JP3674484B2 - Rubber molded body for rubber bush for automobile and vibration isolator for automobile - Google Patents
Rubber molded body for rubber bush for automobile and vibration isolator for automobile Download PDFInfo
- Publication number
- JP3674484B2 JP3674484B2 JP2000288770A JP2000288770A JP3674484B2 JP 3674484 B2 JP3674484 B2 JP 3674484B2 JP 2000288770 A JP2000288770 A JP 2000288770A JP 2000288770 A JP2000288770 A JP 2000288770A JP 3674484 B2 JP3674484 B2 JP 3674484B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- weight
- parts
- carbon black
- automobile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Springs (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車のサスペンションなどに使用される防振装置である自動車用ゴムブッシュ、および自動車の防振装置用ゴム成形体に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
自動車のサスペンションなどに使用されるゴムブッシュとしては、内筒とこれを軸平行に取り囲む外筒とを両者の間に介在されたゴム弾性体で加硫接着してなるものが一般的である。このゴムブッシュは、内筒に対して一方の支持部材である軸部材を貫挿し、外筒を他の支持部材の筒状部に対して圧入することにより、車両に組み付けられる。また、外筒を除いて外周部をゴム弾性体で形成しておき、これを、外筒を兼ねる支持部材の筒状部に対して直接圧入することにより、車両に組み付けるものもある。
【0003】
かかるゴムブッシュにおいて、ゴム弾性体を形成するゴム組成物としては、天然ゴムなどのゴムにカーボンブラックや硫黄等の各種添加剤を配合したものが用いられている。従来、上記添加剤として酸化亜鉛を用いる場合があるが、その場合の配合量はゴム100重量部に対して5重量部以下という少量である。
【0004】
しかしながら、かかる従来のゴム組成物を用いてなるゴムブッシュでは、乗り心地性を向上しようとして静的バネ定数を下げると、車両の操縦安定性が悪化してしまい、逆に、操縦安定性を向上しようとすると乗り心地性が悪化してしまうことから、乗り心地性と操縦安定性を両立することができないという問題がある。
【0005】
本発明は、このような点に鑑み、操縦安定性と乗り心地性の両方を改善した自動車用ゴムブッシュ、および自動車の防振装置用ゴム成形体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記の点に鑑みて鋭意検討していく中で、ゴム組成物に添加するカーボンブラックの平均粒子径を小さくし、かつ、酸化亜鉛を増量することにより、乗り心地性と操縦安定性を両立させることができることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明の自動車用ゴムブッシュは、内筒の外周にゴム弾性体を加硫成形により固着してなるゴムブッシュであって、前記ゴム弾性体が、天然ゴム、スチレンブタジエンゴムおよびブタジエンゴムからなる群より選択される少なくとも一種のゴム100重量部に対して酸化亜鉛8〜30重量部と、平均粒子径40nm以下のカーボンブラックを配合したゴム組成物からなることを特徴とする。
また、本発明の自動車の防振装置用ゴム成形体は、天然ゴム、スチレンブタジエンゴムおよびブタジエンゴムからなる群より選択される少なくとも一種のゴム100重量部に対して酸化亜鉛8〜30重量部と、平均粒子径40nm以下のカーボンブラックを配合したゴム組成物を加硫成形してなるものである。
【0008】
平均粒子径の小さいカーボンブラックを使用することにより、大振幅域での静的バネ定数に対する微振幅域での静的バネ定数の比である振幅依存性が大きくなり、操縦安定性を向上することができる。これは、振幅依存性が大きいと、大きなたわみほど柔らかく、小さなたわみほど硬くなるためである。しかしながら、このように小径のカーボンブラックを使用すると、後記の実施例にも示されているように、動倍率が高くなって乗り心地性が悪化してしまう。そこで、動倍率を下げて乗り心地性を向上するために酸化亜鉛を増量している。すなわち、本発明のように小径のカーボンブラックを使用するとともに酸化亜鉛を増量することにより、静的バネ定数の振幅依存性を大きくしながら、動倍率を下げることができ、従って、操縦安定性と乗り心地性を両立することができる。
【0009】
【発明の実施の形態】
本発明の自動車用ゴムブッシュは、内筒の外周にゴム弾性体を加硫成形により固着してなるものであり、かかるゴムブッシュとしては、(A)内筒とこれを軸平行に取り囲む外筒との間をゴム弾性体を介して両者を加硫接着してなるもの、(B)外筒を除いて内筒の外周にゴム弾性体を加硫成形してなるものが挙げられる。なお、中間筒を備えるものでもよい。ここで、中間筒とは、内筒を軸平行に取り囲み、かつ、その内周と外周の両側にゴム弾性体が固着される筒部材である。
【0010】
図1は、上記(A)タイプの一例に係るゴムブッシュの断面図である。図1(a)に示すように、このゴムブッシュは、横設した円筒状の金属製内筒(1)と、この内筒(1)を軸平行かつ同心的に取り囲む円筒状の金属製外筒(2)と、内筒(1)と外筒(2)との間に介設され、両者を加硫接着手段により一体的に結合するゴム弾性体(3)とからなる。このゴムブッシュでは、加硫後に、外筒(2)に絞り加工を行って縮径することにより、内筒(1)と外筒(2)との間に介在するゴム弾性体(3)に圧縮応力を加えている。即ち、ゴム弾性体(3)に予圧縮を付与している(図1(b)参照)。そして、外筒(2)をサスペンションのアーム部材(5)の筒状部(6)に対して圧入し、内筒(1)に他方の支持部材である軸部材(不図示)を貫挿することにより、車両に組み付けられる。
【0011】
図2は、上記(B)タイプの一例に係るゴムブッシュの断面図である。図2(a)に示すように、このゴムブッシュは、横設した円筒状の金属製内筒(1)と、その外周に加硫成形により固着されたゴム弾性体(3)とからなり、外筒は具備しないものである。ゴム弾性体(3)には、その外周に嵌合用凹部(3a)が形成されており、該凹部(3a)には予圧縮用凸部(3b)が設けられている。このゴムブッシュは、図2(b)に示すように、サスペンションのアーム部材(5)の筒状部(6)に対して圧入し、内筒(1)に他方の支持部材である軸部材(不図示)を貫挿することにより、車両に組み付けられる。この場合、筒状部(6)への圧入により、上記凸部(3b)が圧縮されて、ゴム弾性体(3)に予圧縮が付与されている。
【0012】
図3は、上記(B)タイプの他の例に係るゴムブッシュの断面図である。図3(a)に示すように、このゴムブッシュでは、内筒(1)の外周に、この内筒(1)を軸平行かつ同心的に取り囲む円筒状の金属製中間筒(4)が配され、内筒(1)と中間筒(4)とが両者の間に介在された第1のゴム弾性体(31)で加硫接着され、中間筒(4)の外周には第2のゴム弾性体(32)が加硫成形されている。第2のゴム弾性体(32)には、その外周に嵌合用の凹部(32a)が形成されており、該凹部(32a)には軸方向中央部に予圧縮用凸部(32b)が設けられている。このゴムブッシュは、図3(b)に示すように、サスペンションのアーム部材(5)の筒状部(6)に対して圧入し、内筒(1)に他方の支持部材である軸部材(不図示)を貫挿することにより、車両に組み付けられる。この場合、筒状部(6)への圧入により、上記凸部(32b)が圧縮されて、中間筒(4)と筒状部(6)との間に介在する第2のゴム弾性体(32)に予圧縮が付与されている。
【0013】
上記のようにゴム弾性体に付与する予圧縮は、通常、圧縮率10〜30%で付与される。ここで、圧縮率とは、ゴム弾性体の圧縮前の厚みに対する圧縮により減少した厚みの比率をいう。
【0014】
詳細には、図1,2に示すゴムブッシュでは、ゴム弾性体(3)の圧縮前の外径をD0、ゴム弾性体(3)の圧縮後の外径をD1、ゴム弾性体(3)の内径(即ち、内筒(1)の外径)をdとしたとき、
圧縮率(%)={(D0−D1)/(D0−d)}×100
により求められる。
【0015】
また、図3に示すゴムブッシュのように、中間筒(4)を備えて、その内側の第1のゴム弾性体(31)は圧縮されず、外側の第2のゴム弾性体(32)が予圧縮されるものにおいては、第2のゴム弾性体(32)の圧縮前の外径(即ち、凸部(32b)の外径)をD10、第2のゴム弾性体(32)の圧縮後の外径をD11、第2のゴム弾性体(32)の内径(即ち、中間筒(4)の外径)をd2としたとき、
圧縮率(%)={(D10−D11)/(D10−d2)}×100
により求められる。
【0016】
本発明のゴムブッシュにおいて、上記ゴム弾性体は、ゴム100重量部に対して酸化亜鉛8〜30重量部と、平均粒子径40nm以下のカーボンブラックを配合したゴム組成物を加硫成形してなる。
【0017】
酸化亜鉛の配合量が8重量部未満では、動倍率が高く、良好な乗り心地性が得られない。30重量部を越えると、同様に動倍率が悪化し、良好な乗り心地が得られない。酸化亜鉛のより好ましい配合量は上限が10重量部、下限が20重量部である。
【0018】
平均粒子径が40nmを越えるカーボンブラックを使用すると、静的バネ定数の振幅依存性が小さく、良好な操縦安定性が得られない。好ましくは、平均粒子径が30nm以下のカーボンブラックを使用することである。このようなカーボンブラックの具体例としては、カーボンブラックMAF、カーボンブラックHAF、カーボンブラックISAF、カーボンブラックSAFなどが挙げられる。カーボンブラックの配合量は、操縦安定性と乗り心地性を高いレベルで両立させる観点より、ゴム100重量部に対して20〜100重量部が好適である。
【0019】
本発明のゴム組成物に使用するゴムは、天然ゴム、スチレンブタジエンゴムおよびブタジエンゴムの少なくとも一種である。
【0020】
該ゴム組成物には、上記ゴム、酸化亜鉛及びカーボンブラックの他に、硫黄、ステアリン酸、プロセスオイル、老化防止剤、加硫促進剤などの各種添加剤を添加することができる。
【0021】
【実施例】
(実施例1〜4及び比較例1〜8)
下記表1に示す基本配合において、カーボンブラックと酸化亜鉛(ZnO)を表2に示すとおり配合して、実施例1〜4及び比較例1〜8のゴム組成物を調製した。得られたゴム組成物を用いてテストピース(直径50mm×高さ25mmの円柱状のゴム成形体)を加硫成形し、ゴム物性として、微振幅域での静的バネ定数Ks(0.2)、大振幅域での静的バネ定数Ks(2.5)、静的バネ定数の振幅依存性Ks(0.2)/Ks(2.5)、動的バネ定数Kd、微振幅域での静的バネ定数に対する動的バネ定数の比である動倍率Kd/Ks(0.2)を測定した。
【0022】
【表1】
ゴム物性の測定方法は以下の通りである。
【0023】
・微振幅域での静的バネ定数Ks(0.2):JIS K 6385に準拠して、静的特性試験の両方向負荷方式において、テストピースの軸方向に変位速度0.02mm/分で−0.2mm〜+0.2mmの範囲のたわみを3回負荷し、3回目の負荷過程での荷重−たわみの関係を測定し、この関係を用いて同規格に記載の計算方法によりたわみの範囲=±0.1mmで算出した。
【0024】
・大振幅域での静的バネ定数Ks(2.5):JIS K 6385に準拠して、静的特性試験の両方向負荷方式において、テストピースの軸方向に変位速度0.02mm/分で−2.5mm〜+2.5mmの範囲のたわみを3回負荷し、3回目の負荷過程での荷重−たわみの関係を測定し、この関係を用いて同規格に記載の計算方法によりたわみの範囲=±1.25mmで算出した。
【0025】
・動的バネ定数Kd:JIS K 6385に準拠して、動的性質測定試験の非共振方法において、テストピースの軸方向に振動数100Hz、振幅±0.05mでたわみを加えて荷重−たわみの関係を測定し、この関係を用いて同規格に記載の計算方法により算出した。
【0026】
次に、上記で調製した各ゴム組成物を用いて、図1に示すゴムブッシュを作成した。その際、D0=30.3mm、D1=29.0mm、d=20.0mmとし、従って、ゴム弾性体の圧縮率を12.6%とした。得られた実施例1〜4及び比較例1〜8の各ゴムブッシュについて、操縦安定性と乗り心地性を評価した。結果を表2に示す。なお、評価方法は以下の通りである。
【0027】
・操縦安定性:実車走行試験において、車が時速150kmで急カーブを走行する際に、パネラーがハンドル操作時に感じる結果を判定したものであり、操縦安定性に優れる場合を「○」、劣る場合を「×」と評価した。
【0028】
・乗り心地性:操縦安定性と同様にして、時速150kmの連続高速走行時に、パネラーが車の乗り心地性を判断した結果によるものであり、乗り心地性に優れる場合を「○」、劣る場合を「×」と評価した。
【0029】
【表2】
表2において、比較例3〜8に示されるように、平均粒子径の小さいカーボンブラックを使用することにより静的バネ定数の振幅依存性が大きくなって、操縦安定性が改善されている。但し、酸化亜鉛の配合量の少ない比較例3〜6では、小径のカーボンブラックを使用すると、動倍率が高くなって、乗り心地性が悪化してしまった。
【0030】
これに対して、酸化亜鉛を増量した実施例1〜4では、小径のカーボンブラックを使用しても乗り心地性が損なわれておらず、操縦安定性と乗り心地性が双方ともに改善されていた。
【0031】
(実施例5〜9及び比較例9〜13)
上記表1に示す基本配合において、カーボンブラックとしてHAF(平均粒子径28nm)を用いてこれを表3に示す配合量で配合し、また、酸化亜鉛(ZnO)を表3に示すとおり配合して、実施例5〜9及び比較例9〜13のゴム組成物を調製した。得られた各ゴム組成物について、実施例1と同様に、テストピースを加硫成形して、ゴム硬度、静的バネ定数の振幅依存性Ks(0.2)/Ks(2.5)及び動倍率Kd/Ks(0.2)を求めた。結果を表3に示す。また、静的バネ定数の振幅依存性と動倍率との関係を図4に示す。なお、硬度は、JIS K 6253に準拠して、デュロメータータイプAを用いて測定した。
【0032】
【表3】
表3及び図4に示すように、酸化亜鉛を増量することにより低動倍率化する傾向があり、特に、振幅依存性の大きい、従って操縦安定性の良いものほど、低動倍率化効果が高く、従って乗り心地性が大幅に改善されることが分かった。
【0033】
(実施例10〜13及び比較例14)
上記表1に示す基本配合において、カーボンブラックとしてHAF(平均粒子径28nm)を用い、酸化亜鉛(ZnO)を表4に示すとおり配合して、実施例10〜13及び比較例14のゴム組成物を調製した。得られたゴム組成物を用いて、図1に示すゴムブッシュを作成した。その際、D0=30.3mm、D1=29.0mm、d=20.0mmとし、従って、ゴム弾性体の圧縮率を12.6%とした。得られた実施例10〜13及び比較例14の各ゴムブッシュについて、操縦安定性と乗り心地性を評価した。結果を表4に示す。なお、評価方法は上記した通りである。
【0034】
【表4】
表4に示すように、酸化亜鉛の配合量を8重量部以上とすることにより、乗り心地性が改善され、小径カーボンブラックの使用と相俟って、操縦安定性と乗り心地性を両立できることが確認された。
【0035】
【発明の効果】
以上説明したように、本発明によれば、自動車用ゴムブッシュや自動車の防振装置用ゴム成形体において操縦安定性と乗り心地性を両立させることができる。
【図面の簡単な説明】
【図1】本発明の1実施形態に係るゴムブッシュの断面図であり、(a)は予圧縮前、(b)は予圧縮後の状態をそれぞれ示している。
【図2】(a)は本発明の他の実施形態に係るゴムブッシュの断面図であり、(b)は同ブッシュをサスペンションのアーム部材に組み付けた状態を示す断面図である。
【図3】(a)は本発明の更に他の実施形態に係るゴムブッシュの半部縦断側面図であり、(b)は同ブッシュをサスペンションのアーム部材に組み付けた状態を示す半部縦断側面図である。
【図4】静的バネ定数の振幅依存性と動倍率との関係を示したグラフである。
【符号の説明】
1……内筒
2……外筒
3……ゴム弾性体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber bush for an automobile which is a vibration isolator used for an automobile suspension and the like, and a rubber molded body for an automobile vibration isolator .
[0002]
[Background Art and Problems to be Solved by the Invention]
A rubber bush used for automobile suspensions is generally formed by vulcanizing and bonding an inner cylinder and an outer cylinder surrounding the inner cylinder with a rubber elastic body interposed therebetween. The rubber bush is assembled to the vehicle by inserting a shaft member, which is one support member, into the inner cylinder and press-fitting the outer cylinder into the cylindrical portion of the other support member. In some cases, the outer peripheral portion is formed of a rubber elastic body excluding the outer cylinder, and this is directly press-fitted into the cylindrical portion of the support member that also serves as the outer cylinder, thereby being assembled to the vehicle.
[0003]
In such a rubber bush, as a rubber composition forming a rubber elastic body, a rubber composition such as natural rubber blended with various additives such as carbon black and sulfur is used. Conventionally, zinc oxide is sometimes used as the additive, but the amount of the additive is as small as 5 parts by weight or less with respect to 100 parts by weight of rubber.
[0004]
However, with a rubber bush using such a conventional rubber composition, if the static spring constant is lowered in order to improve riding comfort, the steering stability of the vehicle deteriorates, and conversely, the steering stability is improved. When trying to do so, the ride comfort deteriorates, so there is a problem that it is impossible to achieve both ride comfort and steering stability.
[0005]
In view of these points, an object of the present invention is to provide a rubber bush for an automobile that has improved both handling stability and ride comfort, and a rubber molded body for a vibration isolator for an automobile .
[0006]
[Means for Solving the Problems]
The present inventor has intensively studied in view of the above points, and by reducing the average particle diameter of carbon black added to the rubber composition and increasing the amount of zinc oxide, ride comfort and handling are improved. The present inventors have found that the stability can be compatible and have completed the present invention.
[0007]
That is, the rubber bush for automobiles of the present invention is a rubber bush formed by fixing a rubber elastic body to the outer periphery of an inner cylinder by vulcanization molding, and the rubber elastic body is made of natural rubber, styrene butadiene rubber and butadiene rubber. It is characterized by comprising a rubber composition in which 8 to 30 parts by weight of zinc oxide and carbon black having an average particle diameter of 40 nm or less are blended with 100 parts by weight of at least one rubber selected from the group consisting of
Further, the rubber molded body for a vibration isolator for an automobile according to the present invention comprises 8 to 30 parts by weight of zinc oxide with respect to 100 parts by weight of at least one rubber selected from the group consisting of natural rubber, styrene butadiene rubber and butadiene rubber. A rubber composition containing carbon black having an average particle diameter of 40 nm or less is formed by vulcanization molding.
[0008]
By using carbon black with a small average particle size, the amplitude dependency, which is the ratio of the static spring constant in the fine amplitude range to the static spring constant in the large amplitude range, is increased, and steering stability is improved. Can do. This is because, when the amplitude dependency is large, the larger the deflection, the softer the smaller the deflection becomes. However, when carbon black with such a small diameter is used as described above, the dynamic magnification becomes high and riding comfort deteriorates as shown in the examples described later. Therefore, the amount of zinc oxide is increased in order to reduce the dynamic magnification and improve the ride comfort. That is, by using a small-diameter carbon black and increasing the amount of zinc oxide as in the present invention, the dynamic magnification can be lowered while increasing the amplitude dependence of the static spring constant, and therefore the steering stability and Both ride comfort can be achieved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The rubber bush for automobiles of the present invention is formed by fixing a rubber elastic body to the outer periphery of an inner cylinder by vulcanization molding. As such a rubber bush, (A) an inner cylinder and an outer cylinder that surrounds the inner cylinder in parallel. And (B) those obtained by vulcanizing and molding a rubber elastic body on the outer periphery of the inner cylinder except for the outer cylinder. An intermediate cylinder may be provided. Here, the intermediate cylinder is a cylinder member that surrounds the inner cylinder in parallel with the axis and has rubber elastic bodies fixed to both sides of the inner circumference and the outer circumference.
[0010]
FIG. 1 is a cross-sectional view of a rubber bush according to an example of the type (A). As shown in FIG. 1 (a), this rubber bush includes a horizontal cylindrical metal inner cylinder (1) and a cylindrical metal outer cylinder that surrounds the inner cylinder (1) in parallel and concentrically. It consists of a cylinder (2), and a rubber elastic body (3) interposed between the inner cylinder (1) and the outer cylinder (2) and integrally connecting them by vulcanization bonding means. In this rubber bushing, after the vulcanization, the outer cylinder (2) is drawn to reduce the diameter so that the rubber elastic body (3) interposed between the inner cylinder (1) and the outer cylinder (2) Compressive stress is applied. That is, pre-compression is given to the rubber elastic body (3) (see FIG. 1B). Then, the outer cylinder (2) is press-fitted into the cylindrical portion (6) of the arm member (5) of the suspension, and a shaft member (not shown) as the other supporting member is inserted into the inner cylinder (1). Thus, it is assembled to the vehicle.
[0011]
FIG. 2 is a cross-sectional view of a rubber bush according to an example of the (B) type. As shown in FIG. 2 (a), the rubber bush is composed of a horizontally disposed cylindrical metal inner cylinder (1) and a rubber elastic body (3) fixed to the outer periphery thereof by vulcanization molding. An outer cylinder is not provided. The rubber elastic body (3) is formed with a fitting recess (3a) on the outer periphery thereof, and the recess (3a) is provided with a precompression protrusion (3b). As shown in FIG. 2 (b), the rubber bush is press-fitted into the cylindrical portion (6) of the arm member (5) of the suspension, and the shaft member (the other supporting member) is inserted into the inner cylinder (1). It is assembled to the vehicle by inserting a not shown. In this case, the convex part (3b) is compressed by press-fitting into the cylindrical part (6), and pre-compression is applied to the rubber elastic body (3).
[0012]
FIG. 3 is a cross-sectional view of a rubber bush according to another example of the type (B). As shown in FIG. 3 (a), in this rubber bushing, a cylindrical metal intermediate cylinder (4) surrounding the inner cylinder (1) is arranged in parallel and concentrically on the outer periphery of the inner cylinder (1). The inner cylinder (1) and the intermediate cylinder (4) are vulcanized and bonded by the first rubber elastic body (31) interposed between them, and the second rubber is formed on the outer periphery of the intermediate cylinder (4). The elastic body (32) is vulcanized. The second rubber elastic body (32) has a recess (32a) for fitting on its outer periphery, and the recess (32a) is provided with a precompression protrusion (32b) at the axial center. It has been. As shown in FIG. 3B, the rubber bush is press-fitted into the cylindrical portion (6) of the arm member (5) of the suspension, and the shaft member (the other supporting member) is inserted into the inner cylinder (1). It is assembled to the vehicle by inserting a not shown. In this case, the convex part (32b) is compressed by press-fitting into the cylindrical part (6), and the second rubber elastic body (between the intermediate cylinder (4) and the cylindrical part (6) ( 32) is given pre-compression.
[0013]
The pre-compression applied to the rubber elastic body as described above is usually applied at a compression rate of 10 to 30%. Here, the compression rate refers to the ratio of the thickness reduced by compression to the thickness of the rubber elastic body before compression.
[0014]
Specifically, in the rubber bush shown in FIGS. 1 and 2, the outer diameter of the rubber elastic body (3) before compression is D0, the outer diameter of the rubber elastic body (3) after compression is D1, and the rubber elastic body (3). When the inner diameter of the inner cylinder (that is, the outer diameter of the inner cylinder (1)) is d,
Compression rate (%) = {(D0−D1) / (D0−d)} × 100
Is required.
[0015]
Further, like the rubber bush shown in FIG. 3, the intermediate cylinder (4) is provided, and the inner first rubber elastic body (31) is not compressed, and the outer second rubber elastic body (32) is not compressed. In the case of pre-compression, the outer diameter of the second rubber elastic body (32) before compression (that is, the outer diameter of the convex portion (32b)) is D10, and after the compression of the second rubber elastic body (32). The outer diameter of the second rubber elastic body (32) is D11, and the inner diameter of the second rubber elastic body (32) (that is, the outer diameter of the intermediate cylinder (4)) is d2.
Compression rate (%) = {(D10−D11) / (D10−d2)} × 100
Is required.
[0016]
In the rubber bush of the present invention, the rubber elastic body is formed by vulcanizing and molding a rubber composition in which 8 to 30 parts by weight of zinc oxide and carbon black having an average particle diameter of 40 nm or less are blended with 100 parts by weight of rubber. .
[0017]
When the blending amount of zinc oxide is less than 8 parts by weight, the dynamic magnification is high and good riding comfort cannot be obtained. If it exceeds 30 parts by weight, the dynamic magnification similarly deteriorates, and a good riding comfort cannot be obtained. The more preferable amount of zinc oxide is 10 parts by weight at the upper limit and 20 parts by weight at the lower limit.
[0018]
If carbon black having an average particle diameter exceeding 40 nm is used, the amplitude dependency of the static spring constant is small, and good steering stability cannot be obtained. Preferably, carbon black having an average particle size of 30 nm or less is used. Specific examples of such carbon black include carbon black MAF, carbon black HAF, carbon black ISAF, and carbon black SAF. The blending amount of carbon black is preferably 20 to 100 parts by weight with respect to 100 parts by weight of rubber from the viewpoint of achieving both high handling stability and ride comfort.
[0019]
The rubber used in the rubber composition of the present invention is at least one of natural rubber, styrene butadiene rubber and butadiene rubber.
[0020]
In addition to the rubber, zinc oxide and carbon black, various additives such as sulfur, stearic acid, process oil, anti-aging agent, and vulcanization accelerator can be added to the rubber composition.
[0021]
【Example】
(Examples 1-4 and Comparative Examples 1-8)
In the basic blend shown in Table 1 below, carbon black and zinc oxide (ZnO) were blended as shown in Table 2 to prepare rubber compositions of Examples 1 to 4 and Comparative Examples 1 to 8. A test piece (cylindrical rubber molded body having a diameter of 50 mm and a height of 25 mm) was vulcanized and molded using the obtained rubber composition, and a static spring constant Ks (0.2) in a minute amplitude range was obtained as a rubber physical property. Static spring constant Ks (2.5) in the large amplitude region, amplitude dependency Ks (0.2) / Ks (2.5) of the static spring constant, dynamic spring constant Kd, dynamic to the static spring constant in the small amplitude region The dynamic magnification Kd / Ks (0.2), which is the ratio of the spring constant, was measured.
[0022]
[Table 1]
The measuring method of rubber physical properties is as follows.
[0023]
Static spring constant Ks (0.2) in the fine amplitude range: In accordance with JIS K 6385, in the bi-directional load method of the static characteristic test, a displacement speed of 0.02 mm / min in the axial direction of the test piece is −0. The deflection in the range of 2 mm to +0.2 mm is loaded three times, the load-deflection relationship in the third loading process is measured, and using this relationship, the deflection range is ± 0 by the calculation method described in the same standard. Calculated at 1 mm.
[0024]
Static spring constant Ks (2.5) in the large amplitude range: In accordance with JIS K 6385, in the bi-directional load method of the static characteristic test, a displacement speed of 0.02 mm / min in the axial direction of the test piece is −2. A deflection in the range of 5 mm to +2.5 mm is loaded three times, and the load-deflection relationship in the third loading process is measured. Using this relationship, the deflection range is ± 1 by the calculation method described in the same standard. Calculated at 25 mm.
[0025]
-Dynamic spring constant Kd: In accordance with JIS K 6385, in the non-resonant method of the dynamic property measurement test, the deflection of the test piece in the axial direction with a vibration frequency of 100 Hz and an amplitude of ± 0.05 m is applied. The relationship was measured, and the relationship was calculated by the calculation method described in the same standard.
[0026]
Next, the rubber bush shown in FIG. 1 was created using each rubber composition prepared above. At that time, D0 = 30.3 mm, D1 = 29.0 mm, and d = 20.0 mm. Therefore, the compression rate of the rubber elastic body was set to 12.6%. About each rubber bush of obtained Examples 1-4 and Comparative Examples 1-8, steering stability and riding comfort were evaluated. The results are shown in Table 2. The evaluation method is as follows.
[0027]
-Steering stability: In the actual vehicle running test, when the car travels a sharp curve at a speed of 150 km / h, the result that the panelist feels when operating the steering wheel is judged. Was evaluated as “×”.
[0028]
・ Ride comfort: As with steering stability, this is based on the result of the panelist judging the ride comfort of the vehicle during continuous high-speed driving at a speed of 150 km / h. Was evaluated as “×”.
[0029]
[Table 2]
In Table 2, as shown in Comparative Examples 3 to 8, the use of carbon black having a small average particle diameter increases the amplitude dependency of the static spring constant, thereby improving the steering stability. However, in Comparative Examples 3 to 6 in which the blending amount of zinc oxide is small, when carbon black having a small diameter is used, the dynamic magnification becomes high, and the riding comfort is deteriorated.
[0030]
In contrast, in Examples 1 to 4 in which the amount of zinc oxide was increased, riding comfort was not impaired even when a small-diameter carbon black was used, and both steering stability and riding comfort were improved. .
[0031]
(Examples 5-9 and Comparative Examples 9-13)
In the basic composition shown in Table 1 above, HAF (average particle diameter 28 nm) is used as carbon black and blended in the blending amount shown in Table 3, and zinc oxide (ZnO) is blended as shown in Table 3. The rubber compositions of Examples 5 to 9 and Comparative Examples 9 to 13 were prepared. For each of the obtained rubber compositions, the test piece was vulcanized and molded in the same manner as in Example 1, and the rubber hardness, the amplitude dependence of the static spring constant, Ks (0.2) / Ks (2.5), and the dynamic magnification Kd / Ks (0.2) was determined. The results are shown in Table 3. FIG. 4 shows the relationship between the amplitude dependency of the static spring constant and the dynamic magnification. The hardness was measured using a durometer type A in accordance with JIS K 6253.
[0032]
[Table 3]
As shown in Table 3 and FIG. 4, there is a tendency to reduce the dynamic magnification by increasing the amount of zinc oxide, and in particular, the higher the dependency on amplitude, and the better the steering stability, the higher the effect of reducing the dynamic magnification. Therefore, it has been found that the ride comfort is greatly improved.
[0033]
(Examples 10 to 13 and Comparative Example 14)
In the basic composition shown in Table 1 above, HAF (average particle size 28 nm) was used as carbon black, and zinc oxide (ZnO) was formulated as shown in Table 4, and rubber compositions of Examples 10 to 13 and Comparative Example 14 were used. Was prepared. A rubber bush shown in FIG. 1 was prepared using the obtained rubber composition. At that time, D0 = 30.3 mm, D1 = 29.0 mm, and d = 20.0 mm. Therefore, the compression rate of the rubber elastic body was set to 12.6%. About each rubber bush of obtained Examples 10-13 and the comparative example 14, steering stability and riding comfort were evaluated. The results are shown in Table 4. The evaluation method is as described above.
[0034]
[Table 4]
As shown in Table 4, when the amount of zinc oxide is 8 parts by weight or more, ride comfort is improved, and in combination with the use of small-diameter carbon black, both driving stability and ride comfort can be achieved. Was confirmed.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to achieve both comfort and ride handling stability in anti-vibration device rubber molded rubber bushings and automotive vehicles.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rubber bush according to an embodiment of the present invention, where (a) shows a state before pre-compression and (b) shows a state after pre-compression.
2A is a cross-sectional view of a rubber bush according to another embodiment of the present invention, and FIG. 2B is a cross-sectional view showing a state in which the bush is assembled to an arm member of a suspension.
FIG. 3 (a) is a half vertical side view of a rubber bush according to still another embodiment of the present invention, and FIG. 3 (b) is a half vertical side view showing a state where the bush is assembled to an arm member of a suspension. FIG.
FIG. 4 is a graph showing the relationship between the amplitude dependency of the static spring constant and the dynamic magnification.
[Explanation of symbols]
1 ……
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000288770A JP3674484B2 (en) | 2000-09-22 | 2000-09-22 | Rubber molded body for rubber bush for automobile and vibration isolator for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000288770A JP3674484B2 (en) | 2000-09-22 | 2000-09-22 | Rubber molded body for rubber bush for automobile and vibration isolator for automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002097307A JP2002097307A (en) | 2002-04-02 |
JP3674484B2 true JP3674484B2 (en) | 2005-07-20 |
Family
ID=18772298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000288770A Expired - Fee Related JP3674484B2 (en) | 2000-09-22 | 2000-09-22 | Rubber molded body for rubber bush for automobile and vibration isolator for automobile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3674484B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4699294B2 (en) * | 2006-06-15 | 2011-06-08 | 倉敷化工株式会社 | Vibration isolator |
JP6196821B2 (en) * | 2013-06-25 | 2017-09-13 | 株式会社ブリヂストン | Method for producing rubber composition |
WO2020050756A1 (en) * | 2018-09-07 | 2020-03-12 | Maq Ab | Mass damper device and working tool |
-
2000
- 2000-09-22 JP JP2000288770A patent/JP3674484B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002097307A (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100489486B1 (en) | Resin pulley | |
JP2006193621A (en) | Vibration-proof rubber composition and vibration-proof rubber | |
JP2009535251A (en) | Car stabilizer bar | |
CN108623855A (en) | Damping sizing material and preparation method thereof and engine mounting and automobile | |
US4880318A (en) | Slidable vibration-isolating rubber member | |
JP3674484B2 (en) | Rubber molded body for rubber bush for automobile and vibration isolator for automobile | |
KR102634385B1 (en) | Composition of high-fatigue materials of bushes for damper mount | |
JP2002020548A (en) | Vibration-proof rubber composition and rubber vibration insulator | |
EP1364989A1 (en) | Heat-resistant vibration damping rubber composition | |
EP1164165B1 (en) | Vibration damping rubber member having excellent durability and method of producing the same | |
US7175167B2 (en) | Elastomeric suspension spring for a motor vehicle and a suspension joint incorporating the spring | |
JPH1151099A (en) | Rubber bushing | |
JP7543051B2 (en) | Rubber composition and vibration-proof rubber obtained by vulcanization molding of the rubber composition | |
JP3657389B2 (en) | Rubber composition | |
KR101551020B1 (en) | Bush composition containing polyetheresther based thermoplastic elastomer for automobile | |
JP2002121328A (en) | Rubber bush for automobile | |
JP2006193617A (en) | Vibration-proof rubber composition and vibration-proof rubber | |
JPS6357311A (en) | Stabilizer bushing for vehicle | |
JPH07258475A (en) | Rubber composition for vibration insulation | |
JPH0873658A (en) | Vibration isolaing rubber composition for vehicle | |
JP2002098192A (en) | Vibration-proof apparatus | |
JPH0722142U (en) | Cylindrical anti-vibration member | |
JP3639937B2 (en) | Anti-vibration rubber composition | |
JP3607311B2 (en) | Pneumatic tire | |
US20200140663A1 (en) | Rubber composition for vibrationproof rubber, vibrationproof rubber, and method for producing rubber composition for vibrationproof rubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050418 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080513 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120513 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130513 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |