JP3676125B2 - Microwave sterilization method - Google Patents

Microwave sterilization method Download PDF

Info

Publication number
JP3676125B2
JP3676125B2 JP18388299A JP18388299A JP3676125B2 JP 3676125 B2 JP3676125 B2 JP 3676125B2 JP 18388299 A JP18388299 A JP 18388299A JP 18388299 A JP18388299 A JP 18388299A JP 3676125 B2 JP3676125 B2 JP 3676125B2
Authority
JP
Japan
Prior art keywords
container
sealed
food
sealed container
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18388299A
Other languages
Japanese (ja)
Other versions
JP2001009009A (en
Inventor
正見 松長
哲也 高富
正行 増田
純 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP18388299A priority Critical patent/JP3676125B2/en
Publication of JP2001009009A publication Critical patent/JP2001009009A/en
Application granted granted Critical
Publication of JP3676125B2 publication Critical patent/JP3676125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波殺菌方法、特に食品、ペットフード等の被殺菌物が空隙部を有して収納容器内に収容され密封されている場合のマイクロ波殺菌方法に関する。
【0002】
【従来の技術】
いわゆる常温流通食品などは、流通、貯蔵中の変敗を防止するため、通常の場合、殺菌処理が必須であり、従来よりレトルト殺菌方法などの加熱殺菌方法を主体として各種の殺菌方法が考案されている。
一方、加熱殺菌は殺菌にも有効な半面、食品成分の変質にも密接に影響しており、短時間でしかも食品内部まで加熱することができるマイクロ波殺菌方法が注目されている(特公昭56−24542、特公昭60−58668、特開昭56−131132、特開平6−296478、特開平11−149など)。
【0003】
これらのうち、特公昭56−24542或いは特公昭60−58668は、食品包装容器の内圧と外圧を略均衡させつつマイクロ波加熱を行うことにより、100℃以上での短時間殺菌を試みたものであり、また特開昭56−131132は、レトルト殺菌の前段処理としてマイクロ波加熱を行っている。
【0004】
また、特開平6−296478には、圧力室を設け、そこを、0.5〜2.8kg/cmに加圧し、マイクロ波を照射して食品温度を100〜130℃に上昇させるとともに、この温度及び加圧条件下で相対湿度0〜30%、130℃以下の乾熱加熱雰囲気下に所定時間保つものである。
さらに、特開平11−149には、マイクロ波透過性包装容器に充填・密封した対象食品を0.5〜3.0kg/cm2程度に加圧された水蒸気存在雰囲気中でマイクロ波加熱し、常温流通可能な滅菌食品を製造する方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、本発明者らが検討したところ、前記特公昭56−24542、或いは特公昭60−58668に示されるような一般的なマイクロ波殺菌方法では、理論上十分な加熱を行った場合にも、後の保存中にスポット的に菌の繁殖が認められる場合があり、特に食品表面に菌の残存・付着が認められる場合が多いことが明らかとなった。
この点に関し、さらに検討を行ったところ、食品表面の加熱が不十分なため菌が残存したのではなく、食品容器内壁面に菌の残存が認められ、これが落下して殺菌終了後の食品表面に菌が再付着することが明らかとなった。
【0006】
すなわち、図1には食品(被殺菌物)10が空隙部12を有して収納され密封された食品容器14が示されている。そして、この容器14外部よりマイクロ波照射を行った場合、水分を有する食品10ないしその食品10と接した容器14の内壁は十分に加熱殺菌されるものの、空隙部12と接している容器14の内壁は、食品10から発生する水蒸気による加熱に止まり、しかも容器14の外部はマイクロ波加熱の性質上ほとんど温度が上昇しないため、容器14の周りの外気は容器14の冷却に作用し、該部分の温度上昇自体が不十分で適正な殺菌が行われないことによると考えられる。このような問題は、容器14の内部に食品が一杯に充填されている場合には生じにくいが、最近の常温流通食品には電子レンジなどで加熱してそのまま食せるように合成樹脂製のトレー状容器に空隙部を有して食品が収納されていることが多く、この空隙部と接している容器内壁の殺菌が極めて重要になったのである。
【0007】
また、特開平6−296478号公報に記載された技術にあっては、前述したように圧力室を設け、乾熱加熱雰囲気下に所定時間保つ方法なので、設備的に大きな加圧室が必要となり、設備コストが高くなるという問題と、加圧室に導入する水蒸気の量も多く必要となり、また乾熱による加熱を使用しているので加熱効率が悪く、ランニングコストが高くなるという問題がある。
【0008】
さらに、特開平11−149号公報に開示の技術では、マイクロ波照射による加熱及び冷却水などによる冷却を加圧下で行うので、大きな加圧室が必要となり、設備コストが高くなるという問題と、大きな加圧室を水蒸気などで加圧する為に、大量の水蒸気が必要となると共に、これらの水蒸気を加熱するのにもマイクロ波のエネルギーが消費されるので、ランニングコストが高くなるという問題がある。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は被殺菌物が空隙部を有して容器内に収容されている場合にも、容器内壁を含め殺菌を十分に行い得るマイクロ波殺菌方法を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するために本発明にかかるマイクロ波殺菌方法は、被殺菌物が空隙部を有して収納・密封されたマイクロ波透過性の収納容器を、該収納容器の体積の1.5〜5.0倍の内容積を有し、マイクロ波を透過しかつ所望殺菌温度において実質的に変形しない密封容器内に収容して、密閉した後、該収納容器を殺菌する工程と、該収納容器を冷却する工程と、を備えることを特徴とする。
ここで、該収納容器を殺菌する工程は、該密封容器を次工程側へ移動させながら、該収納容器内圧と該密封容器内圧が略均衡するように該密封容器内に加圧水蒸気を導入しつつ該密封容器外部よりマイクロ波照射を行い、該密封容器内を、相対湿度50〜100%、圧力1.0〜3.0 kg/cm 、100℃以上の温度にして所定時間、該収納容器を殺菌する。
また該収納容器を冷却する工程は、該密封容器を次工程側へ移動させながら、該密封容器内に冷却剤を導入して該収納容器を冷却する。
【0010】
また、前記方法において、密封容器を回転体の周囲に多数取付け、該密封容器内に収納容器を収容する工程と、該収納容器を加熱する工程と、該収納容器を冷却する工程と、該収納容器を該密封容器から取り出す工程とを、該回転体の回転中に行なうことが好適である。
【0011】
【発明の実施の形態】
本発明においては、前述したように被殺菌物が収容されている収納容器を、この収納容器の体積の1.5〜5.0倍の内容積を有する密封容器内に収容して密閉し、この密閉容器内に加圧水蒸気(水蒸気、ないし水蒸気及び空気)を導入して密封容器外部からマイクロ波を照射するので、大きな加圧室を必要とせず、設備コストが低くて済み、また、比較的小さな密封容器内に加圧水蒸気や冷却液等を導入するだけなので、必要な水蒸気量や冷却液等も少なくて済み、ランニングコストも低いし、加熱や冷却速度が速くなるという利点がある。
【0012】
また、マイクロ波を比較的小さな密封容器内に照射するので、密封容器内の水蒸気と収納容器及び被殺菌物を加熱するのに使用されるだけで、従来例の様に、水蒸気が充満している比較的大きな圧力室にマイクロ波を照射する(加圧室内の水蒸気と収納容器及び被殺菌物を加熱するのに使用される)のに比べると、マイクロ波のエネルギーが無駄なく使用される。
以下、図面に基づき本発明の好適な実施形態を説明する。
図2には、本発明の一実施形態にかかるマイクロ波殺菌方法に用いられる密封容器150が示されており、前記図1と対応する部分には符号100を加えて示し、説明を省略する。
【0013】
同図に示す密封容器120は、その内部に食品110を収納して密封されている食品容器(収納容器)114を収容して閉鎖されており、両容器114,120は、マイクロ波透過性で耐熱性を有する合成樹脂よりなる。そして、該密封容器120には、水蒸気導入管122が設置されている。
そして、この図2に示す状態の密封容器120は、例えば図3に示すような、連続マイクロ波殺菌装置130に導入される。
【0014】
図3において、連続マイクロ波殺菌装置130は、導入側フィルターゾーン132と、マイクロ波ゾーン134と、排出側フィルターゾーン136を備えており、前記密封容器120は耐熱性且つ耐摩耗性に優れたガラス繊維含有エポキシ樹脂製のベルトコンベア138上に載置されて導入側フィルターゾーン132から入り、マイクロ波ゾーン134、排出側フィルターゾーン136を順次通過して外部へ出る。そして、前記マイクロ波ゾーン134において導波管140よりマイクロ波照射を受け、加熱殺菌される。
なお、前記フィルターゾーン132,136の内壁には、フェライトが取り付けてあり、しかも比較的狭いトンネル状になっているので、マイクロ波ゾーン134内で照射されたマイクロ波が外部に漏れ出すことはない。
【0015】
そして、本実施形態においては、マイクロ波ゾーン134でマイクロ波照射を行う際に、密封容器120は前記水蒸気導入管122により加圧水蒸気の供給を受ける。この水蒸気はマイクロ波による加熱の対象となり、密封容器120の内部雰囲気、すなわち食品容器114の外部雰囲気は、食品110と同様に高温となる。この結果、食品容器114内は、食品110及び該食品110と接触している部分は無論のこと、食品110と直接接触していない容器内壁部分も十分に高温となり、加熱殺菌が行われる。また、食品110の加熱に伴う空気及び水蒸気の熱膨張などによる食品容器114の内圧の上昇も、加圧水蒸気の圧力により相殺され、易変形材質で形成された食品容器114であっても、大きな変形或いは破損を生じることはない。
【0016】
なお、例えば、えび、ハンバーグ、ブロッコリー、魚の切身、魚介類等の食品をマイクロ波を照射することにより、135℃で60秒間加熱すると、密封容器120の圧力は1.5〜2.0kg/cm2(ゲージ圧)になり、食品容器114の内圧と、密封容器120の内圧との差は、せいぜい±0〜0.5kg/cm2(ゲージ圧)の範囲内に収まるように、加圧水蒸気を調整する。
そして、殺菌終了後、すなわち排出側フィルターゾーン136に至ると、前記導入管122より冷却剤としての冷却水(好ましくは20℃以下)が導入され、食品110は急冷される。従って、食品110の残熱による変質は最小限に抑制される。
【0017】
以上のように本実施形態にかかる連続マイクロ波殺菌装置によれば、食品のみならず、食品容器114もその全体が隈無く加熱殺菌されることとなり、容器内壁からの落下菌による食品の再汚染の可能性を著しく低くすることができる。さらに、加圧水蒸気により食品容器114の内圧上昇に伴う容器変形を抑制し、殺菌後の冷却水導入による食品の急速冷却により残熱による食品成分の変質を効率的に抑制することができる。特に、本発明は、食品容器(収納容器)が薄い可撓性樹脂製容器などの場合に有効である。
【0018】
本発明においては、マイクロ波殺菌する際の密封容器内の相対湿度は、50〜100%であることが必要であり、好ましくは70〜90%である。また内圧は、食品容器の到達内圧に依存するが、通常1.0〜3.0kg/cm2(ゲージ圧)である。
また、収納容器は、マイクロ波透過性を有し、殺菌温度(130℃以上)における耐熱性を有する合成樹脂、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステル、ポリエチレンナフタレート、ポリプロピレン、ポリアミドなどの熱可塑性樹脂の単独層からなる容器、またはこれらの樹脂層を少なくとも一層備えている容器、若しくはこれらの樹脂を混合した混合樹脂層を有する容器が好ましい。
【0019】
さらに、本実施形態において、密封容器120の有する「収納容器の体積に近い内容積」とは、収納容器の体積の1.5〜5.0倍程度の内容積を有するものを意味する。
なお、前記特開昭56−13112には水蒸気を導入しつつマイクロ波加熱を行う例が示されているが、この技術は後にレトルト殺菌を行うことを前提としており、空隙部を有した可撓性樹脂製の食品容器等は対象としておらず、無論レトルト殺菌を行うのであれば食品容器内壁に残存する菌などは問題ともならない。従って、この従来技術では、柔らかい袋などに充填された液状ないし半液状食品を対象としている。さらに、この従来技術では釜自体に水蒸気を導入するため、殺菌の連続化を行うことは極めて困難である。
【0020】
この点で、本発明においては、マイクロ波照射を行うマイクロ波ゾーン134には特に耐圧性、気密性などは要求されず、汎用のマイクロ波連続殺菌装置を用いることができるという利点がある。
図4には本発明において特徴的な密封容器の詳細な構造の一例が示されており、同図(A)は上面図、同図(B)は側断面図である。なお、前記図2と対応する部分には符号100を加えて示し説明を省略する。
同図に示す密封容器220は、本体250と、蓋体252と、載置台254とを含む。
【0021】
そして、これらの各部は耐熱、耐圧性に優れ、しかもマイクロ波の透過効率の高いガラス繊維含有エポキシ樹脂により形成されている。なお、フッ素樹脂などを採用することも好適である。
本実施形態にかかる密封容器220は、具体的には、食品が収容され、開口部がヒートシールにより密封されたトレー状食品容器(収納容器)214(140mm×170mm×20mm厚)をガラス繊維含有エポキシ樹脂製密封容器(直径230mm×高さ40mm)に収納して蓋体252で閉鎖し、加圧蒸気を1.71〜2.64kg/cm(殺菌温度130〜140℃)の圧力で導入し、さらに食材が入った食品容器214が破裂しないようにエアーで補助加圧(+0.5kg/cm)するものである。
【0022】
本体250は、図5に詳細に示すように二段階に凹部255a,255bが設けられた有底円筒状に形成されている。
また、本体250の内面側の底面には、突起256a,256b,256c,256dを有した前記載置台254(図6参照)がタップ258により固定されている。この突起256により食品容器214は密封容器220と密着することがなく、食品容器外壁全周にわたり加圧水蒸気が行き渡り、適正な加熱殺菌が行われる。
【0023】
さらに、蓋体252は、図7に詳細に示すように前記本体250にタップ262により着脱自在に固定されており、また密封容器220内と連通する導入路262a,262b…262hが穿設されている。なお、蓋体252と本体250とは、Oリング264により気密状態が維持され得る。
そして、前記導入路262aには容器内温度をモニタする温度計266が、導入路262b,262dにはバルブ268a,268bにより選択的に冷却水(冷却剤)ないし水蒸気が、導入路262cには容器220内の圧力を調整するための圧力調整弁270が、導入路262eには容器220内の圧力をモニタする圧力計272が、導入路262f,262hには流量調整弁274を経て排出口が、導入路262gには容器220内の圧力調整が水蒸気導入のみでは不十分な場合などに導入するエアー276が、それぞれ接続されている。
【0024】
そして、密封容器220が前記図3に示したマイクロ波ゾーン134に進入すると、バルブ268bを介して加圧水蒸気が密封容器220内に導入される一方、密封容器220内の温度、圧力は温度計266,圧力計272によりモニタされており、食品容器214内の予想圧力に応じた内圧調整が圧力調整弁270により行われる。すなわち、マイクロ波ゾーンでの照射エネルギーによって生じる食品容器214内の温度及び圧力は実験的に或いは理論的に予想され、密封容器220の内圧すなわち食品容器214の外圧がほぼ容器214の内圧に均衡するように調整されるのである。なお、熱水蒸気を導入することで、マイクロ波の照射エネルギーの損失を減少させ、また食品容器214の加熱効率を上昇させることができる。さらに、前述した水蒸気導入のみでは食品容器214の内圧と均衡させるのに不十分な場合には導入路262gよりエアー276が供給される。
【0025】
そして、密封容器220が排出側フィルターゾーン136に至ると、バルブ268bは閉じられ、バルブ268aが開かれて冷却水が容器220内に導入される。この際、流量調整弁274を介してフロー状態で冷却水を順次置換することにより冷却効果を向上させることができる。
温度計266のモニタにより冷却水温度すなわち食品容器214の温度が十分に下降したことが確認されたならば、容器220内の冷却水の排出を行う。
以上のように本実施形態にかかる密封容器220を用いた場合には、密封容器220内の圧力、温度制御が厳密に行われ、食品容器214の破損、変形などが生じにくいとともに、食品のみならず食品容器214の隅々まで適正に殺菌が行われる。
【0026】
なお、前記実施例では、密封容器220を直線的に移動させたが、例えば、ロータリー式の回転体の外周に、6〜24個の密封容器が固着可能となるポケットを設け、各ポケットに固着した密封容器内へは、エアー、水蒸気、冷却水の配管を接続しておき、ポケットに固着した密封容器内に食品を収容して閉鎖した後、回転体が1回転する間に、密封容器内に水蒸気及びエアーの導入をした後、マイクロ波を照射して食品容器及び水蒸気を急速加熱し、殺菌温度に到達したら、マイクロ波のパワーを落とすか又はマイクロ波の照射を停止して、所定時間殺菌温度を維持した後、密封容器内に冷却水を導入して食品容器及び密封容器内を冷却してから、密封容器を開放して食品容器を密封容器内から取り出すようにすると、加熱装置全体がコンパクトになり、食品容器の収容位置と取出位置を近くすることができるので食品容器の搬入、搬出にも便利である。
【0027】
なお、前記実施例においては、冷却剤として冷却水を用いた例について説明したが、これに限られるものではなく、例えば液体窒素などを導入し、さらに急速な冷却を行うことも可能である。
【0028】
【発明の効果】
以上説明したように本発明にかかるマイクロ波殺菌方法によれば、被殺菌物が空隙部を有して収納された収納容器をさらに該収納容器の体積の1.5〜5.0倍の内容積の密封容器内に入れて密封しマイクロ波殺菌時に密封容器内に水蒸気を導入することで、少ない消費エネルギーで被殺菌物収納容器内壁の殺菌を隅々まで行うことが可能となり、殺菌後の容器内壁からの落下菌による被殺菌物汚染を抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の課題の説明図である。
【図2】本発明の第一実施形態にかかる密封容器の説明図である。
【図3】本発明の殺菌方法が用いられる連続マイクロ波殺菌装置の説明図である。
【図4】本発明において特徴的な密封容器の詳細説明図である。
【図5】図4に示した容器の本体の説明図である。
【図6】図4に示した容器の載置台の説明図である。
【図7】図4に示した容器の蓋体の説明図である。
【符号の説明】
10,110 食品(被殺菌物)
12,112 空隙部
14,114,214 食品容器(易変形収納容器
20,220 密封容器
130 連続マイクロ波殺菌装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave sterilization method, and more particularly, to a microwave sterilization method in a case where an object to be sterilized such as food or pet food has a gap and is accommodated in a storage container and sealed.
[0002]
[Prior art]
In order to prevent deterioration during distribution and storage of so-called normal temperature foods, sterilization is usually required, and various sterilization methods have been devised mainly by heat sterilization methods such as retort sterilization methods. ing.
On the other hand, heat sterilization is effective for sterilization, but also has a close influence on alteration of food components, and a microwave sterilization method that can heat the inside of food in a short time has attracted attention (Japanese Patent Publication No. 56). -24542, JP-B-60-58668, JP-A-56-131132, JP-A-6-296478, JP-A-11-149, etc.).
[0003]
Of these, Japanese Patent Publication No. 56-24542 or Japanese Patent Publication No. 60-58668 attempted to sterilize at a temperature of 100 ° C. or higher by performing microwave heating while substantially balancing the internal pressure and external pressure of the food packaging container. In addition, Japanese Patent Laid-Open No. 56-131132 performs microwave heating as a pre-treatment for retort sterilization.
[0004]
JP-A-6-296478 is provided with a pressure chamber, which is pressurized to 0.5 to 2.8 kg / cm 2 and irradiated with microwaves to raise the food temperature to 100 to 130 ° C., Under these temperature and pressure conditions, the temperature is maintained for a predetermined time in a dry heat heating atmosphere at a relative humidity of 0 to 30% and 130 ° C. or lower.
Furthermore, in JP-A-11-149, the target food filled and sealed in a microwave permeable packaging container is microwave-heated in a steam-containing atmosphere pressurized to about 0.5 to 3.0 kg / cm 2 . A method for producing a sterilized food that can be distributed at room temperature is disclosed.
[0005]
[Problems to be solved by the invention]
However, when the present inventors examined, in the general microwave sterilization method as shown in the above-mentioned Japanese Patent Publication No. 56-24542 or Japanese Patent Publication No. 60-58668, even when theoretically sufficient heating is performed, It has become clear that bacterial growth may be spotted during later storage, and in particular, there are many cases where bacteria remain or adhere to the food surface.
As a result of further investigation on this point, the surface of the food after the sterilization was finished because the bacteria remained on the inner wall of the food container because the surface of the food was not sufficiently heated and the bacteria remained. It was revealed that the bacteria reattached.
[0006]
That is, FIG. 1 shows a food container 14 in which a food (object to be sterilized) 10 is stored and sealed with a gap 12. When microwave irradiation is performed from the outside of the container 14, the food 10 having moisture or the inner wall of the container 14 in contact with the food 10 is sufficiently heated and sterilized, but the container 14 in contact with the gap portion 12. The inner wall stops being heated by water vapor generated from the food 10, and the temperature of the outside of the container 14 hardly rises due to the nature of microwave heating. Therefore, the outside air around the container 14 acts to cool the container 14, and this portion It is considered that the temperature rise itself is insufficient and proper sterilization is not performed. Such a problem is unlikely to occur when the container 14 is filled with food, but a tray made of synthetic resin is used for recent normal temperature distribution food so that it can be eaten as it is by heating it with a microwave oven or the like. In many cases, food is stored with a gap in the container, and sterilization of the inner wall of the container in contact with the gap has become extremely important.
[0007]
In the technique described in Japanese Patent Laid-Open No. Hei 6-296478, a pressure chamber is provided as described above and kept in a dry-heated atmosphere for a predetermined time. The problem is that the equipment cost is high, and the amount of water vapor introduced into the pressurizing chamber is also large, and since heating by dry heat is used, the heating efficiency is low and the running cost is high.
[0008]
Furthermore, in the technique disclosed in Japanese Patent Application Laid-Open No. 11-149, since heating by microwave irradiation and cooling by cooling water or the like are performed under pressure, a large pressurizing chamber is required, and the equipment cost is increased. In order to pressurize a large pressurizing chamber with water vapor, a large amount of water vapor is required, and microwave energy is also consumed to heat these water vapors, which increases the running cost. .
The present invention has been made in view of the above-described problems of the prior art, and the object thereof can be sufficiently sterilized including the inner wall of the container even when the object to be sterilized has a gap and is accommodated in the container. The object is to provide a microwave sterilization method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a microwave sterilization method according to the present invention includes a microwave permeable storage container in which an object to be sterilized is stored and sealed with a gap, and the volume of the storage container is 1.5. having an internal volume of 5.0 times, and housed in a transmitted microwave and the desired sterilization temperature does not Oite substantially deformed in a sealed container, after sealing, a step of sterilizing the container, And a step of cooling the storage container.
Here, in the step of sterilizing the storage container, while the sealed container is moved to the next process side, pressurized water vapor is introduced into the sealed container so that the internal pressure of the storage container and the internal pressure of the sealed container are substantially balanced. Microwave irradiation is performed from the outside of the sealed container, and the inside of the sealed container is set to a relative humidity of 50 to 100%, a pressure of 1.0 to 3.0 kg / cm 2 , and a temperature of 100 ° C. or higher for a predetermined time. Sterilize.
Further, in the step of cooling the storage container, the storage container is cooled by introducing a coolant into the sealed container while moving the sealed container to the next process side.
[0010]
In the method, a plurality of sealed containers are attached around the rotating body, and the process of storing the storage container in the sealed container, the process of heating the storage container, the process of cooling the storage container, and the storage The step of removing the container from the sealed container is preferably performed while the rotating body is rotating.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as described above, the storage container in which the article to be sterilized is stored in a sealed container having an internal volume of 1.5 to 5.0 times the volume of the storage container, and sealed, Since pressurized water vapor (water vapor or water vapor and air) is introduced into this sealed container and microwaves are irradiated from the outside of the sealed container, a large pressurized chamber is not required, and the equipment cost can be reduced. Since only the pressurized water vapor or the cooling liquid is introduced into the small sealed container, the amount of water vapor or the cooling liquid required is small, the running cost is low, and the heating and cooling speed are increased.
[0012]
In addition, since microwaves are irradiated into a relatively small sealed container, it can be used to heat the water vapor in the sealed container, the storage container, and the object to be sterilized. Compared to irradiating a relatively large pressure chamber with microwaves (used to heat water vapor in the pressurization chamber and the storage container and the object to be sterilized), the microwave energy is used without waste.
Preferred embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 shows a sealed container 150 used in the microwave sterilization method according to an embodiment of the present invention. The portion corresponding to FIG.
[0013]
The sealed container 120 shown in the figure contains a food container (storage container) 114 that is sealed with the food 110 contained therein, and is closed, and both the containers 114 and 120 are microwave permeable. It consists of a synthetic resin having heat resistance. The sealed container 120 is provided with a water vapor introduction pipe 122.
The sealed container 120 in the state shown in FIG. 2 is introduced into a continuous microwave sterilizer 130 as shown in FIG. 3, for example.
[0014]
In FIG. 3, the continuous microwave sterilizer 130 includes an introduction side filter zone 132, a microwave zone 134, and a discharge side filter zone 136, and the sealed container 120 is a glass having excellent heat resistance and wear resistance. It is placed on a belt conveyor 138 made of fiber-containing epoxy resin, enters from the introduction side filter zone 132, passes through the microwave zone 134 and the discharge side filter zone 136 in order, and exits to the outside. The microwave zone 134 receives microwave irradiation from the waveguide 140 and is sterilized by heating.
In addition, since the ferrite is attached to the inner walls of the filter zones 132 and 136 and has a relatively narrow tunnel shape, the microwave irradiated in the microwave zone 134 does not leak outside. .
[0015]
In this embodiment, when performing microwave irradiation in the microwave zone 134, the sealed container 120 is supplied with pressurized steam by the steam introduction pipe 122. This water vapor becomes an object of heating by microwaves, and the internal atmosphere of the sealed container 120, that is, the external atmosphere of the food container 114 becomes a high temperature like the food 110. As a result, in the food container 114, the food 110 and the portion in contact with the food 110 are of course, and the inner wall portion of the container that is not in direct contact with the food 110 also becomes sufficiently hot, and heat sterilization is performed. In addition, the increase in the internal pressure of the food container 114 due to the thermal expansion of air and water vapor accompanying the heating of the food 110 is offset by the pressure of the pressurized water vapor, and the food container 114 formed of an easily deformable material is greatly deformed. Or, no damage will occur.
[0016]
For example, when food such as shrimp, hamburger, broccoli, fish fillets, seafood is heated at 135 ° C. for 60 seconds by irradiating with microwaves, the pressure of the sealed container 120 is 1.5 to 2.0 kg / cm. 2 (gauge pressure), pressurized steam is used so that the difference between the internal pressure of the food container 114 and the internal pressure of the sealed container 120 is at most within the range of ± 0 to 0.5 kg / cm 2 (gauge pressure). adjust.
Then, after the sterilization is completed, that is, when reaching the discharge side filter zone 136, cooling water (preferably 20 ° C. or less) as a coolant is introduced from the introduction pipe 122, and the food 110 is rapidly cooled. Therefore, the quality change due to the residual heat of the food 110 is suppressed to a minimum.
[0017]
As described above, according to the continuous microwave sterilization apparatus according to the present embodiment, not only food, but also the food container 114 is entirely heat sterilized, and recontamination of food due to falling bacteria from the inner wall of the container. Can be significantly reduced. Furthermore, the container deformation accompanying the increase in the internal pressure of the food container 114 can be suppressed by the pressurized steam, and the deterioration of the food component due to the residual heat can be efficiently suppressed by the rapid cooling of the food by introducing the cooling water after sterilization. In particular, the present invention is effective when the food container (storage container) is a thin flexible resin container.
[0018]
In the present invention, the relative humidity in the sealed container at the time of microwave sterilization needs to be 50 to 100%, preferably 70 to 90%. The internal pressure is usually 1.0 to 3.0 kg / cm 2 (gauge pressure) although it depends on the ultimate pressure of the food container.
In addition, the storage container is a microwave-permeable synthetic resin having heat resistance at a sterilization temperature (130 ° C. or higher), such as polyethylene terephthalate, polybutylene terephthalate, copolymer polyester, polyethylene naphthalate, polypropylene, and polyamide. A container composed of a single layer of a thermoplastic resin, a container provided with at least one of these resin layers, or a container having a mixed resin layer obtained by mixing these resins is preferable.
[0019]
Furthermore, in the present embodiment, the “inner volume close to the volume of the storage container” of the sealed container 120 means an internal volume that is about 1.5 to 5.0 times the volume of the storage container.
In addition, although the example which performs microwave heating, introduce | transducing water vapor | steam is shown by the said Unexamined-Japanese-Patent No. 56-13112, this technique presupposes performing retort sterilization later, and is flexible with a space | gap part. However, if the retort sterilization is performed, bacteria remaining on the inner wall of the food container are not a problem. Therefore, this prior art is intended for liquid or semi-liquid food filled in a soft bag or the like. Furthermore, in this prior art, since steam is introduced into the kettle itself, it is extremely difficult to perform sterilization continuously.
[0020]
In this regard, in the present invention, the microwave zone 134 that performs microwave irradiation is not particularly required to have pressure resistance, airtightness, and the like, and there is an advantage that a general-purpose microwave continuous sterilization apparatus can be used.
FIG. 4 shows an example of a detailed structure of a sealed container characteristic of the present invention. FIG. 4A is a top view and FIG. 4B is a side sectional view. Note that the portions corresponding to those in FIG.
A sealed container 220 shown in the figure includes a main body 250, a lid body 252, and a mounting table 254.
[0021]
Each of these parts is formed of a glass fiber-containing epoxy resin having excellent heat resistance and pressure resistance and high microwave transmission efficiency. It is also preferable to use a fluororesin or the like.
Specifically, the sealed container 220 according to the present embodiment contains a tray-like food container (storage container) 214 (140 mm × 170 mm × 20 mm thick) in which a food is stored and an opening is sealed by heat sealing. It is stored in an epoxy resin sealed container (diameter 230 mm x height 40 mm), closed with a lid 252, and pressurized steam is introduced at a pressure of 1.71 to 2.64 kg / cm 2 (sterilization temperature 130 to 140 ° C.). In addition, auxiliary pressure (+0.5 kg / cm 2 ) is applied with air so that the food container 214 containing the ingredients does not rupture.
[0022]
As shown in detail in FIG. 5, the main body 250 is formed in a bottomed cylindrical shape in which concave portions 255 a and 255 b are provided in two stages.
Further, a mounting table 254 (see FIG. 6) having protrusions 256 a, 256 b, 256 c, and 256 d is fixed to the bottom surface on the inner surface side of the main body 250 by a tap 258. The protrusion 256 prevents the food container 214 from coming into close contact with the sealed container 220, and the pressurized water vapor spreads around the entire outer periphery of the food container, so that proper heat sterilization is performed.
[0023]
Further, as shown in detail in FIG. 7, the lid 252 is detachably fixed to the main body 250 by a tap 262, and introduction paths 262a, 262b,... 262h communicating with the inside of the sealed container 220 are formed. Yes. The lid body 252 and the main body 250 can be maintained in an airtight state by the O-ring 264.
The introduction path 262a is provided with a thermometer 266 for monitoring the temperature inside the container, the introduction paths 262b and 262d are selectively supplied with cooling water (coolant) or water vapor by valves 268a and 268b, and the introduction path 262c is provided with a container. A pressure adjustment valve 270 for adjusting the pressure in 220, a pressure gauge 272 for monitoring the pressure in the container 220 in the introduction path 262e, and a discharge port in the introduction paths 262f and 262h via the flow rate adjustment valve 274, Air 276 to be introduced is connected to the introduction path 262g when the pressure adjustment in the container 220 is insufficient only by the introduction of water vapor.
[0024]
When the sealed container 220 enters the microwave zone 134 shown in FIG. 3, the pressurized water vapor is introduced into the sealed container 220 through the valve 268b, while the temperature and pressure in the sealed container 220 are measured by a thermometer 266. The internal pressure is adjusted by the pressure adjustment valve 270 according to the expected pressure in the food container 214. That is, the temperature and pressure in the food container 214 caused by the irradiation energy in the microwave zone are predicted experimentally or theoretically, and the internal pressure of the sealed container 220, that is, the external pressure of the food container 214 is almost balanced with the internal pressure of the container 214. It is adjusted as follows. Note that by introducing hot water vapor, loss of microwave irradiation energy can be reduced, and the heating efficiency of the food container 214 can be increased. Further, when the above-described introduction of water vapor is insufficient to balance the internal pressure of the food container 214, the air 276 is supplied from the introduction path 262g.
[0025]
When the sealed container 220 reaches the discharge-side filter zone 136, the valve 268b is closed, the valve 268a is opened, and cooling water is introduced into the container 220. At this time, the cooling effect can be improved by sequentially replacing the cooling water in the flow state via the flow rate adjusting valve 274.
If the monitor of the thermometer 266 confirms that the cooling water temperature, that is, the temperature of the food container 214 has sufficiently decreased, the cooling water in the container 220 is discharged.
As described above, when the sealed container 220 according to the present embodiment is used, the pressure and temperature in the sealed container 220 are strictly controlled, and the food container 214 is not easily damaged or deformed. The food container 214 is properly sterilized to every corner.
[0026]
In the embodiment, the sealed container 220 is linearly moved. For example, a pocket on which 6 to 24 sealed containers can be fixed is provided on the outer periphery of a rotary type rotating body, and fixed to each pocket. Air, water vapor, and cooling water pipes are connected to the sealed container, and after the food is stored in the sealed container fixed in the pocket and closed, After the introduction of water vapor and air, the food container and water vapor are rapidly heated by irradiating microwaves, and when the sterilization temperature is reached, the power of the microwave is reduced or the microwave irradiation is stopped for a predetermined time. After maintaining the sterilization temperature, cooling water is introduced into the sealed container to cool the food container and the sealed container, and then the sealed container is opened to remove the food container from the sealed container. Is It becomes ECTS, loading of food containers it is possible to close the accommodating position and the take-out position of the food containers, it is convenient to carry-out.
[0027]
In addition, although the example which used the cooling water as a coolant was demonstrated in the said Example, it is not restricted to this, For example, liquid nitrogen etc. can be introduce | transduced and it can also cool more rapidly.
[0028]
【The invention's effect】
As described above, according to the microwave sterilization method of the present invention, the content of the storage container in which the object to be sterilized is stored with a gap is 1.5 to 5.0 times the volume of the storage container. by introducing steam into and sealed in a sealed container of a product sealed in the container during the microwave sterilization, it is possible to perform sterilization of the sterilization product container inner wall every corner with less energy consumption, after sterilization It becomes possible to suppress the contamination of the sterilized material by the bacteria falling from the inner wall of the container.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a problem of the present invention.
FIG. 2 is an explanatory diagram of a sealed container according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of a continuous microwave sterilization apparatus in which the sterilization method of the present invention is used.
FIG. 4 is a detailed explanatory view of a sealed container characteristic of the present invention.
5 is an explanatory diagram of the main body of the container shown in FIG. 4. FIG.
6 is an explanatory diagram of a mounting table for the container shown in FIG. 4. FIG.
7 is an explanatory view of a lid of the container shown in FIG.
[Explanation of symbols]
10,110 Food (to be sterilized)
12, 112 Cavity 14, 114, 214 Food container (easily deformable storage container )
1 20,220 Sealed container 130 Continuous microwave sterilizer

Claims (2)

被殺菌物が空隙部を有して収納・密封されたマイクロ波透過性の収納容器を、該収納容器の体積の1.5〜5.0倍の内容積を有し、マイクロ波を透過しかつ所望殺菌温度において実質的に変形しない密封容器内に収容して、密閉した後、
該密封容器を次工程側へ移動させながら、該収納容器内圧と該密封容器内圧が略均衡するように該密封容器内に加圧水蒸気を導入しつつ該密封容器外部よりマイクロ波照射を行い、該密封容器内を相対湿度50〜100%、圧力1.0〜3.0kg/cm、100℃以上の温度にして所定時間、該収納容器を殺菌する工程と、
該密封容器を次工程側へ移動させながら、該密封容器内に冷却剤を導入して該収納容器を冷却する工程と、
を備えたことを特徴とするマイクロ波殺菌方法。
A microwave permeable storage container in which the object to be sterilized is stored and sealed with a gap, has an inner volume of 1.5 to 5.0 times the volume of the storage container, and transmits microwaves. and housed in a sealed container that does not Oite substantially deformed to the desired sterilization temperature, after sealing,
While moving the sealed container to the next process side, microwave irradiation is performed from the outside of the sealed container while introducing pressurized water vapor into the sealed container so that the internal pressure of the storage container and the internal pressure of the sealed container are substantially balanced, Sterilizing the container for a predetermined time by setting the inside of the sealed container to a relative humidity of 50 to 100%, a pressure of 1.0 to 3.0 kg / cm 2 , and a temperature of 100 ° C. or higher ;
A step of cooling the storage container by introducing a coolant into the sealed container while moving the sealed container to the next process side;
Microwave sterilization method characterized by comprising a.
請求項1記載のマイクロ波殺菌方法において、密封容器を回転体の周囲に多数取付け、該密封容器内に収納容器を収容する工程と、該収納容器を殺菌する工程と、該収納容器を冷却する工程と、該収納容器を該密封容器から取り出す工程とを、該回転体の回転中に行なうことを特徴とするマイクロ波殺菌方法。 2. The microwave sterilization method according to claim 1 , wherein a plurality of sealed containers are attached around the rotating body, the storage container is accommodated in the sealed container, the storage container is sterilized, and the storage container is cooled. A microwave sterilization method comprising performing a step and a step of taking out the storage container from the sealed container while the rotating body is rotating.
JP18388299A 1999-06-29 1999-06-29 Microwave sterilization method Expired - Fee Related JP3676125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18388299A JP3676125B2 (en) 1999-06-29 1999-06-29 Microwave sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18388299A JP3676125B2 (en) 1999-06-29 1999-06-29 Microwave sterilization method

Publications (2)

Publication Number Publication Date
JP2001009009A JP2001009009A (en) 2001-01-16
JP3676125B2 true JP3676125B2 (en) 2005-07-27

Family

ID=16143484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18388299A Expired - Fee Related JP3676125B2 (en) 1999-06-29 1999-06-29 Microwave sterilization method

Country Status (1)

Country Link
JP (1) JP3676125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229095B2 (en) 2014-12-17 2022-01-18 Campbell Soup Company Electromagnetic wave food processing system and methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457930B2 (en) 2010-06-30 2019-10-29 Microwave Chemical Co., Ltd. Oil-based material-producing method and oil-based material-producing apparatus
IN2014CN00534A (en) 2011-06-29 2015-04-03 Microwave Chemical Co Ltd
JP5109004B1 (en) 2011-11-11 2012-12-26 マイクロ波化学株式会社 Chemical reactor
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus
JP5114616B1 (en) 2011-11-11 2013-01-09 マイクロ波化学株式会社 Chemical reactor
US10827659B2 (en) 2015-11-29 2020-11-03 Trong D Nguyen Personal microwave autoclave and process using the same for sterilizing N95 masks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229095B2 (en) 2014-12-17 2022-01-18 Campbell Soup Company Electromagnetic wave food processing system and methods

Also Published As

Publication number Publication date
JP2001009009A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US4808782A (en) Microwave irradiating sterilization process
US3494724A (en) Method and apparatus for controlling microorganisms and enzymes
JP2573356B2 (en) Method for continuously sterilizing or sterilizing prepackaged food
US20050123435A1 (en) Method and apparatus for continuous processing of packaged products
US20070082096A1 (en) Reusable Container and Method for Retorting Flexible Packages Containing Foodstuff
AU729186B2 (en) A method of sterilizing containers based on fiber
EP0240571A1 (en) Microwave-heated cooked foods
EP0261929A2 (en) Improvements in or relating to packaging
JP3676125B2 (en) Microwave sterilization method
JP3420707B2 (en) Continuous microwave heating sterilizer
US20220095652A1 (en) Pasteurization of convenience meals in hermetically sealed containers
JPH07255388A (en) Heat treatment of food and apparatus therefor
GB2030038A (en) Method and apparatus for the thermal treatment of foodstuffs
JP3604109B2 (en) Manufacturing method of sterilized solid food ingredients
JP2683227B2 (en) How to sterilize food
JP2907763B2 (en) Method and apparatus for sterilizing and packaging solid-containing foods
JP3676126B2 (en) Microwave sterilization method
US20100028509A1 (en) Process For Producing Aseptic Packaged Pasta Product Storable at Room Temperature
JPH025390B2 (en)
JPH0157944B2 (en)
JPS6021975Y2 (en) Continuous pressurized microwave heating device
JPS6158568A (en) Sterilization of food package with microwaves
JPS61231981A (en) Method for sterilizing packaged food with microwave
JPS6158569A (en) Sterilization of food package with microwaves
JPS63203527A (en) Packaging method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees