JP3673500B2 - Bathroom flooring - Google Patents

Bathroom flooring Download PDF

Info

Publication number
JP3673500B2
JP3673500B2 JP2002016728A JP2002016728A JP3673500B2 JP 3673500 B2 JP3673500 B2 JP 3673500B2 JP 2002016728 A JP2002016728 A JP 2002016728A JP 2002016728 A JP2002016728 A JP 2002016728A JP 3673500 B2 JP3673500 B2 JP 3673500B2
Authority
JP
Japan
Prior art keywords
beads
paint
coating film
film thickness
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002016728A
Other languages
Japanese (ja)
Other versions
JP2003213896A (en
Inventor
典彦 陰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Living Tech Co Ltd
Original Assignee
Yamaha Living Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Living Tech Co Ltd filed Critical Yamaha Living Tech Co Ltd
Priority to JP2002016728A priority Critical patent/JP3673500B2/en
Publication of JP2003213896A publication Critical patent/JP2003213896A/en
Application granted granted Critical
Publication of JP3673500B2 publication Critical patent/JP3673500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は浴室用床材に係り、特に、高い親水性能を付与する親水化処理が表面側に施された浴室用床材に関する。
【0002】
【従来の技術】
浴室の床材に対しては、当該床材上の湯水を出来るだけ速く乾くようにする表面処理が行われることが多い。このうち、所定の樹脂材料で形成されるシステムバス用の床材に対しては、その表面側に付着した湯水を水膜化させる親水化処理を行うことが知られている。ここで、当該親水化処理としては、基材の表面側に親水性塗料を塗布若しくは吹き付けて親水化した塗膜を形成する化学的な親水化処理や、基材表面に凹凸部を形成する物理的な親水化処理がある。
【0003】
【発明が解決しようとする課題】
しかしながら、前述の化学的な親水化処理にあっては、撥水物質を多く含むリンス等の薬剤成分や人体から流れ落ちた油性の汚れ成分等が床材上を流れると、これら薬剤成分や汚れ成分等が前記塗膜を被覆し、床材表面が撥水化されてその親水効果が低下し易くなるという不都合がある。
一方、前述した物理的な親水化処理は、基材表面に形成された凹凸部によって親水化を促進するようになっているため、前述した親水効果の低下が殆ど生じないが、前記凹凸部に対応した凹凸を有する成形型が必要になる等、床材の製造コストを高騰化させるという別異の不都合を招来する。
【0004】
【発明の目的】
本発明は、このような不都合に着目して案出されたものであり、その目的は、高い親水性能を長期に亘って付与することができ、しかも、製造コストを抑えることが可能な浴室用床材を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するため、本発明は、所定の基材の表面に塗料を塗布若しくは吹き付けることにより、前記基材の表面側に塗膜が形成された浴室用床材において、
前記塗料は、1重量%〜30重量%の不揮発成分を含み、
前記塗膜は、その平均膜厚が30μm〜70μmに設定されている一方、表面側に凹凸部を形成する平均粒径が30μm〜70μm多数のビーズを含み
前記ビーズは、前記塗料100体積部に対して40体積部〜80体積部添加される、という構成を採ることもでき、これによって、前述した目的をより良く達成することができる。また、凹凸部が塗膜中のビーズによって形成されるため、凹凸部に対応した凹凸を有する成形型を必要とせずに、塗料を基材に塗布する要領で簡単に製造することができる。
【0007】
更に、前記ビーズは透光性を有することが好ましい。これによれば、基材に所定の色彩や模様等が施されている場合に、これら色彩や模様がビーズで隠蔽されることを防止でき、透光性を有する塗料を用いると、前記色彩や模様を視認可能となる。
【0008】
また、前記ビーズは、樹脂又はセラミック若しくはその組み合わせによって構成することができる。
【0009】
更に、前記塗料を親水性塗料にするとよい。これにより、床材表面の親水性能を一層高めることができる。
【0010】
【発明の実施の形態】
図1に示されるように、本発明に係る浴室用床材10は、樹脂製の基材11と、この基材11の表面側(図1中上面側)に塗料を塗布することにより形成された塗膜12とを備えた基本構成となっている。
【0011】
前記塗料としては、特に限定されるものではないが、例えば、基材11がFRP(繊維強化プラスチック)の場合は、水との静止接触角が50度を超える塗膜12を形成可能なアクリルウレタン系の非親水性塗料、若しくは、後述する親水性塗料が適用される。
【0012】
前記親水性塗料は、水との静止接触角が50度以下となる塗膜12を形成可能な塗料を意味し、アルカリシリケート類含有無機塗料、金属アルコキシド類含有無機塗料、有機無機複合化塗料、表面親水化塗料等を例示できる。ここで、有機無機複合化塗料は、アクリル、ウレタン、ポリエステル、エポキシ等の有機成分と、ケイ素等を主成分とするシリケート等の無機成分とを、ビニル基、グリシジル基、メタクリロイル基等の末端反応基を有するアルコキシシラン類(シランカップリング剤)等で複合化した塗料である。また、表面親水化塗料は、塗料中に親水性基を有する親水化剤等を添加し、表面にSi−OH基等の親水性基を出して親水構造とする塗料である。
【0013】
なお、本明細書において、「親水性基」とは、−OH、−O−、−NHCO−、−CONH2−、−COOH、−SO3−OSO3H、−OPO(OH)2、−NH2、−NH−、−NR2等を総称した概念として用いる。
【0014】
前記塗膜12は、1重量%〜30重量%の不揮発成分と残りのシンナー等の揮発成分とからなる前記塗料100体積部に対して、樹脂、セラミック等の多数のビーズ13を40体積部〜80体積部添加し、その塗料を基材11に塗布若しくは吹き付けて硬化させることにより形成される。ここで、ビーズ13は、平均粒径が30μm〜70μmに設定されており、好ましくは、透光性のものが用いられる。
【0015】
なお、本明細書において、「平均粒径」とは、粒子の直径をdiとし、単位重量の粉末中における直径d1の粒子がn1個、直径d2の粒子がn2個、・・・直径diの粒子がni個存在したときに、その算術平均径(Σdi・ni/Σni)を平均粒径とする。
ここで、完全な球形でない粒子の場合は、図2に示されるように、粒子を平面視した場合に最も長い径をLとし、これに直交する方向の幅をB、粒子の平面積をF、粒子一個当たりの体積をVとすると、次の(1)〜(4)の何れかの式によって各粒径Dpが求められる。
Dp=B・・・・(1)
Dp=√(4F/π)(相当円直径、Heywoodの直径)・・・・(2)
Dp=V1/3(Andreasenの直径)・・・・(3)
Dp=(6V/π)1/3(相当球直径又は相当直径)・・・・(4)
【0016】
このようにして形成された塗膜12は、30μm〜70μmの平均膜厚に設定され、ビーズ13の存在によって表面側に凹凸部14が形成される。この凹凸部14が形成されることにより、浴室用床材10の表面側は、水との静止接触角が40度以下となる親水化処理が施された状態となる。
【0017】
また、本明細書における「平均膜厚」とは、単位面積当たりにおける硬化後の塗膜12の重量を、硬化後の塗膜12の密度で除して算出した値を用いる。
【0018】
【実施例】
以下に本発明の実施例を比較例とともに図3〜図5を用いて説明する。
【0019】
[実施例1]
水との静止接触角が75度となるアクリルウレタン系塗料(比重約1.0)にアクリル製(比重約1.0)のビーズ13を添加したものを、SMC(シートモールディングコンパウンド)からなる基材11に塗布することで浴室用床材10を形成した。
ここで、図3に示されるように、塗料の不揮発成分を25重量%とし、ビーズ13の平均粒径を50μmとした。また、塗料100体積部に対するビーズ13の添加量(以下、単に、「ビーズ13の添加量」と称する)を60体積部とし、塗膜12の平均膜厚を53μmとした。
[実施例2、3]
実施例1に対し、塗料の不揮発成分の配合割合と塗膜12の平均膜厚とを変えた。すなわち、実施例2では、塗料の不揮発成分を1重量%とし、塗膜12の平均膜厚を40μmとする一方、実施例3では、塗料の不揮発成分を30重量%とし、塗膜12の平均膜厚を60μmとした。
【0020】
[実施例4,5]
実施例1に対し、ビーズ13の平均粒径と塗膜12の平均膜厚とを変えた。すなわち、実施例4では、ビーズ13の平均粒径を30μmとし、塗膜12の平均膜厚を45μmとする一方、実施例5では、ビーズ13の平均粒径を70μmとし、塗膜12の平均膜厚を55μmとした。
【0021】
[実施例6,7]
実施例1に対し、ビーズ13の添加量と塗膜12の平均膜厚とを変えた。すなわち、実施例6では、ビーズ13の添加量を40体積部とし、塗膜12の平均膜厚を45μmとする一方、実施例7では、ビーズ13の添加量を80体積部とし、塗膜12の平均膜厚を55μmとした。
【0022】
[実施例8,9]
実施例1に対し、塗膜12の平均膜厚のみを変えた。すなわち、実施例8では、塗膜12の平均膜厚を30μmとする一方、実施例9では、塗膜12の平均膜厚を70μmとした。
【0023】
[実施例10]
実施例1におけるアクリルビーズの代わりにガラスビーズ(比重約2.7)を用い、その他の条件を実施例1と同一とした。
【0024】
[実施例11]
実施例1におけるアクリルウレタン系塗料の代わりに、水との静止接触角が30度となる親水性塗料を用い、その他の条件を実施例1と同一とした。
【0025】
[比較例1〜4]
図4に示されるように、実施例1に対し、塗料の不揮発成分の配合割合と塗膜12の平均膜厚とを変えた。すなわち、比較例1では、塗料の不揮発成分を0.5重量%とし、塗膜12の平均膜厚を40μmとする一方、比較例2では、塗料の不揮発成分を32重量%とし、塗膜12の平均膜厚を60μmとした。また、比較例3では、塗料の不揮発成分を35重量%とし、塗膜12の平均膜厚を59μmとする一方、比較例4では、塗料の不揮発成分を35重量%とし、塗膜12の平均膜厚を118μmとした。
【0026】
[比較例5〜8]
実施例1に対し、ビーズ13の平均粒径と塗膜12の平均膜厚とを変えた。すなわち、比較例5では、ビーズ13の平均粒径を25μmとし、塗膜12の平均膜厚を45μmとする一方、比較例6では、ビーズ13の平均粒径を75μmとし、塗膜12の平均膜厚を55μmとした。また、比較例7では、ビーズ13の平均粒径を90μmとし、塗膜12の平均膜厚を53μmとする一方、比較例8では、ビーズ13の平均粒径を90μmとし、塗膜12の平均膜厚を106μmとした。
【0027】
[比較例9〜12]
実施例1に対し、ビーズ13の添加量と塗膜12の平均膜厚とを変えた。すなわち、比較例9では、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を42μmとする一方、比較例10では、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を84μmとした。比較例11では、ビーズ13の添加量を35体積部、塗膜12の平均膜厚を45μmとする一方、比較例12では、ビーズ13の添加量を85体積部、塗膜12の平均膜厚を55μmとした。
【0028】
[比較例13〜15]
実施例1に対し、塗膜12の平均膜厚のみを変えた。すなわち、比較例13では、塗膜12の平均膜厚を25μmとし、比較例14では、塗膜12の平均膜厚を75μmとし、比較例15では、塗膜12の平均膜厚を106μmとした。
【0029】
[比較例16,17]
実施例1に対し、塗料の不揮発成分の配合割合とビーズ13の添加量と塗膜12の平均膜厚とを変えた。すなわち、比較例16では、塗料の不揮発成分を35重量%、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を50μmとする一方、比較例17では、塗料の不揮発成分を35重量%、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を100μmとした。
【0030】
[比較例18,19]
実施例1に対し、ビーズ13の平均粒径及び添加量と塗膜12の平均膜厚とを変えた。すなわち、比較例18では、ビーズ13の平均粒径を90μm、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を42μmとする一方、比較例19では、ビーズ13の平均粒径を90μm、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を84μmとした。
【0031】
[比較例20,21]
実施例1に対し、塗料の不揮発成分の配合割合とビーズ13の平均粒径と塗膜12の平均膜厚とを変えた。すなわち、比較例20では、塗料の不揮発成分を35重量%、ビーズ13の平均粒径を90μm、塗膜12の平均膜厚を59μmとする一方、比較例21では、塗料の不揮発成分を35重量%、ビーズ13の平均粒径を90μm、塗膜12の平均膜厚を118μmとした。
【0032】
[比較例22,23]
実施例1に対し、塗料の不揮発成分の配合割合とビーズ13の平均粒径及び添加量と塗膜12の平均膜厚とを変えた。すなわち、比較例22では、塗料の不揮発成分を35重量%、ビーズ13の平均粒径を90μm、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を50μmとする一方、比較例23では、塗料の不揮発成分を35重量%、ビーズ13の平均粒径を90μm、ビーズ13の添加量を30体積部、塗膜12の平均膜厚を100μmとした。
【0033】
以上のようにして得られた各床材10に対して、親水性能等を確認するための実験を行った。
【0034】
ここで、親水性能に関する実験としては、床材10を水で洗い流した直後の状態における水との静止接触角をパラメータとして、親水性能を三段階で評価したものである。すなわち、「◎」は、水との静止接触角が20度未満となる非常に良好な評価を表し、「○」は、水との静止接触角が20度以上40度以下となる良好な評価を表す。また、「×」は、水との静止接触角が40度を超え、期待する親水性能が得られないという評価を表す。
【0035】
以上の実験の結果、水との静止接触角が40度以下となる凹凸部14を浴室用床材10の表面側に形成するためには、1重量%〜30重量%の不揮発成分を含む塗料100体積部に対し、平均粒径が30μm〜70μmとなるビーズ13を40体積部〜80体積部添加したもので塗膜12を形成し、且つ、当該塗膜12の平均膜厚を30μm〜70μmに設定することが必要とされる。
【0036】
なお、滑り難さに関する実験も行っており、当該実験は、各条件により作製された床を水で濡らし、裸足で力をいれて床を踏んだ場合の滑難さを感覚的に評価した。この結果、実施例1〜11は、比較例9,10,16,17よりも滑り難くなった。
【0037】
また、清掃性に関する実験も行っており、当該実験は、JIS A 5712(ガラス繊維強化ポリエステル洗い場付き浴槽)の汚染試験(ワセリン:カーボンブラック=10:1の汚染物質1gを布につけて縦横各5往復してすり込み、時計皿をかけて30分放置後、乾布にて汚れを除去し、更に5%の化粧石鹸水を付けた布で20往復して拭き取った後の汚れの残存を観察)に基づいて行った。この結果、実施例1〜11は、比較例7,8、18〜23よりも床面に付着した汚れが落ち易くなり、高い清掃性が得られることが分かった。
【0038】
【発明の効果】
以上説明したように、本発明によれば、ビーズ入りの塗料を浴室用床材に塗布する要領で、その表面側に親水効果の高い凹凸部を形成でき、当該凹凸部に対応する多数の凹凸を有する成形型を必要とすることなく、高い親水効果を維持できる浴室用基材を形成することが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る浴室用床材の層構造を示す概略断面図。
【図2】 平均粒径を説明するための概念図。
【図3】 実施例1〜11の条件及び実験結果を示す図表。
【図4】 比較例1〜12の条件及び実験結果を示す図表。
【図5】 比較例13〜23の条件及び実験結果を示す図表。
【符号の説明】
10・・・浴室用床材、11・・・基材、12・・・塗膜、13・・・ビーズ、14・・・凹凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bathroom flooring, and more particularly to a bathroom flooring that has been subjected to a hydrophilic treatment that imparts high hydrophilic performance to the surface side.
[0002]
[Prior art]
In many cases, bathroom flooring is subjected to a surface treatment that dries hot water on the flooring as quickly as possible. Among these, it is known that a floor treatment for a system bath formed of a predetermined resin material is subjected to a hydrophilic treatment for forming a water film on hot water adhering to the surface side. Here, as the hydrophilization treatment, a chemical hydrophilization treatment for forming a hydrophilic coating film by applying or spraying a hydrophilic paint on the surface side of the base material, or a physical process for forming an uneven portion on the base material surface. There is a typical hydrophilic treatment.
[0003]
[Problems to be solved by the invention]
However, in the above-described chemical hydrophilization treatment, when a chemical component such as a rinse containing a lot of water repellent substances or an oily soil component that has flowed down from the human body flows on the flooring, these chemical component or soil component Etc. have the disadvantage that the coating film is coated, and the surface of the flooring material becomes water-repellent and its hydrophilic effect tends to decrease.
On the other hand, the above-described physical hydrophilization treatment promotes hydrophilization by the concavo-convex portions formed on the substrate surface. This causes another inconvenience of increasing the manufacturing cost of the floor material, such as the need for a mold having corresponding irregularities.
[0004]
OBJECT OF THE INVENTION
The present invention has been devised by paying attention to such inconveniences, and the purpose thereof is for bathrooms which can impart high hydrophilic performance over a long period of time and can reduce manufacturing costs. To provide flooring.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a bathroom flooring material in which a coating film is formed on the surface side of the base material by applying or spraying a paint on the surface of the predetermined base material.
The paint includes 1% to 30% by weight of non-volatile components,
The coating film includes a large number of beads having an average particle diameter of 30 μm to 70 μm , which has an average film thickness of 30 μm to 70 μm, while forming an uneven portion on the surface side ,
The bead may be configured to be added in an amount of 40 to 80 parts by volume with respect to 100 parts by volume of the coating material, thereby achieving the above-described object better. In addition, since the concavo-convex portion is formed by beads in the coating film, it can be easily produced by applying the coating material to the base material without requiring a mold having the concavo-convex portion corresponding to the concavo-convex portion.
[0007]
Furthermore, the beads preferably have translucency. According to this, when a predetermined color or pattern is applied to the substrate, it is possible to prevent these colors and patterns from being concealed by beads. The pattern can be visually recognized.
[0008]
The beads can be made of resin, ceramic, or a combination thereof.
[0009]
Furthermore, the paint may be a hydrophilic paint. Thereby, the hydrophilic performance of the flooring surface can be further enhanced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, a bathroom flooring 10 according to the present invention is formed by applying a coating material on a resin base material 11 and the surface side of the base material 11 (upper surface side in FIG. 1). The basic structure provided with the coated film 12.
[0011]
Although it does not specifically limit as said coating material, For example, when the base material 11 is FRP (fiber reinforced plastic), the acrylic urethane which can form the coating film 12 whose static contact angle with water exceeds 50 degree | times A non-hydrophilic paint of the system or a hydrophilic paint described later is applied.
[0012]
The hydrophilic paint means a paint capable of forming the coating film 12 having a static contact angle with water of 50 degrees or less, an alkali silicate-containing inorganic paint, a metal alkoxide-containing inorganic paint, an organic-inorganic composite paint, A surface hydrophilizing paint can be exemplified. Here, the organic-inorganic composite coating is an organic component such as acrylic, urethane, polyester, and epoxy, and an inorganic component such as silicate containing silicon as a main component, and a terminal reaction such as vinyl group, glycidyl group, and methacryloyl group. It is a paint compounded with alkoxysilanes having a group (silane coupling agent) or the like. Further, the surface-hydrophilized paint is a paint having a hydrophilic structure by adding a hydrophilic agent having a hydrophilic group or the like to the surface of the paint so that a hydrophilic group such as a Si-OH group is produced on the surface.
[0013]
In this specification, “hydrophilic group” means —OH, —O—, —NHCO—, —CONH 2, —COOH, —SO 3 H , —OSO 3 H, —OPO (OH) 2. , —NH 2 , —NH—, —NR 2 and the like are used as a generic concept.
[0014]
The coating film 12 includes 40 parts by volume of a large number of beads 13 such as resin and ceramic with respect to 100 parts by volume of the coating material comprising 1% by weight to 30% by weight of non-volatile components and the remaining volatile components such as thinner. It is formed by adding 80 parts by volume and applying or spraying the coating material on the substrate 11 to cure. Here, the beads 13 are set to have an average particle diameter of 30 μm to 70 μm, and preferably a translucent one.
[0015]
In the present specification, “average particle diameter” means that the particle diameter is di, n1 particles having a diameter d1, n2 particles having a diameter d2 in a unit weight of powder,. When ni particles are present, the arithmetic average diameter (Σdi · ni / Σni) is defined as the average particle diameter.
Here, in the case of particles that are not perfectly spherical, as shown in FIG. 2, when the particles are viewed in plan, the longest diameter is L, the width in the direction perpendicular to this is B, and the plane area of the particles is F. When the volume per particle is V, each particle diameter Dp is obtained by any one of the following formulas (1) to (4).
Dp = B (1)
Dp = √ (4F / π) (equivalent circular diameter, Heywood diameter) (2)
Dp = V 1/3 (Andreasen's diameter) ... (3)
Dp = (6V / π) 1/3 (equivalent sphere diameter or equivalent diameter) (4)
[0016]
The coating film 12 thus formed is set to an average film thickness of 30 μm to 70 μm, and the uneven portion 14 is formed on the surface side due to the presence of the beads 13. By forming the concavo-convex portion 14, the surface side of the bathroom flooring 10 is subjected to a hydrophilization treatment in which the static contact angle with water is 40 degrees or less.
[0017]
In addition, the “average film thickness” in the present specification uses a value calculated by dividing the weight of the coating film 12 after curing per unit area by the density of the coating film 12 after curing.
[0018]
【Example】
Embodiments of the present invention will be described below together with comparative examples with reference to FIGS.
[0019]
[Example 1]
A base made of SMC (Sheet Molding Compound), to which acrylic beads (specific gravity about 1.0) are added to acrylic urethane paint (specific gravity about 1.0) with a static contact angle with water of 75 degrees. By applying to the material 11, the floor material 10 for bathrooms was formed.
Here, as shown in FIG. 3, the non-volatile component of the paint was 25% by weight, and the average particle size of the beads 13 was 50 μm. The amount of beads 13 added to 100 parts by volume of paint (hereinafter simply referred to as “the amount of beads 13 added”) was 60 parts by volume, and the average film thickness of the coating film 12 was 53 μm.
[Examples 2 and 3]
Compared to Example 1, the blending ratio of the nonvolatile components of the paint and the average film thickness of the coating film 12 were changed. That is, in Example 2, the non-volatile component of the paint was 1% by weight, and the average film thickness of the coating film 12 was 40 μm, while in Example 3, the non-volatile component of the paint was 30% by weight, The film thickness was 60 μm.
[0020]
[Examples 4 and 5]
Compared to Example 1, the average particle diameter of the beads 13 and the average film thickness of the coating film 12 were changed. That is, in Example 4, the average particle diameter of the beads 13 is 30 μm and the average film thickness of the coating film 12 is 45 μm, while in Example 5, the average particle diameter of the beads 13 is 70 μm and the average film thickness of the coating film 12 is The film thickness was 55 μm.
[0021]
[Examples 6 and 7]
Compared to Example 1, the addition amount of beads 13 and the average film thickness of the coating film 12 were changed. That is, in Example 6, the amount of beads 13 added was 40 parts by volume, and the average film thickness of the coating film 12 was 45 μm, while in Example 7, the amount of beads 13 added was 80 parts by volume, and the film 12 The average film thickness was 55 μm.
[0022]
[Examples 8 and 9]
Compared to Example 1, only the average film thickness of the coating film 12 was changed. That is, in Example 8, while the average film thickness of the coating film 12 was 30 μm, in Example 9, the average film thickness of the coating film 12 was 70 μm.
[0023]
[Example 10]
Glass beads (specific gravity of about 2.7) were used in place of the acrylic beads in Example 1, and the other conditions were the same as in Example 1.
[0024]
[Example 11]
Instead of the acrylic urethane paint in Example 1, a hydrophilic paint having a static contact angle with water of 30 degrees was used, and other conditions were the same as in Example 1.
[0025]
[Comparative Examples 1-4]
As shown in FIG. 4, the blending ratio of the non-volatile component of the paint and the average film thickness of the coating film 12 were changed with respect to Example 1. That is, in Comparative Example 1, the non-volatile component of the paint was 0.5% by weight and the average film thickness of the coating film 12 was 40 μm, whereas in Comparative Example 2, the non-volatile component of the paint was 32% by weight, The average film thickness was 60 μm. In Comparative Example 3, the non-volatile component of the paint was 35% by weight and the average film thickness of the coating film 12 was 59 μm. In Comparative Example 4, the non-volatile component of the paint was 35% by weight and the average of the coating film 12 was The film thickness was 118 μm.
[0026]
[Comparative Examples 5 to 8]
Compared to Example 1, the average particle diameter of the beads 13 and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 5, the average particle diameter of the beads 13 was 25 μm and the average film thickness of the coating film 12 was 45 μm, while in Comparative Example 6, the average particle diameter of the beads 13 was 75 μm and the average film thickness of the coating film 12 was The film thickness was 55 μm. In Comparative Example 7, the average particle diameter of the beads 13 was 90 μm and the average film thickness of the coating film 12 was 53 μm. In Comparative Example 8, the average particle diameter of the beads 13 was 90 μm and the average film thickness of the coating film 12 was The film thickness was 106 μm.
[0027]
[Comparative Examples 9-12]
Compared to Example 1, the addition amount of beads 13 and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 9, the added amount of beads 13 was 30 parts by volume and the average film thickness of the coating film 12 was 42 μm, while in Comparative Example 10, the added amount of beads 13 was 30 parts by volume and the average of the coating film 12 The film thickness was 84 μm. In Comparative Example 11, the added amount of beads 13 is 35 parts by volume, and the average film thickness of coating film 12 is 45 μm. In Comparative Example 12, the added amount of beads 13 is 85 parts by volume, and the average film thickness of coating film 12 Was 55 μm.
[0028]
[Comparative Examples 13 to 15]
Compared to Example 1, only the average film thickness of the coating film 12 was changed. That is, in Comparative Example 13, the average film thickness of the coating film 12 was 25 μm, in Comparative Example 14, the average film thickness of the coating film 12 was 75 μm, and in Comparative Example 15, the average film thickness of the coating film 12 was 106 μm. .
[0029]
[Comparative Examples 16 and 17]
Compared to Example 1, the blending ratio of the nonvolatile components of the paint, the amount of beads 13 added, and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 16, the non-volatile component of the paint was 35% by weight, the addition amount of the beads 13 was 30 parts by volume, and the average film thickness of the coating film 12 was 50 μm. % By weight, the addition amount of the beads 13 was 30 parts by volume, and the average film thickness of the coating film 12 was 100 μm.
[0030]
[Comparative Examples 18 and 19]
Compared to Example 1, the average particle diameter and the added amount of the beads 13 and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 18, the average particle size of the beads 13 is 90 μm, the added amount of the beads 13 is 30 parts by volume, and the average film thickness of the coating film 12 is 42 μm. Was 90 μm, the added amount of beads 13 was 30 parts by volume, and the average film thickness of the coating film 12 was 84 μm.
[0031]
[Comparative Examples 20 and 21]
Compared to Example 1, the blending ratio of the nonvolatile components of the paint, the average particle diameter of the beads 13 and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 20, the non-volatile component of the paint was 35% by weight, the average particle diameter of the beads 13 was 90 μm, and the average film thickness of the coating film 12 was 59 μm. %, The average particle diameter of the beads 13 was 90 μm, and the average film thickness of the coating film 12 was 118 μm.
[0032]
[Comparative Examples 22 and 23]
Compared to Example 1, the blending ratio of the non-volatile components of the paint, the average particle diameter and addition amount of the beads 13, and the average film thickness of the coating film 12 were changed. That is, in Comparative Example 22, the non-volatile component of the paint was 35% by weight, the average particle size of the beads 13 was 90 μm, the added amount of beads 13 was 30 parts by volume, and the average film thickness of the coating film 12 was 50 μm. 23, the nonvolatile component of the paint was 35% by weight, the average particle size of the beads 13 was 90 μm, the added amount of the beads 13 was 30 parts by volume, and the average film thickness of the coating film 12 was 100 μm.
[0033]
An experiment for confirming hydrophilic performance and the like was performed on each flooring 10 obtained as described above.
[0034]
Here, as an experiment regarding the hydrophilic performance, the hydrophilic performance is evaluated in three stages using the static contact angle with water immediately after the flooring 10 is washed away with water as a parameter. That is, “◎” represents a very good evaluation that the static contact angle with water is less than 20 degrees, and “◯” indicates a good evaluation that the static contact angle with water is 20 degrees or more and 40 degrees or less. Represents. In addition, “x” represents an evaluation that a static contact angle with water exceeds 40 degrees and an expected hydrophilic performance cannot be obtained.
[0035]
As a result of the above experiment, in order to form the uneven portion 14 having a static contact angle with water of 40 degrees or less on the surface side of the bathroom flooring 10, a paint containing 1 wt% to 30 wt% of a non-volatile component The coating film 12 is formed by adding 40 volume parts to 80 volume parts of beads 13 having an average particle diameter of 30 μm to 70 μm with respect to 100 volume parts, and the average film thickness of the coating film 12 is 30 μm to 70 μm. It is necessary to set to.
[0036]
In addition, the experiment about the difficulty of slipping was also performed, and the said experiment evaluated the slipperiness when the floor produced according to each condition was wetted with water, and stepped on the floor with force applied with bare feet. As a result, Examples 1 to 11 were less slippery than Comparative Examples 9, 10, 16, and 17.
[0037]
In addition, an experiment on cleanability was also conducted. In this experiment, 1 g of pollutant of petrolatum: carbon black = 10: 1 was put on a cloth in JIS A 5712 (tub with glass fiber reinforced polyester washing place), 5 × 5 × Rub it back and forth, put it on a watch glass, leave it for 30 minutes, remove the dirt with a dry cloth, and observe the remaining dirt after wiping it back and forth with a cloth with 5% soapy water. Based on. As a result, it was found that in Examples 1 to 11, dirt attached to the floor surface was easier to remove than Comparative Examples 7, 8, and 18 to 23, and high cleaning properties were obtained.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to form an uneven portion having a high hydrophilic effect on the surface side in the manner of applying a beaded paint to a bathroom flooring, and a large number of uneven portions corresponding to the uneven portion. It is possible to form a bathroom base material that can maintain a high hydrophilic effect without the need for a mold having the above.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a layer structure of a bathroom floor material according to the present invention.
FIG. 2 is a conceptual diagram for explaining an average particle diameter.
FIG. 3 is a chart showing conditions and experimental results of Examples 1 to 11.
FIG. 4 is a chart showing conditions and experimental results of Comparative Examples 1-12.
FIG. 5 is a chart showing conditions and experimental results of Comparative Examples 13-23.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Floor material for bathrooms, 11 ... Base material, 12 ... Coating film, 13 ... Beads, 14 ... Uneven part

Claims (4)

所定の基材の表面に塗料を塗布若しくは吹き付けることにより、前記基材の表面側に塗膜が形成された浴室用床材において、
前記塗料は、1重量%〜30重量%の不揮発成分を含み、
前記塗膜は、その平均膜厚が30μm〜70μmに設定されている一方、表面側に凹凸部を形成する平均粒径が30μm〜70μmの多数のビーズを含み、
前記ビーズは、前記塗料100体積部に対して40体積部〜80体積部添加されることを特徴とする浴室用床材。
By applying or spraying a paint on the surface of a predetermined base material, the bathroom floor material in which a coating film is formed on the surface side of the base material ,
The paint includes 1% to 30% by weight of non-volatile components,
The coating film includes a large number of beads having an average particle diameter of 30 μm to 70 μm, which has an average film thickness of 30 μm to 70 μm, while forming an uneven portion on the surface side,
40 to 80 parts by volume of the beads are added to 100 parts by volume of the paint .
前記ビーズは、透光性を有することを特徴とする請求項記載の浴室用床材。The beads, bathroom flooring according to claim 1, wherein a light-transmitting property. 前記ビーズは、樹脂又はセラミック若しくはその組み合わせからなることを特徴とする請求項又は記載の浴室用床材。The bathroom flooring according to claim 1 or 2 , wherein the beads are made of resin, ceramic, or a combination thereof. 前記塗料は、親水性塗料であることを特徴とする請求項1、2又は3の何れかに記載の浴室用床材。The bathroom flooring material according to any one of claims 1 , 2 and 3 , wherein the paint is a hydrophilic paint.
JP2002016728A 2002-01-25 2002-01-25 Bathroom flooring Expired - Fee Related JP3673500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016728A JP3673500B2 (en) 2002-01-25 2002-01-25 Bathroom flooring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016728A JP3673500B2 (en) 2002-01-25 2002-01-25 Bathroom flooring

Publications (2)

Publication Number Publication Date
JP2003213896A JP2003213896A (en) 2003-07-30
JP3673500B2 true JP3673500B2 (en) 2005-07-20

Family

ID=27652694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016728A Expired - Fee Related JP3673500B2 (en) 2002-01-25 2002-01-25 Bathroom flooring

Country Status (1)

Country Link
JP (1) JP3673500B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159865B1 (en) * 2003-11-28 2012-06-25 가부시키가이샤 리쿠시루 Member giving a feeling of warmth, method of manufacturing member giving a feeling of warmth, heat insulating sheet and improvement method for bath waterproof pan
JP2010084391A (en) * 2008-09-30 2010-04-15 Takiron Co Ltd Nonslip floor material
JP5557206B2 (en) * 2009-07-30 2014-07-23 タキロン株式会社 Floor sheet
BE1020819A3 (en) 2012-07-05 2014-05-06 Ct Rech Metallurgiques Asbl COATING WITH HIGH MICROBIAL CONTENT.
JP5700726B2 (en) * 2013-11-01 2015-04-15 株式会社Uacj Aluminum fin material for heat exchanger and heat exchanger using the same

Also Published As

Publication number Publication date
JP2003213896A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
Latthe et al. Self–cleaning superhydrophobic coatings: Potential industrial applications
US7901731B2 (en) Treatment and kits for creating transparent renewable surface protective coatings
ES2719737T3 (en) Improved processing compositions and methods to form them
US8974590B2 (en) Treatments and kits for creating renewable surface protective coatings
JP2003113003A (en) Surface having artificial surface structure, method for producing the same and use thereof
WO2008123650A1 (en) Preparation of super water repellent surface
CN108822603A (en) A kind of preparation method of coating composition
JP3673500B2 (en) Bathroom flooring
JP2007509732A (en) Use of particles hydrophobized with fluorosilane for the production of self-cleaning surfaces having lipophobic, oleophobic, milkphobic and hydrophobic properties
JP2017110468A (en) Structural body for bath room
JP2000279905A (en) Method of cleaning composite material and self-cleaning composite mechanism
Yuan et al. SiO2/TiO2 and PDMS modified self-cleaning coating and its application in decorative UHPC surface
JP3308279B2 (en) Antifouling agent, antifouling method and antifouling article
WO2019189563A1 (en) Component to be used in water supply system
JP3762355B2 (en) Bathroom flooring and manufacturing method thereof
JP2020029549A (en) Hydrophilic coating agent
JP2008267084A (en) Floor material for bathroom and method of manufacturing floor material for bathroom
JP2010084398A (en) Deck material
JP2001191021A (en) Surface roughened coating film and forming method of surface roughened coating film
Karasiewicz et al. Fluorokarbofunkcyjne silany jako prekursory materiałów silnie hydrofobowych
JPH0653251B2 (en) Method of manufacturing floor material for bathroom
JP4305770B2 (en) Dirty substance removal method and water-based antifouling agent
KR100754797B1 (en) method for coating inorganic ceramics coating material on the plastic injection molding
JP2006167581A (en) Rough surfaced coating film and forming method thereof
JP3679762B2 (en) Manufacturing method of bathroom flooring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

R150 Certificate of patent or registration of utility model

Ref document number: 3673500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees