JP3673661B2 - Magnetic memory element - Google Patents

Magnetic memory element Download PDF

Info

Publication number
JP3673661B2
JP3673661B2 JP34902098A JP34902098A JP3673661B2 JP 3673661 B2 JP3673661 B2 JP 3673661B2 JP 34902098 A JP34902098 A JP 34902098A JP 34902098 A JP34902098 A JP 34902098A JP 3673661 B2 JP3673661 B2 JP 3673661B2
Authority
JP
Japan
Prior art keywords
layer
memory element
magnetic memory
ferromagnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34902098A
Other languages
Japanese (ja)
Other versions
JP2000173262A (en
Inventor
貴司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34902098A priority Critical patent/JP3673661B2/en
Priority to US09/457,084 priority patent/US6215695B1/en
Publication of JP2000173262A publication Critical patent/JP2000173262A/en
Application granted granted Critical
Publication of JP3673661B2 publication Critical patent/JP3673661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁気メモリ素子に関するものであり、好適な印加磁界で動作し、かつ高い磁気抵抗変化率を示すとともに高記録密度化が可能な非破壊型磁気メモリ素子に関するものである。
【0002】
【従来の技術】
磁気抵抗効果型メモリ素子は、磁性層の磁化方向をディジタル情報に対応させ記録を行うものである。従って、記録の保持に外部からのエネルギー供給を必要としない。また、半導体メモリと比較して製造工程が簡素であり、特に基板材料を限定するものではないため、安価な大容量不揮発性メモリとして期待される。磁気抵抗効果型メモリ素子は、図1に示すように基本的に2層の強磁性層の間に非磁性層を有したサンドイッチ構造である。二つの強磁性層の保磁力は異なり、保磁力の比較的小さな層を検出層、保磁力の比較的大きな層をメモリ層とする。図においてはメモリ層を非磁性層の下側に、検出層を非磁性層の上側に配しているが、メモリ層と検出層の位置が逆になっていても構わない。
【0003】
記録はメモリ層の磁化反転磁界よりも大きな磁界(Hw)を印加し、この記録磁界の方向にメモリ層の磁化を平行に向けることで達成される。例えば図2に.示したようにメモリ層の磁化が左向きの場合を『0』、右向きの場合を『1』とする。ただし、検出層の磁化反転磁界はメモリ層の磁化反転磁界よりも小さいので、記録直後は両層の磁化方向は平行である。検出は、メモリ素子に一定の大きさの直流電流を流すとともに、検出層の磁化反転磁界よりも大きく、メモリ層の磁化反転磁界よりも小さな磁界(Ha)を印如し、検出層の磁化反転に伴う電位の変化を調べることにより行われる。両磁性層の磁化方向が平行である場合、そのメモリ素子の抵抗率は、磁化方向が反平行である場合と比べて小さい。
【0004】
図3に示すように、『0』,が記録されたメモリ素子に+Haの検出磁界を印加すると両磁性層の磁化方向は反平行となって電位は高くなり、次いで一Haを印加すると両磁性層の磁化方向は平行となって電位は低くなる。このようにして得られた信号を微分回路に通すことで負のパルスが得られる。同様に『1』が記録されたメモリ素子では逆に正のパルスが得られる。また、この検出方式では検出された信号が、検出前の検出層の磁化方向に無関係である。
【0005】
検出層とメモリ層の磁化反転磁界に差を持たせるために、例えば検出層にはNiFe等の保磁力の小さな材料を用い、メモリ層にはCoFe等の保磁力の大きな材料を用いるが、両強磁性層問には、お互いの磁化の方向を平行に向けようとする静磁結合力が働いていているため、メモリ素子として動作させるためには、2つの層の保磁力の差がこの静磁結合力よりも大きくなければならない。
【0006】
【発明が解決しようとしている課題】
検出層とメモリ層の間に形成された非磁性層が金属層である場合、その膜厚が薄い方がより大きな磁気抵抗変化率が得られるので好ましい。ところが非磁性金属層の薄膜化により静磁結合力が増加し、磁化の反平行状態が得られなくなってしまう。
【0007】
また、面積の小さなメモリ素子では、反磁界の影響により大きな保磁力を維持することが困難となる。これは非磁性層が絶縁膜であるスピントンネル型のメモリ素子においても問題となる。ところが非破壊型磁気メモリ素子のメモリ層の材料として十分な大きさの保磁力を有する材料はいまだ提案されていない。
【0008】
【課題を解決するための手段】
本発明は少なくとも反強磁性層、第1の強磁性層、非磁性層、第2の強磁性層とをこの順に配置し、該反強磁性層は、第1の強磁性層交換結合しており、前記第1の強磁性層の磁化方向情報に応じて変化させて記録を行う磁気メモリ素子であって前記反強磁性層の一方向異方性の向き前記第1の強磁性層の磁化方向と平行であ、該第1の強磁性層の磁化方向が反転することによ反転することを特徴とする磁気メモリ素子を特徴とするものである。なお、前記反強磁性層は、絶縁体であってもよい
【0009】
【発明の実施の形態】
以下、本発明を図面を参照してさらに、詳細に説明する。
図4(a)に本発明の磁気メモリ素子の膜構成断面図を示す。1は基板、2は反強磁性層、3は第1の強磁性層、4は非磁性層、5は第2の強磁性層である。
【0010】
また、図4(b)に示すように積層順序を逆にしてもよい。反強磁性層にはMnFe、MnIr、MnPt、MnPtCr、AlCr等のMn系あるいはCr系反強磁性体やNiO、α−Fe23等の酸化物反強磁性体が用いられ、ネール点が動作温度より高いものが好ましい。特に酸化物反強磁性体を用いた磁気メモリ素子は反強磁性体中の電子の分流が無いので高い磁気抵抗変化率が期待できる。第1および第2の強磁性層にはCo、CoFe、Fe、NiFe等が使用可能である。非磁性層にはCuやAl23等が用いられる。
【0011】
反強磁性層の一方向異方性の反転は、交換結合している第1の強磁性層の磁化を介して行われる。
【0012】
すなわち、反強磁性層の一方向異方性の方向と第1の強磁性層の磁化方向が平行である状態で、これらの方向と反平行に外部磁界を印加すると、第1の強磁性層の磁化が反転し、これと交換結合している反強磁性層の原子の磁気モーメントも反転し、さらに相互作用によって反強磁性層内の原子の磁気モーメントが順次反転することにより反強磁性層の一方向異方性が反転する。
【0013】
本発明における第1の強磁性層の保磁力は、第1の強磁性層の膜厚、第1の強磁性層と反強磁性層の間の交換結合力あるいは反強磁性層の膜厚によって変化する。
特に第1の強磁性層あるいは反強磁性層の膜厚を適当に選ぶことにより容易に保磁力を調節することが可能である。図5に第1の磁性層の膜厚による保磁力の変化を示す。ただし、測定に用いたサンプルは、ガラス基板上に反強磁性層として10nmのNiO層、第1の強磁性層としてCoFe層、非磁性層として5nmのCu層、第2の強磁性層として5nmのNiFe層を順次積層した磁気メモリ素子である。この図からわかるように第1の強磁性層の保磁力は膜厚にほぼ反比例している。また、図6は上記磁気メモリ素子において、FeCo層の膜厚を5nm一定とし、NiO層の膜厚を変えた場合の第1磁性層の保磁力の変化を示したものである。NiO層の膜厚が厚くなるに従って、第1の強磁性層の保磁力が大きくなり、NiO層の膜厚を変えることによっても第1の強磁性層の保磁力を調節できることがわかる。ただし、この磁気メモリ素子では、NiO層の膜厚が20nmになると磁化曲線や磁気抵抗曲線において磁界方向のシフトが見られ、NiO層の一方向異方性の反転が不完全になっている。
【0014】
第1の強磁性層、非磁性層、第2の強磁性層、反強磁性層が順次積層された磁気メモリ素子は例えば特開平6−295419号公報で提案されている。しかし、この公報で提案されている磁気メモリ素子は、反強磁性層と結合している第2の強磁性層の磁化方向は固定されており、反強磁性の一方向異方性も反転しないものである。また、特開平9−139068号公報では反強磁性と交換結合している強磁性層の磁化方向が反転する磁気メモリ素子が開示されているが、反強磁性の一方向異方性が反転しないものであるために印加磁界の方向によって、磁化が反平行になる磁界の大きさが異なっている。このような磁気メモリ素子は、記録磁界あるいは検出磁界の大きさがそれぞれ印加する方向により異なるので、磁界印加回路が煩雑になり好ましくない。反強磁性層の一方向異方性を反転させるためには、反強磁性層内に交換エネルギーを蓄積し得ないように反強磁性層の膜厚を選ぶことが必要である。ただし、そのような膜厚は、反強磁性層の材料や構造により異なる。
【0015】
図7に本発明の磁気メモリ素子の磁気抵抗曲線と、対応する強磁性層の磁化方向と反強磁性層の一方向異方性の方向の変化の様子を示す。印加磁界HがH<−H1である場合を初期状態とする。このときの各層の磁化および一方向異方性の方向は(a)のようにすべて印加磁界の方向と平行である。この状態から印加磁界をH2<H<H1とすると比較的保磁力の小さな第2の強磁性層の磁化が反転し第1の強磁性層と第2の強磁性層の磁化方向が反平行となり抵抗率が高くなる。H2は第2の強磁性層が有する本来の保磁力Hc2と両強磁性層の間に働く静磁結合力Hsの和で表される。さらに印加磁界を大きくしH1<Hとすると第1の強磁性層の磁化と反強磁性層の一方向異方性が同時に反転し、抵抗率は再び小さくなる。H2は第1の強磁性層の本来の保磁力Hc1と反強磁性層との間に働く交換結合力Hexの和から第2の強磁性層との間に働く静磁結合力Hsを引いた形で表される。さらに、印加磁界を−H1<H<−H2とすると第2の強磁性層の磁化が反転し、さらに印加磁界をH<一H1とすることで初期状態に戻る。
【0016】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
(実施例1)
ガラス基板上に第2の強磁性層として5nmのNi80Fe20層、非磁性層として2.2nmのCu層、第1の強磁性層として5nmのCo90Fe10層、反強磁性層として3nmのIr50Mn50層を真空を破ることなくスパッタリングによって順次積層した。強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起させた。
【0017】
図8は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。2kA/mから6kA/mの磁界範囲で磁化が反平行となり、約5.9%の高い磁気抵抗変化率が得られている。
(実施例2)
ガラス基板上に反強磁性層として10nmのNi50O50層、第1の強磁性層として3nmのCo90Fe10層、非磁性層として2.4nmのCu層、第2の強磁性層として3nmのNi80Fe20層を真空を破ることなくスパッタリングによって順次積層した。強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起させた。
【0018】
図9は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。2kA/mから6.5kA/mの磁界範囲で磁化が反平行となり、約5.5%の高い磁気抵抗変化率が得られている。
(実施例3)
ガラス基板上に反強磁性層として15nmのNi5050層、第1の強磁性層として10nmのCo90FelO層、2nmのAl層を順次積層した後、チヤンバー内に酸素ガスを導入し、該Al層を酸化させ非磁性酸化物層とした。再びチヤンバー内を十分に真空引きした後、第2の強磁性層として10nmのNi80Fe20層を形成した。このようにして得られたスピントンネル膜をリソグラフイープロセスによって10μm角の大きさに加工した後、フォーカスイオンビーム加工装置によって電極を作成し、微少磁気メモリ素子とした。強磁性層の磁化反転を急峻にするために、各層成膜中に検出おまび記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起させた。
【0019】
図10は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。0.5kA/mから4kA/mの磁界範囲で磁化が反平行となり、約11.5%の高い磁気抵抗変化率が得られている。
〔比較例〕
比較例一1
ガラス基板上に第2の強磁性層として5nmのNi80Fe20層、非磁性層として2.2nmのCu層、第1の強磁性層として5nmのCo90Fe10層を、反強磁性層として50nmのIr50Mn50層を真空を破ることなくスパッタリングによって順次積層した。強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起させた。
【0020】
図11は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。この磁気メモリ素子は、反磁性層の膜厚が厚いために一方向異方性が反転せず、磁気抵抗変化率曲線がY軸に対して非対称である。
比較例−2 .
ガラス基板上に第1の強磁性層として3nmのCo90Fe10層、非磁性層として2.2nmのCu層、第2の強磁性層として3nmのNi80Fe20層を真空を破ることなくスパッタリングによって順次積層した。強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一増由磁気異方性を誘起させた。
【0021】
図12は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。両磁性層の磁化反転がほぼ同時に起きているため、高い磁気抵抗変化率は得られていない。
比較例−3
ガラス基板上に第1の強磁性層として3nmのCo90FelO層、非磁性層として5nmのCu層、第2の強磁性層として3nmのNi80Fe20層を真空を破ることなくスパッタリングによって順次積層した。
強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起させた。
【0022】
図13は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。
0・3kA/mから1・4kA/mの磁界範囲で磁化が反平行となっているが、非磁性金属層の膜厚が厚いため、磁気抵抗変化に関与する電子の割合が減少し、磁気抵抗変化率は約2.7%と低い。
比較例−4
ガラス基板上に第1の強磁性層として10nmのCo90FelO層、2nmのAl層を順次積層した後、チヤンバー内に酸素ガスを導入し、該Al層を酸化させ非磁性酸化層とした。
【0023】
再びチヤンバー内を十分に真空引きした後、第2の強磁性層として10nmのNi88Fe20層を形成した。このようにして得られたスピントンネル膜をリソグラフイープロセスによって10μm角の大きさに加工した後、フォーカスイオンビーム加工装置によって電極を作成し、微小磁気メモリ素子とした。強磁性層の磁化反転を急峻にするために、各層成膜中に検出および記録磁界印加方向に平行に約6kA/mの直流磁界を印加し、面内一軸磁気異方性を誘起きせた。
【0024】
図14は上記のようにして作成した磁気メモリ素子の磁気抵抗変化率の測定結果である。両磁性層の磁化反転磁界の差が小さいため、磁化の反平行状態が
不十分となり、磁気抵抗変化率は約1.25%と小さい。
【0025】
【発明の効果】
上記のように本発明の磁気メモリ素子は第1の強磁性層の保磁力を容易に調整することが可能であり、磁気メモリ素子のサイズを小さくしても反磁界による保磁力の減少を相殺でき、記録密度の高い磁気メモリチップを提供できる。
また、強磁性層の間に形成された非磁性金属層の膜厚を薄くすることが可能であり、高い磁気抵抗変化率を有する磁気メモリ素子を得ることができる。
【図面の簡単な説明】
【図1】従来の磁気メモリ素子の基本膜構成の断面図である。
【図2】従来の磁気メモリ素子の記録後の磁化方向を示す図である。
【図3】従来の磁気メモリ素子の検出方法を示す図である。
【図4】本発明の磁気メモリ素子の基本膜構成の断面図である。
【図5】本発明の磁気メモリ素子の第1の磁性層の膜厚に対する第1の磁性層の保磁力の変化を示すグラフである。
【図6】本発明の磁気メモリ素子の反強磁性層の膜厚に対する第1の磁性層の保磁力の変化を示すグラフである。
【図7】本発明の磁気メモリ素子の磁気抵抗曲線と磁化の方向および反強磁性層の一方向異方性の方向を示す図である。
【図8】実施例1の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図9】実施例2の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図10】実施例3の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図11】比較例1の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図12】比較例2の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図13】比較例3の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【図14】比較例4の磁気メモリ素子の磁気抵抗変化率曲線を示すグラフである。
【符号の説明】
1.基板
2.反強磁性層
3.第1の強磁性層
4.非磁性層
5.第2の強磁性層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic memory element, and more particularly to a nondestructive magnetic memory element that operates with a suitable applied magnetic field, exhibits a high magnetoresistance change rate, and can achieve a high recording density.
[0002]
[Prior art]
The magnetoresistive effect memory element performs recording by making the magnetization direction of the magnetic layer correspond to digital information. Therefore, no external energy supply is required for record keeping. In addition, the manufacturing process is simple compared to a semiconductor memory, and the substrate material is not particularly limited. Therefore, it is expected as an inexpensive large-capacity nonvolatile memory. As shown in FIG. 1, the magnetoresistive effect memory element basically has a sandwich structure having a nonmagnetic layer between two ferromagnetic layers. The two ferromagnetic layers have different coercive forces, and a layer having a relatively small coercive force is a detection layer and a layer having a relatively large coercive force is a memory layer. In the figure, the memory layer is disposed below the nonmagnetic layer and the detection layer is disposed above the nonmagnetic layer. However, the positions of the memory layer and the detection layer may be reversed.
[0003]
Recording is achieved by applying a magnetic field (Hw) larger than the magnetization reversal magnetic field of the memory layer and directing the magnetization of the memory layer parallel to the direction of the recording magnetic field. For example in FIG. As shown, the case where the magnetization of the memory layer is leftward is “0”, and the case where it is rightward is “1”. However, since the magnetization reversal field of the detection layer is smaller than the magnetization reversal field of the memory layer, the magnetization directions of both layers are parallel immediately after recording. In the detection, a certain amount of direct current is passed through the memory element, and a magnetic field (Ha) that is larger than the magnetization reversal magnetic field of the detection layer and smaller than the magnetization reversal magnetic field of the memory layer is applied. This is done by examining the change in potential associated with. When the magnetization directions of both magnetic layers are parallel, the resistivity of the memory element is smaller than when the magnetization directions are antiparallel.
[0004]
As shown in FIG. 3, when a + Ha detection magnetic field is applied to a memory element in which “0” is recorded, the magnetization directions of both magnetic layers become antiparallel and the potential becomes high. The magnetization direction of the layers becomes parallel and the potential is lowered. By passing the signal thus obtained through a differentiating circuit, a negative pulse is obtained. Similarly, a positive pulse is obtained in the memory element in which “1” is recorded. In this detection method, the detected signal is independent of the magnetization direction of the detection layer before detection.
[0005]
In order to give a difference between the magnetization reversal fields of the detection layer and the memory layer, for example, a material having a small coercive force such as NiFe is used for the detection layer, and a material having a large coercive force such as CoFe is used for the memory layer. The ferromagnetic layer has a magnetostatic coupling force that tries to make the directions of magnetizations parallel to each other. Therefore, in order to operate as a memory element, the difference in coercive force between the two layers is the static layer. Must be greater than the magnetic coupling force.
[0006]
[Problems to be solved by the invention]
When the nonmagnetic layer formed between the detection layer and the memory layer is a metal layer, it is preferable that the film thickness is smaller because a larger magnetoresistance change rate can be obtained. However, the magnetostatic coupling force increases due to the thinning of the nonmagnetic metal layer, and the antiparallel state of magnetization cannot be obtained.
[0007]
In addition, in a memory element having a small area, it is difficult to maintain a large coercive force due to the influence of a demagnetizing field. This is also a problem in a spin tunnel type memory element in which the nonmagnetic layer is an insulating film. However, a material having a sufficiently large coercive force as a material for a memory layer of a nondestructive magnetic memory element has not been proposed yet.
[0008]
[Means for Solving the Problems]
The present invention is, at least, an antiferromagnetic layer, a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer in this order placed, the antiferromagnetic layer, a first ferromagnetic layers and are exchange coupled, I Oh in the magnetic memory device for recording by by changing depending the magnetization direction of the first ferromagnetic layer to the information, the orientation of the unidirectional anisotropy of the antiferromagnetic layer , the Ri first parallel der the magnetization direction of the ferromagnetic layer, Ri by that magnetization direction of the first ferromagnetic layer is reversed, and wherein the magnetic memory device characterized by reversed Monodea Ru. Incidentally, the antiferromagnetic layer may me insulation der.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 4A shows a sectional view of the film structure of the magnetic memory element of the present invention. 1 is a substrate, 2 is an antiferromagnetic layer, 3 is a first ferromagnetic layer, 4 is a nonmagnetic layer, and 5 is a second ferromagnetic layer.
[0010]
Further, the stacking order may be reversed as shown in FIG. For the antiferromagnetic layer, Mn-based or Cr-based antiferromagnetic materials such as MnFe, MnIr, MnPt, MnPtCr, and AlCr, and oxide antiferromagnetic materials such as NiO and α-Fe 2 O 3 are used. Higher than the operating temperature is preferred. In particular, a magnetic memory element using an oxide antiferromagnetic material can be expected to have a high rate of change in magnetoresistance because there is no splitting of electrons in the antiferromagnetic material. Co, CoFe, Fe, NiFe, or the like can be used for the first and second ferromagnetic layers. For the nonmagnetic layer, Cu, Al 2 O 3 or the like is used.
[0011]
The reversal of the unidirectional anisotropy of the antiferromagnetic layer is performed via the magnetization of the first ferromagnetic layer that is exchange coupled.
[0012]
That is, when an external magnetic field is applied antiparallel to these directions in a state where the direction of unidirectional anisotropy of the antiferromagnetic layer is parallel to the magnetization direction of the first ferromagnetic layer, the first ferromagnetic layer Is reversed, the magnetic moment of the atoms in the antiferromagnetic layer exchange-coupled with it is also reversed, and the magnetic moment of the atoms in the antiferromagnetic layer is sequentially reversed by the interaction. Reverses the unidirectional anisotropy.
[0013]
The coercive force of the first ferromagnetic layer in the present invention depends on the film thickness of the first ferromagnetic layer, the exchange coupling force between the first ferromagnetic layer and the antiferromagnetic layer, or the film thickness of the antiferromagnetic layer. Change.
In particular, the coercive force can be easily adjusted by appropriately selecting the thickness of the first ferromagnetic layer or the antiferromagnetic layer. FIG. 5 shows the change in coercive force depending on the thickness of the first magnetic layer. However, the sample used for the measurement was a 10 nm NiO layer as an antiferromagnetic layer on a glass substrate, a CoFe layer as a first ferromagnetic layer, a 5 nm Cu layer as a nonmagnetic layer, and a 5 nm as a second ferromagnetic layer. This is a magnetic memory element in which NiFe layers are sequentially stacked. As can be seen from this figure, the coercive force of the first ferromagnetic layer is almost inversely proportional to the film thickness. FIG. 6 shows the change in the coercive force of the first magnetic layer when the thickness of the FeCo layer is kept constant at 5 nm and the thickness of the NiO layer is changed in the magnetic memory element. It can be seen that as the thickness of the NiO layer increases, the coercivity of the first ferromagnetic layer increases, and the coercivity of the first ferromagnetic layer can also be adjusted by changing the thickness of the NiO layer. However, in this magnetic memory element, when the thickness of the NiO layer reaches 20 nm, a shift in the magnetic field direction is observed in the magnetization curve and the magnetoresistance curve, and the inversion of the unidirectional anisotropy of the NiO layer is incomplete.
[0014]
A magnetic memory element in which a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer, and an antiferromagnetic layer are sequentially laminated is proposed in, for example, Japanese Patent Laid-Open No. 6-295419. However, in the magnetic memory element proposed in this publication, the magnetization direction of the second ferromagnetic layer coupled to the antiferromagnetic layer is fixed, and the antiferromagnetic unidirectional anisotropy is not reversed. Is. Japanese Patent Laid-Open No. 9-139068 discloses a magnetic memory element in which the magnetization direction of a ferromagnetic layer exchange-coupled with antiferromagnetism is reversed, but the antiferromagnetic unidirectional anisotropy is not reversed. Therefore, the magnitude of the magnetic field in which the magnetization becomes antiparallel differs depending on the direction of the applied magnetic field. In such a magnetic memory element, since the magnitude of the recording magnetic field or the detection magnetic field varies depending on the direction of application, the magnetic field application circuit becomes complicated, which is not preferable. In order to reverse the unidirectional anisotropy of the antiferromagnetic layer, it is necessary to select the thickness of the antiferromagnetic layer so that exchange energy cannot be accumulated in the antiferromagnetic layer. However, such a film thickness varies depending on the material and structure of the antiferromagnetic layer.
[0015]
FIG. 7 shows a magnetoresistive curve of the magnetic memory element of the present invention, and a change in the magnetization direction of the corresponding ferromagnetic layer and the direction of unidirectional anisotropy of the antiferromagnetic layer. A case where the applied magnetic field H is H <−H 1 is defined as an initial state. At this time, the magnetization and the direction of unidirectional anisotropy of each layer are all parallel to the direction of the applied magnetic field as shown in FIG. In this state, when the applied magnetic field is H 2 <H <H 1 , the magnetization of the second ferromagnetic layer having a relatively small coercive force is reversed, and the magnetization directions of the first and second ferromagnetic layers are reversed. Parallel and higher resistivity. H 2 is represented by the sum of the original coercive force H c2 of the second ferromagnetic layer and the magnetostatic coupling force H s acting between the two ferromagnetic layers. When the applied magnetic field is further increased and H 1 <H, the magnetization of the first ferromagnetic layer and the unidirectional anisotropy of the antiferromagnetic layer are simultaneously reversed, and the resistivity decreases again. H 2 represents the magnetostatic coupling force H s acting between the second ferromagnetic layer and the sum of the exchange coupling force Hex acting between the original coercive force H c1 of the first ferromagnetic layer and the antiferromagnetic layer. It is expressed by subtracting. Further, when the applied magnetic field is −H 1 <H <−H 2 , the magnetization of the second ferromagnetic layer is reversed, and when the applied magnetic field is set to H <one H 1 , the initial state is restored.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example 1)
On the glass substrate, a 5 nm Ni 80 Fe 20 layer as a second ferromagnetic layer, a 2.2 nm Cu layer as a nonmagnetic layer, a 5 nm Co 90 Fe 10 layer as a first ferromagnetic layer, and an antiferromagnetic layer 3 nm Ir 50 Mn 50 layers were sequentially deposited by sputtering without breaking the vacuum. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel to the detection and recording magnetic field application direction during film formation of each layer to induce in-plane uniaxial magnetic anisotropy.
[0017]
FIG. 8 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. Magnetization becomes antiparallel in a magnetic field range of 2 kA / m to 6 kA / m, and a high magnetoresistance change rate of about 5.9% is obtained.
(Example 2)
A 10 nm Ni 50 O 50 layer as an antiferromagnetic layer on a glass substrate, a 3 nm Co 90 Fe 10 layer as a first ferromagnetic layer, a 2.4 nm Cu layer as a nonmagnetic layer, and a second ferromagnetic layer A 3 nm Ni 80 Fe 20 layer was sequentially deposited by sputtering without breaking the vacuum. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel to the detection and recording magnetic field application direction during film formation of each layer to induce in-plane uniaxial magnetic anisotropy.
[0018]
FIG. 9 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. Magnetization becomes antiparallel in the magnetic field range of 2 kA / m to 6.5 kA / m, and a high magnetoresistance change rate of about 5.5% is obtained.
(Example 3)
A 15 nm Ni 50 O 50 layer as an antiferromagnetic layer and a 10 nm Co 90 Fe lO layer as a first ferromagnetic layer and a 2 nm Al layer are sequentially laminated on a glass substrate, and oxygen gas is introduced into the chamber. The Al layer was oxidized to form a nonmagnetic oxide layer. After sufficiently evacuating the inside of the chamber again, a 10 nm Ni 80 Fe 20 layer was formed as the second ferromagnetic layer. The spin tunnel film thus obtained was processed to a size of 10 μm square by a lithographic process, and then an electrode was formed by a focused ion beam processing apparatus to obtain a micro magnetic memory element. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel to the direction of detection and recording magnetic field application during each film formation to induce in-plane uniaxial magnetic anisotropy. .
[0019]
FIG. 10 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. Magnetization becomes antiparallel in the magnetic field range of 0.5 kA / m to 4 kA / m, and a high magnetoresistance change rate of about 11.5% is obtained.
[Comparative example]
Comparative Example 1-1
A 5 nm Ni 80 Fe 20 layer as a second ferromagnetic layer, a 2.2 nm Cu layer as a nonmagnetic layer, a 5 nm Co 90 Fe 10 layer as a first ferromagnetic layer, and an antiferromagnetic layer on a glass substrate As an Ir 50 Mn 50 layer of 50 nm was sequentially laminated by sputtering without breaking the vacuum. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel with the direction of detection and recording magnetic field application during each layer formation to induce in-plane uniaxial magnetic anisotropy.
[0020]
FIG. 11 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. In this magnetic memory element, since the diamagnetic layer is thick, the unidirectional anisotropy is not reversed, and the magnetoresistance change rate curve is asymmetric with respect to the Y axis.
Comparative Example-2.
A 3 nm Co 90 Fe 10 layer as a first ferromagnetic layer, a 2.2 nm Cu layer as a nonmagnetic layer, and a 3 nm Ni 80 Fe 20 layer as a second ferromagnetic layer on a glass substrate without breaking the vacuum. The layers were sequentially laminated by sputtering. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m is applied in parallel to the detection and recording magnetic field application direction during film formation of each layer to induce in-plane increased magnetic anisotropy. It was.
[0021]
FIG. 12 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. Since the magnetization reversal of both magnetic layers occurs almost simultaneously, a high magnetoresistance change rate is not obtained.
Comparative Example-3
Sputtering a 3 nm Co 90 Fe 1O layer as a first ferromagnetic layer, a 5 nm Cu layer as a nonmagnetic layer, and a 3 nm Ni 80 Fe 20 layer as a second ferromagnetic layer on a glass substrate without breaking the vacuum. Laminated sequentially.
In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel with the direction of detection and recording magnetic field application during each layer formation to induce in-plane uniaxial magnetic anisotropy.
[0022]
FIG. 13 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above.
Magnetization is antiparallel in the magnetic field range of 0.3 kA / m to 1.4 kA / m. However, since the nonmagnetic metal layer is thick, the proportion of electrons involved in the magnetoresistance change decreases, and The resistance change rate is as low as about 2.7%.
Comparative Example-4
After sequentially laminating a 10 nm Co 90 Fe lO layer and a 2 nm Al layer as a first ferromagnetic layer on a glass substrate, oxygen gas was introduced into the chamber to oxidize the Al layer to form a nonmagnetic oxide layer. .
[0023]
After sufficiently evacuating the inside of the chamber again, a 10 nm Ni 88 Fe 20 layer was formed as the second ferromagnetic layer. The spin tunnel film thus obtained was processed to a size of 10 μm square by a lithographic process, and then an electrode was formed by a focused ion beam processing apparatus to obtain a micro magnetic memory element. In order to make the magnetization reversal of the ferromagnetic layer steep, a DC magnetic field of about 6 kA / m was applied in parallel to the direction of detection and recording magnetic field application during film formation of each layer to induce in-plane uniaxial magnetic anisotropy.
[0024]
FIG. 14 shows the measurement results of the magnetoresistance change rate of the magnetic memory element produced as described above. Since the difference in magnetization reversal field between the two magnetic layers is small, the antiparallel state of magnetization becomes insufficient, and the magnetoresistance change rate is as small as about 1.25%.
[0025]
【The invention's effect】
As described above, the magnetic memory element of the present invention can easily adjust the coercive force of the first ferromagnetic layer, and even if the size of the magnetic memory element is reduced, the decrease in the coercive force due to the demagnetizing field is offset. And a magnetic memory chip having a high recording density can be provided.
Further, the film thickness of the nonmagnetic metal layer formed between the ferromagnetic layers can be reduced, and a magnetic memory element having a high magnetoresistance change rate can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a basic film configuration of a conventional magnetic memory element.
FIG. 2 is a diagram showing a magnetization direction after recording of a conventional magnetic memory element.
FIG. 3 is a diagram illustrating a conventional method for detecting a magnetic memory element.
FIG. 4 is a cross-sectional view of the basic film configuration of the magnetic memory element of the present invention.
FIG. 5 is a graph showing a change in coercive force of the first magnetic layer with respect to the thickness of the first magnetic layer of the magnetic memory element of the present invention.
FIG. 6 is a graph showing a change in coercivity of the first magnetic layer with respect to the film thickness of the antiferromagnetic layer of the magnetic memory element of the present invention.
FIG. 7 is a diagram showing a magnetoresistive curve, a magnetization direction, and a direction of unidirectional anisotropy of an antiferromagnetic layer of the magnetic memory element of the present invention.
8 is a graph showing a magnetoresistance change rate curve of the magnetic memory element of Example 1. FIG.
9 is a graph showing a magnetoresistance change rate curve of the magnetic memory element of Example 2. FIG.
10 is a graph showing a magnetoresistance change rate curve of the magnetic memory element of Example 3. FIG.
11 is a graph showing a magnetoresistance change rate curve of a magnetic memory element of Comparative Example 1. FIG.
12 is a graph showing a magnetoresistance change rate curve of a magnetic memory element of Comparative Example 2. FIG.
13 is a graph showing a magnetoresistance change rate curve of a magnetic memory element of Comparative Example 3. FIG.
14 is a graph showing a magnetoresistance change rate curve of a magnetic memory element of Comparative Example 4. FIG.
[Explanation of symbols]
1. Substrate 2. 2. antiferromagnetic layer First ferromagnetic layer4. 4. Nonmagnetic layer Second ferromagnetic layer

Claims (5)

少なくとも、反強磁性層と、第1の強磁性層と、非磁性層と、第2の強磁性層とをこの順に配置し、該反強磁性層は、第1の強磁性層と交換結合しており、
前記第1の強磁性層の磁化方向を情報に応じて変化させて記録を行う磁気メモリ素子であって、
前記反強磁性層の一方向異方性の向きは、前記第1の強磁性層の磁化方向と平行であり、該第1の強磁性層の磁化方向が反転することにより、反転することを特徴とする磁気メモリ素子。
At least an antiferromagnetic layer, a first ferromagnetic layer, a nonmagnetic layer, and a second ferromagnetic layer are arranged in this order, and the antiferromagnetic layer is exchange coupled with the first ferromagnetic layer. And
A magnetic memory element that performs recording by changing the magnetization direction of the first ferromagnetic layer according to information,
The direction of unidirectional anisotropy of the antiferromagnetic layer is parallel to the magnetization direction of the first ferromagnetic layer, and is reversed when the magnetization direction of the first ferromagnetic layer is reversed. A magnetic memory element.
前記非磁性層は、絶縁体層であることを特徴とする請求項1に記載の磁気メモリ素子。  The magnetic memory element according to claim 1, wherein the nonmagnetic layer is an insulator layer. 前記非磁性層は、金属層であることを特徴とする請求項1に記載の磁気メモリ素子。  The magnetic memory element according to claim 1, wherein the nonmagnetic layer is a metal layer. 前記反強磁性層は、絶縁体で構成されていることを特徴とする請求項1〜3のいずれか1項に記載の磁気メモリ素子。  The magnetic memory element according to claim 1, wherein the antiferromagnetic layer is made of an insulator. 前記第1の強磁性層の磁化方向を情報に応じて変化させて磁気メモリ素子に記録される情報の読み出しは、
前記第2の強磁性層を、前記第1の強磁性層に記録された情報を読み出すための検出層として行うことを特徴とする請求項1〜4のいずれか1項に記載の磁気メモリ素子。
Reading information recorded in the magnetic memory element by changing the magnetization direction of the first ferromagnetic layer according to the information,
5. The magnetic memory element according to claim 1, wherein the second ferromagnetic layer is used as a detection layer for reading information recorded in the first ferromagnetic layer. 6. .
JP34902098A 1998-12-08 1998-12-08 Magnetic memory element Expired - Fee Related JP3673661B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34902098A JP3673661B2 (en) 1998-12-08 1998-12-08 Magnetic memory element
US09/457,084 US6215695B1 (en) 1998-12-08 1999-12-07 Magnetoresistance element and magnetic memory device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34902098A JP3673661B2 (en) 1998-12-08 1998-12-08 Magnetic memory element

Publications (2)

Publication Number Publication Date
JP2000173262A JP2000173262A (en) 2000-06-23
JP3673661B2 true JP3673661B2 (en) 2005-07-20

Family

ID=18400956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34902098A Expired - Fee Related JP3673661B2 (en) 1998-12-08 1998-12-08 Magnetic memory element

Country Status (1)

Country Link
JP (1) JP3673661B2 (en)

Also Published As

Publication number Publication date
JP2000173262A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
US6650513B2 (en) Magnetic devices with a ferromagnetic layer having perpendicular magnetic anisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer
KR100347084B1 (en) Magnetic tunnel junction element that can be used as an external magnetic field sensor
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
EP1126531A2 (en) Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
GB1600098A (en) Magnetic thin film structure
JPH10294506A (en) Spin valve type thin-film element and its manufacture
JPH10112562A (en) Magneto resistance effect type sensor, and its manufacture, and magnetic head equipped with the sensor
CN1670825A (en) Magnetic drag sensor of current flow perpendicular to plane
JPH1041132A (en) Magnetic resistance effect film
JP2004095583A (en) Magnetic detector
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JPH10198927A (en) Magnetoresistance effect film and its production
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
US6215695B1 (en) Magnetoresistance element and magnetic memory device employing the same
JP3473016B2 (en) Ferromagnetic tunnel junction device, magnetic head and magnetic memory
JP2001266566A (en) Magnetic memory element and magnetic memory using the same
JP3524486B2 (en) Magnetoresistance element and memory element using the element
JP2005019484A (en) Magnetoresistive effect element and magnetic head
JP2001076479A (en) Magnetic memory element
KR100277375B1 (en) Spin valve type thin film element and its manufacturing method
US8091209B1 (en) Magnetic sensing device including a sense enhancing layer
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP3673661B2 (en) Magnetic memory element
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees