、例えば特開昭59−134647号公報に記載される発明がある。
上記発明は、図6に示すように、ボンド材となるフェノールレジンを有機溶剤に溶解した後、砥粒および硬化剤を添加して混合し、強制乾燥することにより砥粒とボンド剤との固体状混練物を得、これを粗砕して熱間プレスすることで固形化するものである。
【0003】
【発明が解決しようとする課題】
しかるに、前記従来技術においては、ボンド材と砥粒との固体状混練物を粗砕したものを固形化している。この固体状混練物は樹脂溶液に砥粒を混合・乾燥して得られるが、被加工物の外観品質を向上させる目的で砥粒の粒径を小さくすると、砥粒の比表面積の増加により砥粒同士の凝集が顕著になる。この凝集が発生しやすい微小砥粒を樹脂溶液に混合すると、溶液中で凝集が起こり、硬い凝集塊が発生する。この凝集塊は後の粗砕工程では粉砕することができず、砥石中にそのまま存在することになる。この中には気孔がほとんどなく、砥粒がボンド材で強固に保持されているので非常に硬い。
【0004】
加工にこの凝集塊を含む砥石を用いると、砥粒が他の部分のように単体で脱粒することができず、凝集塊ごと脱粒する。脱粒した凝集塊は、砥石と被加工物との間で転動することにより、被加工物にキズを発生させる。また、凝集塊に保持されている砥粒は強固に保持されているので、砥粒に大きな力が加わっても他の気孔に囲まれた砥粒のようには脱粒できず、被加工物に深いキズを生じさせる。このように、砥石に微小砥粒を用いた場合、微小砥粒の外観品質向上の効果を得ることができず、被加工物にキズを生じさせてしまうという問題点があった。
【0005】
請求項1の目的は、原材料として粒径の小さい砥粒を用いるのではなく、砥石成形直前に砥粒を粉砕して粒径を小さくすることにより、キズ発生の原因となる微小砥粒の凝集塊が砥石中に存在しない研磨用砥石の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1の発明は、砥粒をボンド材で固定してなる研磨用砥石の製造方法において、平均粒径が0.6μm以上の砥粒とボンド材とを混合し、固化してフレーク状の固体状混練物を作製する工程と、前記フレーク状の固体状混練物を微粉砕し、前記砥粒の平均粒径を0.6μm未満にする工程と、前記微粉砕した固体状混練物を成形して焼成する工程と、を有する。
【0007】
【作用】
請求項1の作用を以下に説明する。
まず、原材料の砥粒径と固体状混練物作製時の凝集塊との発生確率の関係を図1に示す。
固体状混練物の作製は、同一濃度のフェノール樹脂溶液に平均粒径のみ変更した同一量の砥粒を添加し、10min攪拌することによって行った。発生確率は前記操作を20回行い、1粒でも凝集塊が存在したら発生としてカウントした。図1から解るように、0.6μmを境にしてこれより小さい粒径の場合には発生が見られることがわかる。
【0008】
このことから0.6μm未満の砥粒を用いた砥石を作製する際には、従来の方法では砥石中に凝集塊が生じてしまうといえる。また、0.6μm以上の粒径であれば凝集塊を生じることがないと考えることができる。このことより、平均粒径0.6μm以上の砥粒を用いて凝集塊のない固体状混練物を作製した後に砥粒の微粉砕を行うことで、平均粒径が0.6μm未満の砥粒を均一に配置させることができる。これにより凝集塊によるキズの発生をなくすことができる。
【0009】
【実施例1】
図2および図3は本実施例を示し、図2はフローチャート、図3は粉砕時間と粒径との関係を示すグラフである。
本実施例では、砥粒1に酸化セリウム(平均粒径1.6μm)、ボンド材2にフェノールレジンを用いた。
ボンド材2となるフェノールレジンを適量秤量し、有機溶剤を徐々に加えて攪拌しながら完全に溶解する。この溶液にあらかじめ適量秤量された酸化セリウム1および硬化剤3を加えて均一に混合する。
【0010】
上記混練物を乾燥炉にいれて加熱し、有機溶剤を蒸発除去させて強制乾燥させる。これにより固体状混練物の塊が得られる。この塊をカッターミキサーにより粗砕して平均粒径を約900μmにする。この粗砕粉を、φ3mmのジルコニアボールを用いた湿式ボールミルにより48h微粉砕して、砥粒1の平均粒径を0.4μmとする。この固体状混練物の微粉砕物を所望の条件により冷間圧縮して約150℃で焼成することにより砥石が得られる。
【0011】
微粉砕の粉体は樹脂との混合物であるので、このまま粒度測定を行っても砥粒径を求めることはできない。よって、樹脂を溶解させた後に砥粒1のみの粒径を測定する必要がある。微粉砕後の粒径は粉砕条件が同一の場合、粉砕時間によって決まるので、所望の粒径を容易に得ようとするならば図3のような粉砕時間と粒径との関係のグラフをあらかじめ作成しておくとよい。
【0012】
比較のために、本実施例で作製した砥石と、原材料に0.4μmの砥粒を用いて従来方法に従って作製した砥石とで加工を行い、外観の比較を行った。硝材にPBH39、加工圧力1.0kgf/cm2 、砥石周速度100m/minとして加工を行い、外観検査は白熱灯の透過光により行った。この結果を表1に示す。
【0013】
【表1】

Figure 0003676401
【0014】
砥粒の粒径は同一であるにも係わらず、外観の合格率は約20%も異なることがわかった。
【0015】
本実施例によれば、固体状混練物の作製時には砥粒径は1.6μmと比較的大きいので微小砥粒特有の凝集塊の発生は起こらない。また、この固体状混練物は成形前に微粉砕するので、最終的に砥石中に配置される砥粒の粒径は0.4μmまで小さくすることができる。これにより凝集塊の影響による外観品質の低下を起こすことがない。
【0016】
【実施例2】
図4および図5は本実施例を示し、図4はフローチャート、図5は説明図である。
本実施例では砥粒11に酸化セリウム(平均粒径:1.8μm)、ボンド材12にポリイミドレジンを用いる。
ボンド材12となるポリイミドレジンを適量秤量し、有機溶剤を徐々に加えて攪拌しながら完全に溶解する。この溶液にあらかじめ適量秤量された砥粒(酸化セリウム)11を加えて均一に混合する。
【0017】
上記混練物13を図5に示す様な水15を満たした水槽16に滴下し、混練物13中の溶剤を水15と置換することにより固化させ、大きさ約7mmのフレーク状の固体状混練物14を得る。この固体状混練物14をφ3mmのジルコニアボールを用いた湿式の振動ミルにより60h微粉砕し、砥粒11の平均粒径を0.2μmにする。この微粉砕物を所望の条件により冷間圧縮して約200℃で焼成することにより砥石が得られる。
【0018】
本実施例によれば、前記実施例1と同様に、砥石中に砥粒の凝集塊を存在させることなく、0.2μmという微小砥粒を用いた砥石を作製することができ、キズの発生をなくすことができる。
【0019】
尚、前記各実施例においては、微粉砕の方法にボールミルや振動ミルを用いたが、本発明はこれに限定するものではなく、他の公知の粉砕方法において粉砕時に樹脂を侵すことがなく、また樹脂の硬化に影響を与える温度まで昇温することがなければ、その方法を用いてもよい。
【0020】
【発明の効果】
請求項1の効果は、砥粒の凝集塊を砥石中に存在させることなく、0.6μm未満の微小砥粒を砥石中に配置することができ、被加工物の外観品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明の作用を説明するグラフである。
【図2】実施例1を示すフローチャートである。
【図3】実施例1を示すグラフである。
【図4】実施例2を示すフローチャートである。
【図5】実施例2を示す説明図である。
【図6】従来例を示すフローチャートである。
【符号の説明】
1,11 砥粒
2,12 ボンド材
3 硬化剤
13 混練物
14 固体状混練物
15 水
16 水槽[0001]
[Industrial application fields]
The present invention relates to a method for producing a polishing grindstone in which abrasive grains are fixed with a bond material.
[0002]
[Prior art]
Conventionally, as a method for producing a polishing grindstone in which abrasive grains are fixed with a bonding material, there is an invention described in, for example, Japanese Patent Application Laid-Open No. 59-134647.
In the above invention, as shown in FIG. 6, after the phenol resin used as a bonding material is dissolved in an organic solvent, the abrasive grains and the curing agent are added and mixed, and forcedly dried to solidify the abrasive grains and the bonding agent. A kneaded product is obtained, and this is crushed and solidified by hot pressing.
[0003]
[Problems to be solved by the invention]
However, in the said prior art, what crushed the solid kneaded material of a bond material and an abrasive grain is solidified. This solid kneaded material is obtained by mixing and drying abrasive grains in a resin solution. However, if the grain size of the abrasive grains is reduced for the purpose of improving the appearance quality of the work piece, the specific surface area of the abrasive grains is increased. Aggregation between grains becomes remarkable. When the fine abrasive grains in which aggregation is likely to occur are mixed with the resin solution, aggregation occurs in the solution and a hard aggregate is generated. This agglomerate cannot be pulverized in the subsequent crushing step, and is present as it is in the grindstone. In this, there are almost no pores, and the abrasive grains are firmly held by the bond material, so that they are very hard.
[0004]
When a grindstone containing this agglomerate is used for processing, the abrasive grains cannot be crushed alone as in other parts, and the agglomerates are crushed together. The deagglomerated agglomerate rolls between the grindstone and the workpiece, thereby generating scratches on the workpiece. In addition, since the abrasive grains held in the agglomerates are firmly held, even if a large force is applied to the abrasive grains, they cannot be shattered like abrasive grains surrounded by other pores, so that Causes deep scratches. As described above, when the fine abrasive grains are used for the grindstone, the effect of improving the appearance quality of the fine abrasive grains cannot be obtained, and there is a problem that the work piece is scratched.
[0005]
The object of claim 1 is not to use abrasive grains having a small particle size as a raw material, but to agglomerate fine abrasive grains that cause scratches by pulverizing the abrasive grains immediately before forming a grindstone to reduce the particle size. It is providing the manufacturing method of the grindstone for grinding | polishing which a lump does not exist in a grindstone.
[0006]
[Means for Solving the Problems]
The invention of claim 1 is a method for producing a polishing grindstone in which abrasive grains are fixed with a bond material. The abrasive grains having an average particle size of 0.6 μm or more and a bond material are mixed and solidified to form a flaky shape. A step of producing a solid kneaded product, a step of finely pulverizing the flaky solid kneaded product to make the average particle size of the abrasive grains less than 0.6 μm, and molding the finely pulverized solid kneaded product And firing.
[0007]
[Action]
The operation of the first aspect will be described below.
First, FIG. 1 shows the relationship between the abrasive grain size of the raw material and the probability of occurrence of agglomerates during the preparation of the solid kneaded product.
Preparation of the solid kneaded material was performed by adding the same amount of abrasive grains in which only the average particle diameter was changed to a phenol resin solution having the same concentration and stirring for 10 minutes. The probability of occurrence was counted as occurrence when the above operation was performed 20 times and even one agglomerate was present. As can be seen from FIG. 1, it can be seen that generation occurs when the particle diameter is smaller than 0.6 μm.
[0008]
From this, when producing a grindstone using abrasive grains of less than 0.6 μm, it can be said that agglomerates are produced in the grindstone in the conventional method. Moreover, it can be considered that aggregates are not generated if the particle diameter is 0.6 μm or more. From this, by producing a solid kneaded product without agglomerates using abrasive grains having an average particle diameter of 0.6 μm or more, the abrasive grains are finely pulverized, whereby the abrasive grains having an average particle diameter of less than 0.6 μm Can be arranged uniformly. Thereby, generation | occurrence | production of the damage | wound by an aggregate can be eliminated.
[0009]
[Example 1]
2 and 3 show the present embodiment, FIG. 2 is a flowchart, and FIG. 3 is a graph showing the relationship between the grinding time and the particle size.
In this example, cerium oxide (average particle size 1.6 μm) was used for the abrasive grains 1, and phenol resin was used for the bond material 2.
An appropriate amount of the phenol resin used as the bond material 2 is weighed, and an organic solvent is gradually added and completely dissolved while stirring. An appropriate amount of cerium oxide 1 and curing agent 3 weighed in advance are added to this solution and mixed uniformly.
[0010]
The kneaded product is placed in a drying oven and heated to evaporate and remove the organic solvent and force-dry. Thereby, a lump of solid kneaded material is obtained. This lump is coarsely crushed by a cutter mixer so that the average particle size is about 900 μm. The coarsely pulverized powder is finely pulverized for 48 hours by a wet ball mill using zirconia balls having a diameter of 3 mm so that the average particle diameter of the abrasive grains 1 is 0.4 μm. A grindstone is obtained by cold-compressing the finely pulverized solid kneaded product under desired conditions and firing at about 150 ° C.
[0011]
Since the finely pulverized powder is a mixture with a resin, the particle size of the abrasive cannot be determined by measuring the particle size as it is. Therefore, it is necessary to measure the particle size of only the abrasive grains 1 after the resin is dissolved. Since the particle size after pulverization is determined by the pulverization time when the pulverization conditions are the same, if a desired particle size is to be easily obtained, a graph of the relationship between the pulverization time and the particle size as shown in FIG. Create it.
[0012]
For comparison, processing was performed using a grindstone produced in this example and a grindstone produced according to a conventional method using 0.4 μm abrasive grains as a raw material, and the appearance was compared. The glass material was processed with PBH39, a processing pressure of 1.0 kgf / cm 2 , and a grinding wheel peripheral speed of 100 m / min, and an appearance inspection was performed with transmitted light from an incandescent lamp. The results are shown in Table 1.
[0013]
[Table 1]
Figure 0003676401
[0014]
Although the grain size of the abrasive grains was the same, it was found that the acceptance rate of the appearance was different by about 20%.
[0015]
According to this example, when the solid kneaded material is produced, the abrasive particle size is relatively large at 1.6 μm, so that no agglomerates peculiar to fine abrasive grains occur. Moreover, since this solid kneaded material is finely pulverized before molding, the particle size of the abrasive grains finally disposed in the grindstone can be reduced to 0.4 μm. As a result, the appearance quality does not deteriorate due to the influence of the aggregate.
[0016]
[Example 2]
4 and 5 show the present embodiment, FIG. 4 is a flowchart, and FIG. 5 is an explanatory diagram.
In this embodiment, cerium oxide (average particle diameter: 1.8 μm) is used for the abrasive grains 11 and polyimide resin is used for the bonding material 12.
An appropriate amount of the polyimide resin to be the bond material 12 is weighed, and an organic solvent is gradually added and completely dissolved while stirring. An appropriate amount of abrasive grains (cerium oxide) 11 weighed in advance is added to this solution and mixed uniformly.
[0017]
The kneaded product 13 is dropped into a water tank 16 filled with water 15 as shown in FIG. 5 and solidified by replacing the solvent in the kneaded product 13 with the water 15 to form a flaky solid kneaded material having a size of about 7 mm. An object 14 is obtained. The solid kneaded material 14 is finely pulverized for 60 hours by a wet vibration mill using zirconia balls having a diameter of 3 mm so that the average particle diameter of the abrasive grains 11 is 0.2 μm. A grindstone is obtained by cold-compressing the finely pulverized product under desired conditions and firing at about 200 ° C.
[0018]
According to the present embodiment, as in the first embodiment, a grindstone using minute abrasive grains of 0.2 μm can be produced without causing agglomerates of abrasive grains in the grindstone, and scratches are generated. Can be eliminated.
[0019]
In each of the above examples, a ball mill or a vibration mill was used for the fine pulverization method, but the present invention is not limited to this, and the resin is not affected during pulverization in other known pulverization methods. If the temperature is not raised to a temperature that affects the curing of the resin, that method may be used.
[0020]
【The invention's effect】
The effect of claim 1 is that fine abrasive grains of less than 0.6 μm can be arranged in the grindstone without causing agglomerates of abrasive grains to exist in the grindstone, and the appearance quality of the workpiece can be improved. it can.
[Brief description of the drawings]
FIG. 1 is a graph illustrating the operation of the present invention.
FIG. 2 is a flowchart showing the first embodiment.
3 is a graph showing Example 1. FIG.
FIG. 4 is a flowchart illustrating a second embodiment.
FIG. 5 is an explanatory diagram showing a second embodiment.
FIG. 6 is a flowchart showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Abrasive grains 2,12 Bond material 3 Hardener 13 Kneaded material 14 Solid kneaded material 15 Water 16 Water tank

Claims (1)

砥粒をボンド材で固定してなる研磨用砥石の製造方法において、
平均粒径が0.6μm以上の砥粒とボンド材とを混合し、固化してフレーク状の固体状混練物を作製する工程と、
前記フレーク状の固体状混練物を微粉砕し、前記砥粒の平均粒径を0.6μm未満にする工程と、
前記微粉砕した固体状混練物を成形して焼成する工程と、
を有することを特徴とする研磨用砥石の製造方法。
In the manufacturing method of the grinding wheel for polishing formed by fixing the abrasive grains with a bond material,
A step of mixing an abrasive having an average particle size of 0.6 μm or more and a bond material, and solidifying to produce a flaky solid kneaded product;
A step of said flaky solid kneaded mixture was finely pulverized to an average particle size of the abrasive grains to less than 0.6 .mu.m,
Forming and firing the finely pulverized solid kneaded product;
A method for producing a grinding wheel for polishing, comprising:
JP28086394A 1994-11-15 1994-11-15 Manufacturing method for grinding wheel Expired - Fee Related JP3676401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28086394A JP3676401B2 (en) 1994-11-15 1994-11-15 Manufacturing method for grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28086394A JP3676401B2 (en) 1994-11-15 1994-11-15 Manufacturing method for grinding wheel

Publications (2)

Publication Number Publication Date
JPH08141915A JPH08141915A (en) 1996-06-04
JP3676401B2 true JP3676401B2 (en) 2005-07-27

Family

ID=17631020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28086394A Expired - Fee Related JP3676401B2 (en) 1994-11-15 1994-11-15 Manufacturing method for grinding wheel

Country Status (1)

Country Link
JP (1) JP3676401B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582116B1 (en) * 2005-01-18 2006-05-22 권순철 A manufacturing method of grinding wheel

Also Published As

Publication number Publication date
JPH08141915A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
CN110944943B (en) Magnesium oxide powder, method for producing same, thermally conductive resin composition, thermally conductive paste, and thermally conductive coating material
KR102366080B1 (en) Porous silica particles and method for producing the same
CN110944768A (en) Casting mold material and method for producing same, method for producing casting mold, and method for recycling recycled refractory aggregate
JP3746978B2 (en) Manufacturing method of briquette for steelmaking raw material
JP3676401B2 (en) Manufacturing method for grinding wheel
JP2006247754A (en) Polishing device, polishing member and polishing method of magnet
JP3605192B2 (en) Ultrafine silica whetstone and method for producing the same
JP2916611B2 (en) Powder particle crushing method and particle modification method
JPH11229047A (en) Raw material for iron-making and production therefor
JP3745657B2 (en) Manufacturing method of briquette for steelmaking raw material
JP3561736B2 (en) Method for producing SiC particle dispersion-reinforced composite material and product produced by the method
JPS62114879A (en) Manufacture of grinding stone of abrasive grains composed of massive grain-formed grinding stone piece
JPS62136374A (en) Manufacture for grindstone and cutting tool
JP3789796B2 (en) Iron-based powder material and manufacturing method thereof
CN113896459B (en) Ultrathin quartz stone plate and preparation method thereof
JP2001150349A (en) Grinding and polishing wheel
CN108453932A (en) The preparation method of resin abrasive tools form a team abrasive material, preparation method and resin abrasive tools
JP2003011063A (en) Grinding wheel for polishing and manufacturing method therefor
JP3662778B2 (en) Method for producing granular iron oxide agglomerated powder
JPS603557B2 (en) Method for manufacturing a whetstone using abrasive grains from agglomerated whetstone pieces
JPS61152372A (en) Synthetic resinous abrasive
TW202346208A (en) Porous silica particles and method for producing same
JP3250746B2 (en) Manufacturing method of grinding wheel for grinding and polishing and grinding wheel for grinding and polishing
JPS6341004A (en) Anisotropic bonded magnet
US2097654A (en) Polishing article

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees