JP3674764B2 - Non-woven fabric for polyarylensulfide and oil filter and bag filter - Google Patents
Non-woven fabric for polyarylensulfide and oil filter and bag filter Download PDFInfo
- Publication number
- JP3674764B2 JP3674764B2 JP2000153457A JP2000153457A JP3674764B2 JP 3674764 B2 JP3674764 B2 JP 3674764B2 JP 2000153457 A JP2000153457 A JP 2000153457A JP 2000153457 A JP2000153457 A JP 2000153457A JP 3674764 B2 JP3674764 B2 JP 3674764B2
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- filter
- woven fabric
- nonwoven fabric
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れた不織布に関する。特に、高温の食用油あるいは工業用油に浮遊あるいは混合された固体成分を濾過するフィルタ−として好適な不織布、或いは耐久性と濾過性能に優れたバグフィルタ−用不織布に関する。
【0002】
【従来の技術】
高温下の濾過処理には、比較的融点の高いポリエステルを主構成材料とする繊維からなるフィルタ−用不織布が広く用いられている。しかし、上記のフィルタ−用不織布は、高温領域においてオイルと濾過する際に膨潤して目詰りが速いことや強力が低下することが問題となっている。また、ポリテトラフルオロエチレンなどフッ素系ポリマーはオイルに対する耐久性が高く問題なく使用できるが、廃棄する際に焼却処理できず埋め立て処理となり環境問題から好ましくない。
【0003】
【発明が解決しようとする課題】
高温の温度でも耐久性が高く、高精度の濾過が可能でかつ濾過効率に優れたポリアリ−レンスルヒド不織布及びオイルフィルタ−及びバグフィルター用不織布を提供することを目的とする。
【0004】
【課題を解決するための手段】
即ち本発明に係る第1の発明は、単糸0.5〜7.0dtexのポリアリ−レンスルヒド繊維を主構成材料とする、最大孔径が250ミクロン以下で目付が50〜600g/m2のポリアリーレンスルヒド不織布である。
【0005】
また第2の発明は、上記記載のポリアリーレンスルヒド不織布の最大孔径がパラメ−タ−A(=3000/√W)(ミクロン)以下であることを特徴とするオイルフィルタ−である。
但し、Wは目付け(g/m2)。
【0006】
更に第3の発明は、上記記載のポリアリーレンスルヒド不織布の210℃空気中における1200時間処理後の強度保持率が80%以上であり、93℃10%塩酸水溶液中における150時間処理後の強度保持率が90%以上であることを特徴とするバグフィルタ−用不織布である。
以下、本発明を詳述する。
【0007】
本発明で使用される繊維は、ポリアリ−レンスルヒド繊維を主構成材料とすることが肝要である。ポリアリ−レンスルヒドは、ポリフェニレンスルヒドやポリ(4.4−ビフエニレンサルファイド)など149℃またはそれ以上、さらに好ましくは約204℃〜482℃)融点または軟化点を有するホモポリマ−、常温で固体のア−レンサルファイドコポリマ−等を含む総称である。不織布は、短繊維不織布であっても長繊維不織布であっても良いが、不織布の厚みや充填率を調整する自由度から短繊維不織布であることが好ましい。また他の機能性繊維と複合することも好ましい形態の一つである。
【0008】
本発明に用いるポリフェニレンサルファイド繊維とは、p―フェニレンサルファイト(―C6H4―S―)単位を含有するポリマーからなる繊維で、p―フェニレンサルファイド繰り返し単位を70重量%以上、さらに好ましくは90重量%以上含む線状ポリマーからなる繊維であることが好ましい。
【0009】
本発明において、使用される短繊維の単糸繊度は0.5〜7.0dtexであることが望ましい。その理由は、0.5dtex未満であると濾過精度は高いがライフが短くなり問題となる。また、カ−ド加工の際、紡出性に問題が生じる。一方、7.0dtexを超えると濾過精度を高くすることができない。
【0010】
また、不織布の目付は、50〜600g/m2の間にあることが望ましい。目付が、50g/m2未満だとろ過性能が低下し、600g/m2を超えると濾過精度にあまり変化が内にも関わらず目詰りしてライフが短くなるなどの問題が生ずやすくあまり好ましくない。
【0011】
不織布の最大孔径は250ミクロン以下であることが好ましく、特に好ましくは100ミクロン以下である。250ミクロン以上だとろ過性能が低下するという問題が生じる。
【0012】
本発明者の検討の範囲では、最大孔径が、3000/√W)で表されるパラメータA(ミクロン)以下であると、オイルフィルタ−として用いる際に特に好ましかった。最大孔径がそれより大きいとオイルミストを効率よく除去できなかった。ここで、Wは目付け(g/m2)を表すものとする。
【0013】
本発明で使用されるフィルタ−および不織布はスクリム補強フェルトであることが、オイルフィルターやバグフィルターとして用いる上で、強度特性にすぐれるため特に好ましい。
【0014】
ポリアリーレンスルフィドは耐熱性および耐薬品性に優れているだけでなく、融点以下の温度で繊維を熱収縮させてスクリムと短繊維層を強固に一体化することができる。また、予備熱処理を行うことにより、高温でオイルを濾過処理する際の収縮を抑制することが可能となる。赤外線、電熱バー等によるろ過面を溶融させた後に加熱ロールにてプレス処理をするのも好ましい。さらに、加熱プレス処理することにより繊維を融着させることが可能であり、毛羽立ちなどの問題も解決することが可能である。
【0015】
また、ろ過層となるポリフェニレンスルフィドの不織布は、ポリイミド、ポリテトラフルオロエチレン、ガラスなどの繊維と混綿したり、あるいは、他の不織布と積層しても良い。このように他素材と混用する場合、ポリフェニレンスルフィド繊維は50重量%以上不織布に存在すれば良い。
【0016】
また、支持層となるスクリムは、ポリフェニレンサルファイド、ポリイミド、フッ素系繊維、ガラスからなる少なくとも一種類の繊維のマルチフィラメント、あるいはスパン糸のいずれであってもよい。
【0017】
さらに、本発明の好適な実施態様としては、不織布を熱処理した後に、加熱ロールによるプレスを行って充填率調整することが好ましい。そして、ろ過面毛焼き等の処理をすることにより緻密化することができる。
【0018】
本発明者らは、上記構成からなる本発明のポリアリ−レンスルヒド不織布を主成分とするオイルフィルタ−は、高温領域での食用油、工業用油のろ過において長期に渡って使用できることを見いだした。
【0019】
ろ過層と支持層およびろ過層同士の積層あるいは絡合方法としは、ニードルパンチ法、あるいは、ウオーターパンチ法などを用いることができる。
【0020】
次に、本発明の不織布を高温バグフィルターとして用いる際の重要事項について説明する。本発明にかかるバグフィルター用不織布は、上記記載のポリアリーレンスルヒド不織布の210℃空気中における1200時間処理後の強度保持率が80%以上であり、93℃10%塩酸水溶液中における150時間処理後の強度保持率が90%以上であることを特徴とするものである。
目詰まりやダスト漏れもなく、長期安定して排ガスろ過が行える高ろ過性バグフィルター用ろ布を得るには、180℃乾熱収縮率が3%以上のポリフェニレンサルファイド繊維を50%以上含有するバグフィルター用ろ布を熱処理することにより緻密化させてろ布を得ることが好ましい。
【0021】
ろ過層に用いるポリフェニレンサルファイド繊維は、180℃30分の乾熱収縮率が3%以上の短繊維を用いることが好ましい。3%未満では、熱処理時収縮による見かけの空隙率の低減効果が小さく、目的とする高ろ過性バグフィルター用ろ布を得ることができない。10%より収縮率が大きいと寸法安定性が悪く問題である。また、繊維は0.5dtex〜7.0dtexであることが望ましい。さらに、繊維断面形状については、丸形、三角、ロライローバル、ランダム等種々あるが、特に限定された物ではなく、微粒子の捕捉という面から考えると表面積がより大きいものが好ましい。
【0022】
本発明に用いる好ましい熱処理としては、熱風処理温度が150〜350℃、好ましくは200〜320℃である、必要により加熱ロールによりプレスしさらに緻密化させることもできる。さらにろ過面を毛焼きすることによりダスト払い落とし性を向上させる。バグフィルター用ろ布を緻密化させるための熱処理としては、高温スチームを用いた処理や赤外線による熱処理等も採用できる。
【0023】
以下、本発明を実施例によりさらに具体的に説明する。まお、本発明はこれら実施例のみに限定されるものではない。測定は以下の方法により行った。
【0024】
(オイルろ過評価)ろ材をコンタミろ過試験機に供し、以下の試験条件で初期ろ過効率およびライフを測定し評価した。
【0025】
コンタミろ過試験条件は、以下のとおりである。
・使用液体:プレトン303P
・測定粒子:SOFTC‐C2A
・流量:0.5リットル/分
・油温:80℃
・有効ろ過面積:50cm2
・粒子濃度:15 g/リットル
【0026】
<初期ろ過効率>初期ろ過効率(%)は、コンタミろ過試験30分経過後におけるろ材の上流粒子数と下流の粒子数を測定し、下記式により算出した。
【0027】
初期ろ過効率(%)={(A−B)/A}×100
A:ろ材の上流の粒子数
B:ろ材の下流の粒子数
【0028】
<ライフ>ライフ(分)は、コンタミろ過試験における差圧が1.5kg/cm2になるまでの時間を測定したものである。
【0029】
<平均ポアサイズ>最大孔径(μm)は、ASTM‐F‐316記載のバブルポイント法及びミ−トフロ−法により求めた。
【0030】
<バグフィルターろ過特性評価>ダストはフライアッシュ10種を用い、ダスト濃度15(g/m3)、ろ過面積0.04(m2)、ろ過速度3(m/min)、圧力損失150(mmH2O)にてパルスジェットダスト払い落としをパルス圧3(kg/cm2)で300回行った。そして、初期ダスト保持量と最終回ダスト保持量とからダスト保持率(%)=(最終回ダスト保持量/初期ダスト保持量)x100を測定した。また、捕集効率については吹き漏れ量(排気濃度)を粉塵濃度計にて測定した。なお、初期ダスト保持量とは、ろ布にダストをプレコート層として付着させた後の第一回目のダスト保持量である。
【0031】
<耐薬品性評価>密閉式のガラス瓶に短繊維を10%の塩酸に含浸させ93℃の設定されたオ−ブンにいれ、その前後でテンシロンを使って、強度を測定しそこから強度保持率を求め評価した。
【0032】
耐熱性評価は、短繊維を210℃に設定されたオ−ブン1200時間入れ、その前後でテンシロンを使って、強度を測定しそこから強度保持率を求め評価した。
【0033】
【実施例】
(実施例1)
オイルフィルタ−用ろ布は一般的なニードルパンチング加工工程により作成した。ろ過層として用いたポリフェニレンサルファイド短繊維は、2.2dtex、51mmカットのものであり、180℃で30分以下の熱収縮は4.2%である。支持層には250dtex、60フィラメントのマルチフィラメントを用いた。予備開繊を行い上記短繊維をカード処理後、レイヤーによりウエブを積層し、ニードルパンチ処理をして、ろ過層を形成した。このろ過層を上記支持層上下に重ね合わせてさらにニードルパンチング工程により一体化させ、450(g/m2)のろ布を得た。スクリム90(g/m2)、ろ過層360(g/m2)から構成されたこのろ布を300℃熱風処理をした。濾材の最大孔径は20μmであった。オイルろ過特性を測定したところ、濾過5分後のろ過効率75%、ライフ80分、オイルフィルタ−として高いろ過特性を示した.
【0034】
(実施例2)
実施例1と同様の方法で450(g/m2) のろ布を得た。スクリム90(g/m2)、ろ過層360(g/m2)から構成されたこのろ布を300℃熱風処理をした。濾材の最大孔径は80μmであった。オイルろ過特性を測定したところ、濾過5分後のろ過効率75%、ライフ80分とオイルフィルタ−として高いろ過特性を示した。
【0035】
(比較例1)
ろ過層として、ポリエチレンテレタレ−ト短繊維2.2dtex、51mmを用いて、支持層には、同素材の250dtex、60フィラメントのマルチフィラメントを用いたものを実施例2と同様にスクリム90(g/m2)、ろ過層360(g/m2)から構成された450g/m2目付、最大孔径100μmのろ布を作成した。ろ布特性を測定したところ、初期ろ過効率が60%、ライフ25分で、繊維の膨潤の為に濾加圧の上昇が速いために濾過ライフが短いという問題が生じた。
【0036】
(実施例3)
実施例2の目付が450g/m2、最大孔径130ミクロンのろ布のろ過特性を測定したところ、ダスト保持量85%、捕集効率99.9989%を得、バグフィルタ−として高いろ過特性を示した。このフェルトを用いて、耐酸性評価と耐熱評価の両方を行った結果、強度保持率は91%、80%を示し、耐薬品性、耐熱性に問題なかった。
【0037】
(比較例2)
実施例1と同様に、メタアラミドを用いて、上記の評価を行った結果、強度保持率は10%以下まで低下し、濾過テスト中に濾材が破れて測定不能であった。
【0038】
【発明の効果】
本発明によると高温の食用油あるいは工業用油に浮遊あるいは混合された固体成分を濾過するフィルタ−や高温バグフィルター用のろ布として耐熱性、耐薬品性に優れろ過性能が高い不織布を得ることが可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonwoven fabric excellent in heat resistance. In particular, the present invention relates to a nonwoven fabric suitable as a filter for filtering solid components suspended or mixed in high-temperature edible oil or industrial oil, or a bag filter nonwoven fabric excellent in durability and filtration performance.
[0002]
[Prior art]
For high-temperature filtration, non-woven fabrics for filters made of fibers mainly composed of polyester having a relatively high melting point are widely used. However, the above-mentioned non-woven fabric for a filter has a problem that it swells when it is filtered with oil in a high temperature region, so that clogging is fast and strength is reduced. In addition, a fluorine-based polymer such as polytetrafluoroethylene has high durability against oil and can be used without any problem. However, it cannot be incinerated when discarded and becomes a landfill process, which is not preferable because of environmental problems.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyarylensulfide nonwoven fabric, an oil filter, and a nonwoven fabric for a bag filter that have high durability even at high temperatures, can be filtered with high precision, and have excellent filtration efficiency.
[0004]
[Means for Solving the Problems]
That is, the first invention according to the present invention is a polyarylene sulfide non-woven fabric having a maximum pore diameter of 250 microns or less and a basis weight of 50 to 600 g / m 2 , mainly composed of a polyarylens sulfide fiber having a single yarn of 0.5 to 7.0 dtex. It is.
[0005]
According to a second aspect of the present invention, there is provided an oil filter characterized in that the polyarylene sulfide nonwoven fabric described above has a maximum pore size of parameter A (= 3000 / √W) (microns) or less.
However, W is a basis weight (g / m 2 ).
[0006]
Furthermore, the third aspect of the present invention is that the polyarylene sulfide non-woven fabric described above has a strength retention after 80 hours of treatment in air at 210 ° C. of 80% or more, and a strength after treatment of 150 hours in 93 ° C. and 10% aqueous hydrochloric acid. It is a nonwoven fabric for bag filters characterized by having a retention rate of 90% or more.
The present invention is described in detail below.
[0007]
It is important that the fibers used in the present invention have polyarylensulfide fibers as the main constituent material. Polyarylens hydride is a homopolymer having a melting point or softening point, such as polyphenylene sulfide or poly (4.4-biphenylene sulfide) or higher, more preferably about 204 ° C. to 482 ° C., which is solid at room temperature. A generic term that includes allene sulfide copolymers and the like. The non-woven fabric may be a short-fiber non-woven fabric or a long-fiber non-woven fabric, but is preferably a short-fiber non-woven fabric from the degree of freedom of adjusting the thickness and filling rate of the non-woven fabric. It is also a preferred form to be combined with other functional fibers.
[0008]
The polyphenylene sulfide fiber used in the present invention is a fiber made of a polymer containing p-phenylene sulfide (—C 6 H 4 —S—) unit, and the p-phenylene sulfide repeating unit is 70% by weight or more, more preferably 90% by weight. It is preferable that it is a fiber made of the linear polymer contained above.
[0009]
In the present invention, the single yarn fineness of the short fiber to be used is preferably 0.5 to 7.0 dtex. The reason is that if it is less than 0.5 dtex, the filtration accuracy is high, but the life is shortened and becomes a problem. In addition, a problem arises in spinnability during card processing. On the other hand, if it exceeds 7.0 dtex, the filtration accuracy cannot be increased.
[0010]
Also, the basis weight of the nonwoven fabric is preferably is between 50~600g / m 2. If the basis weight is less than 50 g / m 2 , the filtration performance deteriorates. If the basis weight exceeds 600 g / m 2 , the filtration accuracy will not change much, but it will cause problems such as clogging and shortening the life. It is not preferable.
[0011]
The maximum pore size of the nonwoven fabric is preferably 250 microns or less, and particularly preferably 100 microns or less. If it is 250 microns or more, there is a problem that the filtration performance deteriorates.
[0012]
Within the scope of the study by the inventor, the maximum pore diameter is particularly preferred when used as an oil filter when it is not more than the parameter A (micron) represented by 3000 / √W). If the maximum pore size was larger than that, oil mist could not be removed efficiently. Here, W represents a basis weight (g / m 2 ).
[0013]
The filter and nonwoven fabric used in the present invention are particularly preferably scrim-reinforced felts because they have excellent strength characteristics when used as oil filters or bag filters.
[0014]
Polyarylene sulfide not only has excellent heat resistance and chemical resistance, but also allows the scrim and the short fiber layer to be firmly integrated by thermally shrinking the fiber at a temperature below the melting point. Moreover, it becomes possible to suppress the shrinkage | contraction at the time of filtering oil at high temperature by performing preliminary heat processing. It is also preferable to perform a press treatment with a heating roll after melting the filtration surface by infrared rays, an electric heating bar or the like. Further, the fibers can be fused by heat press treatment, and problems such as fluffing can be solved.
[0015]
The polyphenylene sulfide non-woven fabric used as the filtration layer may be blended with fibers such as polyimide, polytetrafluoroethylene, and glass, or may be laminated with other non-woven fabric. Thus, when mixing with another raw material, polyphenylene sulfide fiber should just exist in a nonwoven fabric 50weight% or more.
[0016]
The scrim serving as the support layer may be at least one kind of multifilament made of polyphenylene sulfide, polyimide, fluorine-based fiber, glass, or spun yarn.
[0017]
Furthermore, as a preferred embodiment of the present invention, it is preferable to adjust the filling rate by performing a press with a heating roll after heat-treating the nonwoven fabric. And it can be densified by processing, such as filtration face furying.
[0018]
The inventors of the present invention have found that the oil filter mainly composed of the polyarylensulfide nonwoven fabric of the present invention having the above-described configuration can be used for a long time in the filtration of edible oil and industrial oil in a high temperature region.
[0019]
As a method of laminating or entangling the filtration layer, the support layer, and the filtration layers, a needle punch method, a water punch method, or the like can be used.
[0020]
Next, the important matter when using the nonwoven fabric of this invention as a high temperature bag filter is demonstrated. The non-woven fabric for bag filter according to the present invention has a strength retention of 80% or more after treatment for 1200 hours in 210 ° C. air of the polyarylene sulfide non-woven fabric described above, and 150 hours treatment in 93 ° C. and 10% hydrochloric acid aqueous solution. The subsequent strength retention is 90% or more.
Bugs containing 50% or more of polyphenylene sulfide fiber with a dry heat shrinkage of 3% or more at 180 ° C to obtain a filter cloth for a highly filterable bag filter that can stably filter exhaust gas without clogging or dust leakage. It is preferable to obtain a filter cloth by densifying the filter cloth by heat treatment.
[0021]
The polyphenylene sulfide fiber used for the filtration layer is preferably a short fiber having a dry heat shrinkage of 3% or more at 180 ° C. for 30 minutes. If it is less than 3%, the effect of reducing the apparent porosity due to shrinkage during heat treatment is small, and the intended filter cloth for a highly filterable bag filter cannot be obtained. If the shrinkage rate is larger than 10%, the dimensional stability is poor, which is a problem. Moreover, it is desirable that the fiber is 0.5 dtex to 7.0 dtex. Furthermore, although there are various fiber cross-sectional shapes such as round, triangular, rolly global, and random, it is not particularly limited, and those having a larger surface area are preferable in terms of capturing fine particles.
[0022]
As a preferable heat treatment used in the present invention, the hot air treatment temperature is 150 to 350 ° C., preferably 200 to 320 ° C. If necessary, it can be pressed with a heating roll and further densified. Furthermore, dust removal performance is improved by burning the filtration surface. As heat treatment for densifying the filter cloth for bag filter, treatment using high-temperature steam, heat treatment using infrared rays, or the like can be employed.
[0023]
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. The measurement was performed by the following method.
[0024]
(Oil filtration evaluation) The filter medium was subjected to a contamination filtration tester, and the initial filtration efficiency and life were measured and evaluated under the following test conditions.
[0025]
The contamination filtration test conditions are as follows.
・ Used liquid: Preton 303P
・ Measurement particle: SOFTC-C2A
・ Flow rate: 0.5 liter / min ・ Oil temperature: 80 ℃
・ Effective filtration area: 50cm 2
-Particle concentration: 15 g / liter
<Initial filtration efficiency> The initial filtration efficiency (%) was calculated from the following formula by measuring the number of upstream particles and the number of downstream particles of the filter medium after 30 minutes of contamination filtration test.
[0027]
Initial filtration efficiency (%) = {(A−B) / A} × 100
A: Number of particles upstream of the filter media
B: Number of particles downstream of the filter medium [0028]
<Life> Life (min) is a time measured until the differential pressure in the contamination filtration test reaches 1.5 kg / cm 2 .
[0029]
<Average pore size> The maximum pore size (μm) was determined by the bubble point method and the meat flow method described in ASTM-F-316.
[0030]
<Evaluation of bag filter filtration characteristics> Dust of 10 types of fly ash is used, dust concentration 15 (g / m 3 ), filtration area 0.04 (m 2 ), filtration rate 3 (m / min), pressure loss 150 (mmH 2 O) The pulse jet dust was wiped off 300 times at a pulse pressure of 3 (kg / cm 2 ). And dust retention rate (%) = (final dust retention amount / initial dust retention amount) × 100 was measured from the initial dust retention amount and the final dust retention amount. For the collection efficiency, the amount of air leakage (exhaust concentration) was measured with a dust concentration meter. The initial dust holding amount is the first dust holding amount after dust is adhered to the filter cloth as a precoat layer.
[0031]
<Chemical resistance evaluation> A sealed glass bottle is impregnated with short fiber in 10% hydrochloric acid and placed in an oven set at 93 ° C. Was evaluated.
[0032]
In the heat resistance evaluation, short fibers were placed in an oven set at 210 ° C. for 1200 hours, and the strength was measured using Tensilon before and after that, and the strength retention was determined and evaluated.
[0033]
【Example】
(Example 1)
The filter cloth for the oil filter was prepared by a general needle punching process. The polyphenylene sulfide short fiber used as the filtration layer is a 2.2 dtex, 51 mm cut, and the thermal shrinkage at 180 ° C. for 30 minutes or less is 4.2%. A multifilament of 250 dtex and 60 filaments was used for the support layer. After pre-opening and carding the short fibers, a web was laminated with layers, and needle punching was performed to form a filtration layer. This filtration layer was superposed on the upper and lower sides of the support layer, and further integrated by a needle punching process to obtain a filter cloth of 450 (g / m 2 ). This filter cloth composed of the scrim 90 (g / m 2 ) and the filter layer 360 (g / m 2 ) was treated with hot air at 300 ° C. The maximum pore size of the filter medium was 20 μm. When the oil filtration characteristics were measured, the filtration efficiency after 75 minutes of filtration was 75%, the life was 80 minutes, and the oil filter showed high filtration characteristics.
[0034]
(Example 2)
A filter cloth of 450 (g / m 2 ) was obtained in the same manner as in Example 1. This filter cloth composed of the scrim 90 (g / m 2 ) and the filter layer 360 (g / m 2 ) was treated with hot air at 300 ° C. The maximum pore size of the filter medium was 80 μm. When the oil filtration characteristics were measured, the filtration efficiency after 75 minutes of filtration was 75%, the life was 80 minutes, and the oil filter showed high filtration characteristics.
[0035]
(Comparative Example 1)
As the filter layer, a polyethylene terephthalate short fiber of 2.2 dtex, 51 mm was used, and the support layer was made of the same material of 250 dtex, 60 filament multifilament as in the case of Example 2. / m 2 ) and a filter cloth having a maximum pore size of 100 μm and a basis weight of 450 g / m 2 composed of a filtration layer 360 (g / m 2 ) was prepared. When the filter cloth characteristics were measured, the initial filtration efficiency was 60% and the life was 25 minutes, and the filtration life was short due to the rapid increase in filtration pressure due to fiber swelling.
[0036]
(Example 3)
When the filtration characteristics of a filter cloth with a basis weight of 450 g / m 2 and a maximum pore size of 130 microns were measured, a dust retention amount of 85% and a collection efficiency of 99.9989% were obtained, and a high filtration characteristic as a bag filter was obtained. Indicated. As a result of performing both acid resistance evaluation and heat resistance evaluation using this felt, the strength retention was 91% and 80%, and there was no problem in chemical resistance and heat resistance.
[0037]
(Comparative Example 2)
As in Example 1, the above evaluation was performed using meta-aramid. As a result, the strength retention rate was reduced to 10% or less, and the filter medium was torn during the filtration test, making measurement impossible.
[0038]
【The invention's effect】
According to the present invention, a non-woven fabric having excellent heat resistance and chemical resistance and high filtration performance can be obtained as a filter for filtering solid components suspended or mixed in high temperature edible oil or industrial oil, or as a filter cloth for high temperature bag filters. Became possible.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000153457A JP3674764B2 (en) | 2000-05-24 | 2000-05-24 | Non-woven fabric for polyarylensulfide and oil filter and bag filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000153457A JP3674764B2 (en) | 2000-05-24 | 2000-05-24 | Non-woven fabric for polyarylensulfide and oil filter and bag filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001336050A JP2001336050A (en) | 2001-12-07 |
JP3674764B2 true JP3674764B2 (en) | 2005-07-20 |
Family
ID=18658709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000153457A Expired - Fee Related JP3674764B2 (en) | 2000-05-24 | 2000-05-24 | Non-woven fabric for polyarylensulfide and oil filter and bag filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3674764B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2839966B1 (en) * | 2002-05-27 | 2004-07-23 | Saint Gobain Isover | FILTERING MEDIA COMPRISING MINERAL FIBERS OBTAINED BY CENTRIFUGATION |
JP2005037076A (en) * | 2003-07-16 | 2005-02-10 | Kureha Ltd | Non-woven fabric assembly for evaporating filter |
JP5146864B2 (en) * | 2004-01-28 | 2013-02-20 | 征一 真鍋 | Method and apparatus for regenerating cooking oil |
JP5076883B2 (en) * | 2006-12-28 | 2012-11-21 | 東洋紡績株式会社 | Filter felt |
CA2817897C (en) | 2010-12-08 | 2019-04-02 | E. I. Du Pont De Nemours And Company | Improved media for hot gas filtration |
-
2000
- 2000-05-24 JP JP2000153457A patent/JP3674764B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001336050A (en) | 2001-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2520583C (en) | Filter fabric | |
CA1071851A (en) | Fabric filter and process for producing the same | |
RU2655357C2 (en) | Filter material | |
JP6158958B2 (en) | Multilayer filter medium, filter manufacturing method and air filter | |
JP4994446B2 (en) | Method for producing medium / high temperature exhaust gas treatment filter using foam coating and filter produced thereby | |
EP1932575B1 (en) | Nonwoven fabric for filters | |
US20070173159A1 (en) | Blend of polytetrafluoroethylene, glass and polyphenylene sulfide fibers and filter felt made from same | |
JP2007175567A (en) | Heat-resisting filter material and its manufacturing method | |
WO2019245216A1 (en) | Method for producing nonwoven fabric with improved filtration performance | |
KR100946981B1 (en) | Filter material for air cleaning | |
JP2841867B2 (en) | Highly efficient fiber cloth for high temperature gas filtration | |
JP2020524595A (en) | Filtration material | |
JP3674764B2 (en) | Non-woven fabric for polyarylensulfide and oil filter and bag filter | |
CN111491708A (en) | Nonwoven fabric for filter material and method for producing same | |
JP3722259B2 (en) | Filter fabric for highly filterable bag filter and method for producing the same | |
JPH10174822A (en) | Heat resistant filter | |
JP3233988B2 (en) | Filter cloth and method for producing the same | |
JP3800388B2 (en) | Filter cloth for high dust collection efficiency bag filter and manufacturing method thereof | |
EP1096057B1 (en) | Heat resistant fabric and filter composed thereof | |
JPH10211409A (en) | Filter media for air filter and air filter | |
KR102657574B1 (en) | flue gas filtration media | |
JP2001192953A (en) | Heat-resistant fabric and filter therefrom | |
WO2000009790A1 (en) | Dust collecting filter cloth and bag filter | |
JP3562627B2 (en) | Felt for bag filter with excellent dust release property | |
KR102621800B1 (en) | Nanofiber filter and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050420 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3674764 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080513 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130513 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130513 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |