JP3676395B2 - Method and apparatus for molding composite optical element - Google Patents

Method and apparatus for molding composite optical element Download PDF

Info

Publication number
JP3676395B2
JP3676395B2 JP12688494A JP12688494A JP3676395B2 JP 3676395 B2 JP3676395 B2 JP 3676395B2 JP 12688494 A JP12688494 A JP 12688494A JP 12688494 A JP12688494 A JP 12688494A JP 3676395 B2 JP3676395 B2 JP 3676395B2
Authority
JP
Japan
Prior art keywords
resin
light energy
molding
lens
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12688494A
Other languages
Japanese (ja)
Other versions
JPH07308971A (en
Inventor
典光 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP12688494A priority Critical patent/JP3676395B2/en
Publication of JPH07308971A publication Critical patent/JPH07308971A/en
Application granted granted Critical
Publication of JP3676395B2 publication Critical patent/JP3676395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins

Description

【0001】
【産業上の利用分野】
本発明はレンズ基材の成形面に樹脂層を形成する複合型光学素子の成形方法及び装置に関する。
【0002】
【従来の技術】
従来この種の装置としては特願平05−027447として特許出願した技術がある。この技術は、複合型光学素子の製造方法としてレンズ基材の樹脂層を形成する成形面が凸面に形成されている場合に、所望の光学面形状を有する金型成形面が凹面状となっていることに着目し、金型成形面を上向きにしてその凹成形面に光エネルギー硬化型樹脂を供給し、その樹脂にレンズ基材の成形面を押圧して該レンズ基材の成形面に樹脂を押し広げることによりレンズ基材の成形面に樹脂の層を形成させた後、樹脂層に光エネルギーを照射して硬化させて複合型光学素子を完成させるものである。
【0003】
この技術はレンズ基材の成形面に樹脂層を形成させる際に樹脂が金型の外に流出したり、樹脂層に気泡が混入したりしないようにしたことを特徴とするものであり、また、複数の金型を用いて、その一つの金型でレンズ基材の成形面に樹脂を押し広げるとともに光エネルギーを照射して樹脂層を硬化させている時間帯に、別の金型では次の金型成形面に樹脂を供給して樹脂層成形の前準備をすることにより、金型の遊休時間を削減して成形時間の短縮を図っている。
【0004】
【発明が解決しようとする課題】
しかしながら、この製造方法では、樹脂層を形成するに際して、樹脂が成形面外へ流出すること及び樹脂層内に気泡が混入することを防止するとともに、成形時間を大幅に短縮することができる点ではそれなりに効果は大であるが、製造に際して複数の金型を用いているので、金型精度のばらつきにより製造された複合型光学素子の光学面精度にばらつきが生じやすく、精度が規格値から外れてしまうこともある。
【0005】
また、この精度のばらつきを少なくするためには、前記完成した複合型光学素子である製品を加工して精度を高めたりする必要がでてくるために製造時間が増加する。さらに、複数の金型を用いることは設備費が嵩むことになり、製品コストが上昇するという問題がある。
【0006】
よって本発明は前記問題点に鑑みてなされたものであり、レンズ基材の成形面が凸面に形成されている場合でも樹脂層を形成する前に樹脂が成形面の周縁から流出することがないようにするとともに、複合型光学素子製造のタクトタイムを短縮させ、製品の精度を向上させることができる複合型光学素子の成形方法及び装置の提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明はレンズ基材の成形面上に光エネルギー硬化型樹脂を供給する工程と、所望の光学面形状を有する金型を用いて該樹脂をレンズ基材の成形面上に所望の厚さに押し広げる工程と、光エネルギーを照射して該樹脂を硬化させる工程を有する複合型光学素子の成形方法において、レンズ基材の成形面上に樹脂を供給した直後に、該樹脂に微量の光エネルギーを照射して該樹脂を僅かにゲル化させることにより該樹脂の過剰な流動を阻止することを特徴とする。
【0010】
請求項2に係る手段としては、レンズ基材の成形面上に樹脂を供給し、所望の光学面形状を有する金型を用いて該樹脂をレンズ基材の成形面上に所望の厚さに押し広げて該樹脂の層を形成し、該樹脂の層に光エネルギーを照射して該樹脂を硬化させる複合型光学素子の成形装置において、レンズ基材の成形面を上にしてレンズ基材を載置する載置台と、載置台に載置されたレンズ基材の前記成形面に該樹脂を供給するシリンジ及び温調ブロックとから成るディスペンスユニットと、シリンジから該樹脂を供給した直後に該樹脂の面に低出力の光エネルギーを照射してゲル化することが可能なゲル化用光エネルギー出力源と、ディスペンスユニットとは別の位置に設けられた成形部の載置台にレンズ基材を搬送する搬送手段と、成形部にて前記搬送されたレンズ基材の軸心を前記金型及び成形部の載置台の軸心に合わせる芯出し部材と、レンズ基材の成形面に供給された該樹脂をレンズ基材の成形面上に押し広げて所望の厚さの樹脂層を形成させる前記金型と、レンズ基材の上方にて前記金型を取り付ける型取付ベースと、型取付ベースを昇降させるボールネジと、ボールネジを回転させるパルスモーターと、該樹脂層を硬化させるための硬化用光エネルギーを出力する硬化用光エネルギー出力源と、硬化用光エネルギー出力源からの硬化用光エネルギーの放射方向を樹脂層に向けて変換するコールドミラーと、樹脂層に向けられた硬化用光エネルギーを硬化用光エネルギー出力源と樹脂層との間で供給または遮断状態にするシャッターとから成ることを特徴とする。
【0011】
請求項1に係る作用としては、レンズ基材の成形面上に樹脂を供給した直後に樹脂を僅かにゲル化させることにより、時間が経過して樹脂に室温が伝達しても粘度の変化が少なく樹脂に金型が接触する前に樹脂がレンズ基材周縁から流出することがない。
【0014】
請求項2に係る作用としては、レンズ基材の成形面上に光エネルギー硬化型樹脂の層を形成させる複合型光学素子の製造装置として、レンズ基材の成形面上に樹脂を供給した直後に、微量の光エネルギーを樹脂に照射することができるように構成したことにより、樹脂を僅かにゲル化させて樹脂の過剰な流動を阻止することができる。
【0015】
また、本発明の複合型光学素子の製造装置において使用する金型は1個だけであり、従来のように複数個を用いないために金型の光学面形状精度のばらつきによる製品精度のばらつきを無くすることができる。またレンズ基材の成形面に樹脂を供給する工程と供給された樹脂を金型にてレンズ基材の成形面に押し広げる工程とを別々に行うので金型の稼働率が高まる。
【0016】
【実施例1】
以下、本発明の実施例を図面とともに具体的に説明する。
図1から図3は本発明の実施例1を示し、図1は複合型光学素子製造装置の要部を一部断面にした図、図2は樹脂層を形成する工程の説明図、図3はレンズ基材面に樹脂を供給する工程の説明図である。
【0017】
載置台2a,2bは円筒形をなし、載置台2aの軸心は金型1の軸心に一致するように調整されている。さらに載置台2aにはレンズ基材9が載置された際にレンズ基材9の軸心を金型1及び載置台2aの軸心に合わせるための芯出し部材10がその周囲を取り囲むように3個以上で等間隔に配設されている。
【0018】
この載置台の載置面に対向して金型1が設けられ、金型1は装置ベース8のガイド部3を介してスライドする型取付ベース4の下面に固設されている。型取付ベース4の上方には図示しない装置ベース8側にパルスモーター6が設けられており、パルスモーター6の回転はギヤー5a,5bを介してボールネジ7に伝えられ、ボールネジ7は型取付ベース4の内部に設けられたメネジ(図示せず)に螺合して、装置ベース8のガイド部3を介して型取付ベース4を金型1とともに昇降させ、金型1が下降した際に金型1の凹の光学面形状を有する成形面(金型の光学面に相当する)にて樹脂をレンズ基材9の面(レンズ基材の成形面に相当する)に押し広げて樹脂15の層を形成することができるように構成している。
【0019】
一方、載置台2aの下方には、傾斜したコールドミラー12が、その左側には光エネルギーとしての紫外線を出力する硬化用光エネルギー出力源としての超高圧メタルハライドランプ14が設けられ、コールドミラー12と超高圧メタルハライドランプ14との間にはシャッター13が設けられていて、シャッター13を開閉することによりメタルハライドランプ14から出力する紫外線をコールドミラー12に向かって供給、遮断をすることができるように構成している。
【0020】
コールドミラー12の面に向かって放射された紫外線14aはコールドミラー12にて反射することにより上方向の紫外線14aに変換され、載置台2aの内部及びレンズ基材9を通過して樹脂15の層に照射される。
【0021】
また、図3に示すように、金型1とは別の位置にて、レンズ基材9の面に樹脂15を供給するディスペンスユニット16が設けられている。ディスペンスユニット16はシリンジ17とその周りに設けられた温調ブロック18とから成り、シリンジ17内の樹脂15は温調ブロック18にて所望の温度に保持され、その樹脂15は載置台2bの上面に載置されたレンズ基材9の面に供給することができるように構成している。
【0022】
この構成の製造装置を用いて複合型光学素子を成形する方法は、まずレンズ基材9を不図示の搬送手段によりディスペンスユニット16の位置に搬送して載置台2bの面に載置する。ここではディスペンスユニット16に設けられた温調ブロック18にて15℃に温調された樹脂15をシリンジ17からレンズ基材9の面に供給する。
【0023】
なお、本実施例で用いる樹脂15はウレタン・アクリレート系紫外線硬化型樹脂であり、24℃において約3000cps程度の粘度を有する。また15℃に温調すると約30000cps程度の粘度を有するようになるので、レンズ成形面9aの曲率半径にもよるが、レンズ成形面に供給された樹脂がその面から流れ出してその周縁に到達するまでにかなりの時間を稼ぐことができる。
【0024】
本実施例の場合は、レンズ基材9の成形面9aの形状は曲率半径が約20mm、供給樹脂量は約0.08gである。レンズ基材9上に供給された樹脂15にはその後室温が伝達するが約30sec間はほぼ供給されたままの状態を維持することができる。さらに室温が伝達し続けることにより樹脂は流れ始めて約50sec後にレンズ基材9の周縁に達する。
なお、曲率半径が15mm以下の小さい凸レンズでは粘度が約3000cps程度になると樹脂15がレンズ周縁に流出してしまう。
【0025】
このように樹脂がレンズ基材9の周縁に達しない間に、樹脂15が供給されたレンズ基材9を不図示の搬送手段にて金型1の下方の成形部20(図2)に搬送して芯出し部材10により金型1及び載置台2aの軸心を合わせるべく芯出しを行って載置台2aの面に固定する。
【0026】
つぎに、パルスモーター6を駆動することによりギャー5a,5b、ボールネジ7を介して型取り付けベース4を金型1とともに矢印方向に下降させ、金型1の成形面にて樹脂15をレンズ基材9の面に押し広げ始める。下降は樹脂15の層が所望の厚さになるまで続ける。
【0027】
樹脂15の層が所望の厚さになった時点で金型の位置を固定しつつシャッター13を開いて超高圧メタルハライドランプ14から出力する紫外線14aをコールドミラー12に向かって瞬時に放射し、コールドミラー12にて紫外線14aを上方向に変換して、載置台2a内部及びレンズ基材9を通過して樹脂15の層に照射する。
【0028】
前記の超高圧メタルハライドランプ14は、電源をONにしてから照度が安定するまでに時間がかかるので電源は常時ONにしておき、シャッター13を開いたときに光エネルギーを瞬時に供給できるようにしてある。この場合の照射エネルギーは35mW/cm2 にて30sec間である。
【0029】
樹脂15に紫外線照射をして硬化させ、樹脂15の層とレンズ基材9からなる複合型光学素子を完成させた後は、この素子を型1から離型させて他のポイントに搬出させることにより1サイクルの工程を終了する。
【0030】
また、前記の紫外線照射工程と同時に別に位置に設けられた載置台2bにはつぎのサイクルのレンズ基材9が載置され、ディスペンスユニット16にてレンズ基材9の面に樹脂15が供給されているので、直ちにこのレンズ基材9を成形部20に位置する載置台2aの面に搬送してつぎのサイクルを継続させる。
以上の操作を繰り返すことにより連続的に複合型光学素子を製造することができる。
【0031】
本実施例によれば、凸面形状のレンズ基材9の成形面に樹脂15の層を形成させる場合でも、凸面上に供給した樹脂15がレンズ基材9の周縁から流出しない。また、樹脂15の層を形成する工程とレンズ基材9面に樹脂15を供給する工程とを別々の位置でしかも同時に行うことができる。即ち、一連の工程において一つのレンズ基材9に型を専有させないことにより、金型1の遊休時間を削減し、凸面状の成形面上に樹脂15を供給する工程を見掛け上ゼロにすることができる。
【0032】
なお、本実施例ではレンズ基材9の面に供給する樹脂15の温度を15℃としたが、これはレンズ基材9の曲率半径や樹脂15の粘度特性等から決定されるべきものであり、15℃に限定されるものではない。また、室温が25℃以上の環境においては室温が樹脂15に伝達して樹脂15の温度が上昇するので樹脂15の粘度が下がることになる。従って、樹脂15の温度は好ましくは24℃以下にし、特に、結露させずに最も高い粘度を有する15℃にすることが好適である。
【0033】
また樹脂15の粘度については、樹脂15をシリンジから吐出させる際の粘度が1000cps以下では粘性抵抗が小さ過ぎるので吐出量の精度が不正確になりやすい。逆に、粘度が50000cps以上では粘性抵抗が大き過ぎて金型1の成形面にて樹脂15をレンズ基材9面に押し広げる際に金型1の成形面が樹脂15面に正しく転写されない恐れがあり、製品の品質を低下させる要因になる。
【0034】
【実施例2】
本実施例においては、図3におけるシリンジ17からレンズ基材9の面に必要量の樹脂15を供給した直後に、レンズ基材9の面に対して極弱い紫外線19aを照射して樹脂を僅かにゲル化することを可能にするために、ゲル化用光エネルギー出力源として図4に示すような低出力紫外線ランプ19を設け、シリンジ17を他に移動させてそのランプ19を直ちにレンズ基材9の上方に移動するか、またはレンズ基材9をランプ19の下方に移動できるように構成した点を実施例1と異にするもので、その他の構成については前記実施例1と同様であるのでその説明を省略する。
【0035】
本実施例ではこの構成の低出力紫外線ランプ19から出力する5mW/cm2 の微弱な紫外線を樹脂15の面に1sec間照射することにより樹脂15を僅かにゲル化させて過剰な流動を防止している。また、この程度の微弱な紫外線の照射では樹脂15を押し広げる前に硬化させるまでには至らず(約8%程度の硬化)、その後の樹脂層の成形に支障を生じることがない。
【0036】
本実施例によれば、レンズ基材9の面に供給された直後の樹脂15に微弱な紫外線を照射してゲル化させているので、前記実施例1のように樹脂15を低温に保持し、樹脂15の粘度を流れにくい状態に温調してレンズ基材9上に供給する必要がない。本実施例では樹脂15をレンズ基材9上に供給する量のばらつきを抑える目的で所要の粘度に保つべく温調は行うが、この温調は樹脂供給量のばらつきが余り問題にならない場合は必ずしも温調する必要がないものである。
【0037】
また、このようにゲル化された樹脂15は、時間が経過することにより室温が樹脂15に伝達しても粘度の変化が余りなく、流れ出すようなことがない。従って、曲率半径の小さな凸レンズ基材9の場合に、樹脂15がレンズ基材9の面に供給されてから金型1が樹脂15に接触するまでに時間がかかった場合でも、樹脂15がレンズ周縁から流出することを完全に防止することができる。
【0038】
請求項1に係る効果は、レンズ基材の成形面に樹脂を供給した直後に、樹脂に微量の光エネルギーを照射して樹脂をゲル化させることにより、樹脂の過剰な流動を防止することができる。従って、時間が経過することにより室温が樹脂に伝達しても殆ど粘度が低下しないため、樹脂がレンズ基材の周縁から流出することがない。
【0041】
請求項2に係る効果は、本発明の複合型光学素子の成形装置において、本発明の成形方法を実施することにより、小さい曲率半径を有する凸面形状のレンズ基材に対しても、供給された樹脂がレンズ基材の周縁に流出することがなく、しかも複数の金型を用いないので完成した複合型光学素子である製品の光学面精度のばらつきをなくして品質を向上させることができる。
【0042】
また、本発明の装置にはゲル化用光エネルギー出力源が設けられているので、この出力源から出力する微弱な光エネルギーを樹脂に照射して樹脂をゲル化させることにより樹脂の過剰な流動を防止することができる。さらに、樹脂層成形工程とレンズ基材の成形面に樹脂を供給する工程とを別々な位置でしかも同時に行うことにより、前記成形面上に樹脂を供給する工程を見掛け上ゼロにして生産性を向上させることができる。
【図面の簡単な説明】
【図1】複合型光学素子製造装置の要部を一部断面にした図。
【図2】レンズ基材面に樹脂を供給する工程の説明図。
【図3】樹脂層を成形する工程の説明図。
【図4】樹脂に微弱な紫外線を照射する工程の説明図。
【符号の説明】
1 金型
2 載置台
3 ガイド部
4 取付ベース
5 ギャー
6 パルスモーター
7 ボールネジ
8 装置ベース
9 レンズ基材
10 芯出し部材
12 コールドミラー
13 シャッター
14 高圧メタルハライドランプ
15 紫外線硬化型樹脂
16 ディスペンスユニット
17 シリンジ
18 温調ブロック
19 低出力紫外線ランプ
[0001]
[Industrial application fields]
The present invention relates to a molding method and apparatus for a composite optical element in which a resin layer is formed on a molding surface of a lens substrate.
[0002]
[Prior art]
Conventionally, as this type of device, there is a technology for which a patent application has been filed as Japanese Patent Application No. 05-027447. In this technique, when a molding surface for forming a resin layer of a lens substrate is formed as a convex surface as a method for manufacturing a composite optical element, a mold molding surface having a desired optical surface shape is concave. Focusing on the fact that the mold molding surface is facing upward, the light energy curable resin is supplied to the concave molding surface, and the molding surface of the lens base material is pressed against the resin so that the resin is applied to the molding surface of the lens base material. A resin layer is formed on the molding surface of the lens base material by spreading the substrate, and then the resin layer is irradiated with light energy and cured to complete the composite optical element.
[0003]
This technology is characterized in that when the resin layer is formed on the molding surface of the lens base material, the resin does not flow out of the mold or bubbles are not mixed into the resin layer. Using a plurality of molds, use one mold to spread the resin on the molding surface of the lens substrate and irradiate light energy to cure the resin layer. By supplying the resin to the mold forming surface and preparing for resin layer molding, the idle time of the mold is reduced and the molding time is shortened.
[0004]
[Problems to be solved by the invention]
However, in this manufacturing method, when the resin layer is formed, the resin can be prevented from flowing out of the molding surface and air bubbles can be mixed into the resin layer, and the molding time can be greatly shortened. Although the effect is considerable, since multiple molds are used in manufacturing, the optical surface accuracy of composite optical elements manufactured due to variations in mold accuracy tends to vary, and the accuracy deviates from the standard value. Sometimes.
[0005]
Further, in order to reduce the variation in accuracy, it is necessary to increase the accuracy by processing the product which is the completed composite optical element, so that the manufacturing time increases. Furthermore, the use of a plurality of molds increases the equipment cost and raises the problem that the product cost increases.
[0006]
Therefore, the present invention has been made in view of the above problems, and even when the molding surface of the lens substrate is formed as a convex surface, the resin does not flow out from the periphery of the molding surface before forming the resin layer. It is another object of the present invention to provide a molding method and apparatus for a composite optical element capable of reducing the tact time of manufacturing the composite optical element and improving the accuracy of the product.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a step of supplying a light energy curable resin onto a molding surface of a lens substrate, and a molding surface of the lens substrate using a mold having a desired optical surface shape. Immediately after supplying the resin onto the molding surface of the lens substrate, in the method of molding a composite optical element having a step of spreading to a desired thickness and a step of curing the resin by irradiating light energy, The resin is characterized in that excessive flow of the resin is prevented by irradiating the resin with a small amount of light energy to slightly gel the resin.
[0010]
According to a second aspect of the present invention, a resin is supplied onto the molding surface of the lens substrate, and the resin is formed on the molding surface of the lens substrate with a desired thickness using a mold having a desired optical surface shape. In a molding apparatus of a composite optical element that spreads and forms a layer of the resin, and cures the resin by irradiating the resin layer with light energy, the lens substrate is formed with the molding surface of the lens substrate facing up. A dispensing unit comprising a mounting table, a syringe for supplying the resin to the molding surface of the lens substrate mounted on the mounting table, and a temperature control block; and the resin immediately after the resin is supplied from the syringe The lens substrate is transported to the gelation light energy output source that can be gelled by irradiating the surface with low output light energy, and to the mounting base of the molding part provided at a position different from the dispensing unit. Conveying means, and the molding unit A centering member that aligns the axis of the lens base that has been sent to the axis of the mounting base of the mold and molding part, and the resin supplied to the molding surface of the lens base on the molding surface of the lens base The mold that spreads and forms a resin layer of a desired thickness, a mold mounting base that mounts the mold above the lens base, a ball screw that moves the mold mounting base up and down, and a pulse motor that rotates the ball screw A curing light energy output source that outputs curing light energy for curing the resin layer, and a cold mirror that converts the radiation direction of the curing light energy from the curing light energy output source toward the resin layer And a shutter for supplying or blocking the curing light energy directed to the resin layer between the curing light energy output source and the resin layer.
[0011]
As an action according to claim 1, the viscosity is changed even when room temperature is transmitted to the resin over time by causing the resin to slightly gel immediately after the resin is supplied onto the molding surface of the lens substrate. The resin does not flow out from the periphery of the lens substrate before the mold comes into contact with the resin.
[0014]
As an action according to claim 2, as a composite optical element manufacturing apparatus for forming a light energy curable resin layer on a molding surface of a lens base material, immediately after supplying the resin on the molding surface of the lens base material Since the resin can be irradiated with a small amount of light energy, the resin can be slightly gelled to prevent excessive flow of the resin.
[0015]
In addition, only one mold is used in the composite optical element manufacturing apparatus of the present invention. Since a plurality of molds are not used as in the prior art, variations in product accuracy due to variations in the optical surface shape accuracy of the molds are prevented. Can be eliminated. In addition, since the process of supplying the resin to the molding surface of the lens base material and the process of spreading the supplied resin on the molding surface of the lens base material with a mold are performed separately, the operating rate of the mold is increased.
[0016]
[Example 1]
Embodiments of the present invention will be specifically described below with reference to the drawings.
1 to 3 show a first embodiment of the present invention, FIG. 1 is a partial cross-sectional view of a main part of a composite optical element manufacturing apparatus, FIG. 2 is an explanatory view of a process for forming a resin layer, and FIG. These are explanatory drawings of the process of supplying resin to a lens base material surface.
[0017]
The mounting tables 2 a and 2 b are cylindrical, and the axis of the mounting table 2 a is adjusted so as to coincide with the axis of the mold 1. Further, when the lens substrate 9 is placed on the mounting table 2a, a centering member 10 for aligning the axis of the lens substrate 9 with the mold 1 and the axis of the mounting table 2a surrounds the periphery thereof. Three or more are arranged at equal intervals.
[0018]
A mold 1 is provided facing the mounting surface of the mounting table, and the mold 1 is fixed to the lower surface of the mold mounting base 4 that slides through the guide portion 3 of the apparatus base 8. A pulse motor 6 is provided above the mold mounting base 4 on the side of the apparatus base 8 (not shown). The rotation of the pulse motor 6 is transmitted to the ball screw 7 through the gears 5a and 5b. The mold mounting base 4 is moved up and down together with the mold 1 through the guide portion 3 of the apparatus base 8 by screwing with a female screw (not shown) provided inside the mold, and when the mold 1 is lowered, the mold A resin 15 layer is formed by spreading the resin onto the surface of the lens substrate 9 (corresponding to the molding surface of the lens substrate) with a molding surface having a concave optical surface shape of 1 (corresponding to the optical surface of the mold). It is comprised so that can be formed.
[0019]
On the other hand, an inclined cold mirror 12 is provided below the mounting table 2a, and an ultra-high pressure metal halide lamp 14 as a curing light energy output source that outputs ultraviolet light as light energy is provided on the left side thereof. A shutter 13 is provided between the ultra-high-pressure metal halide lamp 14 and configured so that ultraviolet rays output from the metal halide lamp 14 can be supplied to and shut off from the metal halide lamp 14 by opening and closing the shutter 13. doing.
[0020]
The ultraviolet rays 14 a emitted toward the surface of the cold mirror 12 are reflected by the cold mirror 12 to be converted into the upward ultraviolet rays 14 a, pass through the inside of the mounting table 2 a and the lens substrate 9, and are a layer of the resin 15. Is irradiated.
[0021]
Further, as shown in FIG. 3, a dispensing unit 16 for supplying the resin 15 to the surface of the lens base 9 is provided at a position different from the mold 1. The dispensing unit 16 includes a syringe 17 and a temperature control block 18 provided around the syringe 17, and the resin 15 in the syringe 17 is held at a desired temperature by the temperature control block 18, and the resin 15 is the upper surface of the mounting table 2b. It is comprised so that it can supply to the surface of the lens base material 9 mounted in this.
[0022]
In the method of forming a composite optical element using the manufacturing apparatus having this configuration, the lens base 9 is first transported to the position of the dispensing unit 16 by a transport means (not shown) and placed on the surface of the mounting table 2b. Here, the resin 15 whose temperature is adjusted to 15 ° C. by the temperature control block 18 provided in the dispensing unit 16 is supplied from the syringe 17 to the surface of the lens substrate 9.
[0023]
The resin 15 used in this example is a urethane / acrylate ultraviolet curable resin, and has a viscosity of about 3000 cps at 24 ° C. Further, when the temperature is adjusted to 15 ° C., it has a viscosity of about 30000 cps, so that depending on the radius of curvature of the lens molding surface 9a, the resin supplied to the lens molding surface flows out from the surface and reaches its periphery. Can earn a lot of time.
[0024]
In the case of the present embodiment, the shape of the molding surface 9a of the lens substrate 9 has a radius of curvature of about 20 mm and the amount of supplied resin is about 0.08 g. After that, the room temperature is transmitted to the resin 15 supplied onto the lens substrate 9, but the state of being supplied can be maintained for about 30 seconds. Further, as the room temperature continues to be transmitted, the resin starts to flow and reaches the periphery of the lens substrate 9 after about 50 seconds.
In the case of a small convex lens having a radius of curvature of 15 mm or less, the resin 15 flows out to the periphery of the lens when the viscosity is about 3000 cps.
[0025]
In this way, while the resin does not reach the periphery of the lens base 9, the lens base 9 supplied with the resin 15 is transported to the molding portion 20 (FIG. 2) below the mold 1 by transport means (not shown). Then, centering is performed by the centering member 10 so that the axes of the mold 1 and the mounting table 2a are aligned, and the centering member 10 is fixed to the surface of the mounting table 2a.
[0026]
Next, by driving the pulse motor 6, the die mounting base 4 is lowered together with the die 1 in the direction of the arrow through the gears 5 a and 5 b and the ball screw 7, and the resin 15 is placed on the lens substrate on the molding surface of the die 1. Begin to spread on the 9th surface. The descending is continued until the resin 15 layer has a desired thickness.
[0027]
When the layer of the resin 15 reaches a desired thickness, the shutter 13 is opened while the position of the mold is fixed, and ultraviolet rays 14a output from the ultra-high pressure metal halide lamp 14 are instantaneously emitted toward the cold mirror 12, The mirror 12 converts the ultraviolet rays 14 a upward, passes through the mounting table 2 a and the lens substrate 9, and irradiates the resin 15 layer.
[0028]
The ultra-high pressure metal halide lamp 14 takes a long time from when the power is turned on until the illuminance is stabilized. Therefore, the power is always turned on so that light energy can be instantaneously supplied when the shutter 13 is opened. is there. The irradiation energy in this case is 30 mW / cm 2 for 30 sec.
[0029]
After the resin 15 is cured by irradiating with ultraviolet rays and a composite optical element composed of the resin 15 layer and the lens substrate 9 is completed, the element is released from the mold 1 and taken out to another point. The process of 1 cycle is complete | finished by.
[0030]
The lens base 9 of the next cycle is placed on the mounting table 2b provided at the same position as the ultraviolet irradiation step, and the resin 15 is supplied to the surface of the lens base 9 by the dispensing unit 16. Therefore, the lens base material 9 is immediately conveyed to the surface of the mounting table 2a located in the molding unit 20 and the next cycle is continued.
By repeating the above operation, a composite optical element can be manufactured continuously.
[0031]
According to the present embodiment, even when the resin 15 layer is formed on the molding surface of the convex lens base material 9, the resin 15 supplied onto the convex surface does not flow out from the periphery of the lens base material 9. Further, the step of forming the resin 15 layer and the step of supplying the resin 15 to the surface of the lens substrate 9 can be performed at different positions and simultaneously. That is, the idle time of the mold 1 is reduced by not having the lens base 9 monopolize in a series of processes, and the process of supplying the resin 15 onto the convex molding surface is apparently made zero. Can do.
[0032]
In this embodiment, the temperature of the resin 15 supplied to the surface of the lens base material 9 is 15 ° C., but this should be determined from the radius of curvature of the lens base material 9 and the viscosity characteristics of the resin 15. The temperature is not limited to 15 ° C. In an environment where the room temperature is 25 ° C. or higher, the room temperature is transmitted to the resin 15 and the temperature of the resin 15 rises, so that the viscosity of the resin 15 decreases. Therefore, the temperature of the resin 15 is preferably 24 ° C. or lower, and particularly preferably 15 ° C. having the highest viscosity without causing condensation.
[0033]
As for the viscosity of the resin 15, if the viscosity when the resin 15 is discharged from the syringe is 1000 cps or less, the viscosity resistance is too small and the accuracy of the discharge amount tends to be inaccurate. On the contrary, when the viscosity is 50000 cps or more, the viscosity resistance is too large, and the molding surface of the mold 1 may not be correctly transferred to the resin 15 surface when the resin 15 is spread on the lens substrate 9 surface on the molding surface of the mold 1. There is a factor that reduces the quality of the product.
[0034]
[Example 2]
In this embodiment, immediately after supplying the required amount of resin 15 from the syringe 17 to the surface of the lens base material 9 in FIG. 3, the surface of the lens base material 9 is irradiated with extremely weak ultraviolet rays 19a to slightly remove the resin. In order to enable gelation, a low-power ultraviolet lamp 19 as shown in FIG. 4 is provided as a light energy output source for gelation, the syringe 17 is moved to another position, and the lamp 19 is immediately used as a lens substrate. 9 is different from the first embodiment in that the lens base 9 can be moved below the lamp 19, and other configurations are the same as those in the first embodiment. Therefore, the description is omitted.
[0035]
In this embodiment, the resin 15 is slightly gelled by irradiating the surface of the resin 15 with weak ultraviolet rays of 5 mW / cm 2 output from the low-power ultraviolet lamp 19 having this configuration for 1 sec to prevent excessive flow. ing. Further, such weak UV irradiation does not lead to curing before spreading the resin 15 (approximately 8% curing), and does not hinder subsequent resin layer molding.
[0036]
According to the present embodiment, since the resin 15 immediately after being supplied to the surface of the lens substrate 9 is irradiated with weak ultraviolet rays to be gelled, the resin 15 is kept at a low temperature as in the first embodiment. It is not necessary to adjust the temperature of the resin 15 so that it does not easily flow and supply the resin 15 onto the lens substrate 9. In this embodiment, temperature control is performed to maintain the required viscosity for the purpose of suppressing variations in the amount of resin 15 supplied onto the lens substrate 9, but this temperature control is not a problem when variations in the resin supply amount are not a problem. It is not always necessary to control the temperature.
[0037]
In addition, the resin 15 thus gelled does not flow out with much change in viscosity even when the room temperature is transmitted to the resin 15 over time. Therefore, in the case of the convex lens substrate 9 having a small curvature radius, even if it takes a long time for the mold 1 to contact the resin 15 after the resin 15 is supplied to the surface of the lens substrate 9, the resin 15 is the lens. Outflow from the peripheral edge can be completely prevented.
[0038]
The effect according to claim 1 is that the resin is gelled by irradiating the resin with a small amount of light energy immediately after the resin is supplied to the molding surface of the lens base material, thereby preventing excessive resin flow. it can. Accordingly, even if the room temperature is transferred to the resin over time, the viscosity hardly decreases, so that the resin does not flow out from the periphery of the lens substrate.
[0041]
The effect according to claim 2 is also supplied to a convex lens substrate having a small radius of curvature by performing the molding method of the present invention in the molding apparatus of the composite optical element of the present invention. Since the resin does not flow out to the periphery of the lens base material and a plurality of molds are not used, it is possible to improve the quality by eliminating variations in the optical surface accuracy of the finished composite optical element.
[0042]
In addition, since the optical energy output source for gelation is provided in the apparatus of the present invention, excessive flow of the resin can be caused by irradiating the resin with weak light energy output from this output source to cause the resin to gel. Can be prevented. Furthermore, by performing the resin layer molding step and the step of supplying the resin to the molding surface of the lens substrate at the same time and at different positions, the process of supplying the resin onto the molding surface is apparently reduced to zero productivity. Can be improved.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a main part of a composite optical element manufacturing apparatus.
FIG. 2 is an explanatory diagram of a process of supplying a resin to a lens substrate surface.
FIG. 3 is an explanatory diagram of a process of molding a resin layer.
FIG. 4 is an explanatory diagram of a process of irradiating a resin with weak ultraviolet rays.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Mounting base 3 Guide part 4 Mounting base 5 Gear 6 Pulse motor 7 Ball screw 8 Device base 9 Lens base material 10 Centering member 12 Cold mirror 13 Shutter 14 High pressure metal halide lamp 15 UV curable resin 16 Dispense unit 17 Syringe 18 Temperature control block 19 Low power UV lamp

Claims (2)

レンズ基材の成形面上に光エネルギー硬化型樹脂を供給する工程と、所望の光学面形状を有する金型を用いて該樹脂をレンズ基材の成形面上に所望の厚さに押し広げる工程と、光エネルギーを照射して該樹脂を硬化させる工程を有する複合型光学素子の成形方法において、レンズ基材の成形面上に樹脂を供給した直後に、該樹脂に微量の光エネルギーを照射して該樹脂を僅かにゲル化させることにより該樹脂の過剰な流動を阻止することを特徴とする複合型光学素子の成形方法。  A step of supplying a light energy curable resin onto the molding surface of the lens substrate, and a step of pushing the resin to a desired thickness on the molding surface of the lens substrate using a mold having a desired optical surface shape And a method of forming a composite optical element having a step of irradiating light energy to cure the resin, immediately after supplying the resin onto the molding surface of the lens substrate, the resin is irradiated with a small amount of light energy. A method of molding a composite optical element, wherein the resin is slightly gelled to prevent excessive flow of the resin. レンズ基材の成形面上に樹脂を供給し、所望の光学面形状を有する金型を用いて該樹脂をレンズ基材の成形面上に所望の厚さに押し広げて該樹脂の層を形成し、該樹脂の層に光エネルギーを照射して該樹脂を硬化させる複合型光学素子の成形装置において、レンズ基材の成形面を上にしてレンズ基材を載置する載置台と、載置台に載置されたレンズ基材の前記成形面に該樹脂を供給するシリンジ及び温調ブロックとから成るディスペンスユニットと、シリンジから供給された該樹脂の面に低出力の光エネルギーを照射してゲル化するゲル化用光エネルギー出力源と、レンズ基材を成形部に搬送する搬送手段と、成形部に前記搬送されたレンズ基材の軸心を前記金型及び成形部の載置台の軸心に合わせる芯出し部材と、レンズ基材の成形面に供給された該樹脂をレンズ基材の成形面上に押し広げて所望の厚さの樹脂層を形成させる前記金型と、レンズ基材の上方にて前記金型を取り付ける型取付ベースと、型取付ベースを昇降させるボールネジと、ボールネジを回転させるパルスモーターと、該樹脂層を硬化させるための硬化用光エネルギーを出力する硬化用光エネルギー出力源と、硬化用光エネルギー出力源からの硬化用光エネルギーの放射方向を樹脂層に向けて変換するコールドミラーと、樹脂層に向けられた硬化用光エネルギーを硬化用光エネルギー出力源と樹脂層との間で供給または遮断状態にするシャッターとから成ることを特徴とする複合型光学素子の成形装置。  Resin is supplied onto the molding surface of the lens substrate, and the resin layer is spread on the molding surface of the lens substrate to a desired thickness using a mold having a desired optical surface shape to form the resin layer. And a mounting table for mounting the lens base material with the molding surface of the lens base material facing upward, in a molding apparatus for a composite optical element in which the resin layer is irradiated with light energy to cure the resin, and the mounting base A dispensing unit comprising a syringe and a temperature control block for supplying the resin to the molding surface of the lens base placed on the surface of the lens, and the surface of the resin supplied from the syringe is irradiated with low-output light energy to form a gel The gelling light energy output source, the conveying means for conveying the lens substrate to the molding unit, and the axis of the mounting base of the mold and the molding unit as the axis of the lens substrate conveyed to the molding unit To the centering member and lens molding surface The mold that pushes the formed resin onto the molding surface of the lens base to form a resin layer having a desired thickness, a mold mounting base for mounting the mold above the lens base, and a mold mounting A ball screw that moves the base up and down, a pulse motor that rotates the ball screw, a curing light energy output source that outputs curing light energy for curing the resin layer, and a curing light energy from the curing light energy output source A cold mirror that changes the radiation direction of the resin toward the resin layer, and a shutter that supplies or blocks the curing light energy directed to the resin layer between the curing light energy output source and the resin layer. An apparatus for molding a composite optical element characterized by the above.
JP12688494A 1994-05-17 1994-05-17 Method and apparatus for molding composite optical element Expired - Fee Related JP3676395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12688494A JP3676395B2 (en) 1994-05-17 1994-05-17 Method and apparatus for molding composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12688494A JP3676395B2 (en) 1994-05-17 1994-05-17 Method and apparatus for molding composite optical element

Publications (2)

Publication Number Publication Date
JPH07308971A JPH07308971A (en) 1995-11-28
JP3676395B2 true JP3676395B2 (en) 2005-07-27

Family

ID=14946237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12688494A Expired - Fee Related JP3676395B2 (en) 1994-05-17 1994-05-17 Method and apparatus for molding composite optical element

Country Status (1)

Country Link
JP (1) JP3676395B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254267A (en) * 1996-03-21 1997-09-30 Nasu Nikon:Kk Production of plastic lens
JP2012071489A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Method and apparatus for producing lens
JP5525985B2 (en) * 2010-09-29 2014-06-18 富士フイルム株式会社 Lens manufacturing method and manufacturing apparatus
JP2012111088A (en) * 2010-11-22 2012-06-14 Panasonic Corp Method for manufacturing cast molded article

Also Published As

Publication number Publication date
JPH07308971A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US20210060832A1 (en) Imprint apparatus, imprint method, and method of manufacturing article
JPH0390320A (en) Method and apparatus for continuously curing visible ray polymerizable resin
JPH07108609A (en) Optically shaping method and apparatus
JP3676395B2 (en) Method and apparatus for molding composite optical element
JP3675462B2 (en) Plastic lens manufacturing equipment
KR102638145B1 (en) The uv coating apparatus for finger scanning module and the method using the same
JPH01174418A (en) Manufacture of molding tool
WO2006059659A1 (en) Method for producing composite optical element
JP2003311831A (en) Method for forming rugged pattern
CN203557721U (en) Ultraviolet irradiation curing equipment
JPS61248707A (en) Manufacture of fresnel lense
JP2006224484A (en) Plastic lens manufacturing apparatus
CN109664528B (en) Lens processing equipment and processing method thereof
WO2019169866A1 (en) Lens processing apparatus and method
JP7286561B2 (en) PATTERN FORMING DEVICE AND PATTERN FORMING METHOD
JPH09174705A (en) Manufacture of lens sheet
JP3979708B2 (en) Method for molding composite optical element
JPH0768568A (en) Method for molding of composite type optical element
KR102350258B1 (en) Pattern forming device on three-dimensional surface and pattern forming method there of
KR102321375B1 (en) Apparatus and Method for Producing Lens
KR20120111546A (en) Automatic jet device, automated formating apparatus using the same and automated formating method
JP3631260B2 (en) Method for manufacturing composite optical element
JPH06196620A (en) Method and apparatus for forming pin holding part for lead frame
JPH02185743A (en) Device for reproducing optical disk substrate
JP2000326418A (en) Production of resin bonding type lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees