JP3671512B2 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP3671512B2
JP3671512B2 JP08125096A JP8125096A JP3671512B2 JP 3671512 B2 JP3671512 B2 JP 3671512B2 JP 08125096 A JP08125096 A JP 08125096A JP 8125096 A JP8125096 A JP 8125096A JP 3671512 B2 JP3671512 B2 JP 3671512B2
Authority
JP
Japan
Prior art keywords
water
heating element
steam
amount
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08125096A
Other languages
Japanese (ja)
Other versions
JPH09273705A (en
Inventor
豊 ▲たか▼橋
啓次郎 国本
大介 別荘
健治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08125096A priority Critical patent/JP3671512B2/en
Publication of JPH09273705A publication Critical patent/JPH09273705A/en
Application granted granted Critical
Publication of JP3671512B2 publication Critical patent/JP3671512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は家庭や業務用の食品の解凍、調理叉はパン等の食品加工工程や空調、室内清浄、衣類プレス、殺菌等に使用される蒸気および温風発生装置に関するものである。
【0002】
【従来の技術】
従来の蒸気発生装置は図14に示す特開平4−371704号公報の如く、蒸気発生装の缶体1内に比重差の異なる3種類の個体2a、2b、2cを充填し、蒸気発生時の個体のランダム遊動により、個体2aは気水分離域の、個体2bは低面域の、個体2cは中間域のスケールの付着、堆積を防止したり、堆積したスケールを粉砕剥離させるものである。
【0003】
また、他の従来の蒸気発生装置は図15に示す特公平4−46324号公報の如く、開放型給水タンク3の底部にイオン交換樹脂4を収納する。制御手段5から給水弁6へ駆動信号が送られ弁が開き水道水が圧送される。水道水はイオン交換樹脂4の層内を通過して、給水ポンプ7により蒸気発生器8に給水される。
【0004】
水道水がイオン交換樹脂4と接触しながら通過するときに、水道水中に含まれるカルシウムとマグネシウムがイオン交換樹脂4で吸着除去される。
【0005】
【発明が解決しようとする課題】
しかしながら上記従来の特開平4−371704号公報の構成では、スケールの付着、堆積を防止することはできるが、個体のエッジ部が摩耗しスケール剥離性能が低下したり、缶体を傷めることがある。
【0006】
また、上記従来の特公平4−46324号公報の構成では、イオン交換樹脂でカルシウムとマグネシウムとのイオン交換された時に発生したナトリウムイオン等の軟水イオン成分の化合物は蒸気発生器内に残留したままになってしまう。
【0007】
本発明は上記課題を解決するもので、蒸気発生装置の蒸発室や発熱体部に水中の溶解物や水中の硬度成分であるカルシウム、マグネシウム等のスケール成分が析出するのを防止し、効率よく安定して蒸気を発生させることが出来る蒸気発生装置の提供を目的としたものである。
【0008】
【課題を解決するための手段】
本発明の蒸気発生装置はを気化する発熱部を有する蒸気発生手段と、前記蒸気発生手段に水を送る水供給手段と、前記蒸気発生手段と前記水供給手段を制御する制御手段とを備え、前記制御手段は、前記水供給手段の供給水量と前記蒸気発生手段の加熱量との比を制御し、供給水の一部が未蒸発のまま前記発熱部に付着した蒸発生成物を溶出除去する装置である。
【0009】
【発明の実施の形態】
本発明は前記目的を達成するため、下記構成とした。
【0010】
また、水を気化する発熱部を有する蒸気発生手段と、前記蒸気発生手段に水を送る水供給手段と、前記蒸気発生手段と前記水供給手段を制御する制御手段とを備え、前記制御手段は、前記水供給手段の供給水量と前記蒸気発生手段の加熱量との比を制御し、供給水の一部が未蒸発のまま前記発熱部に付着した蒸発生成物を溶出除去する構成とした。
【0011】
供給水量と加熱量との比の制御は、供給水量が蒸気発生水量以上になる流量に増大させ、供給水が未蒸発の状態で発熱部を流れ、発熱部の蒸発生成物を溶出させる。逆に、加熱量が蒸発量設定値以下になる加熱入力に低減させ、供給水が未蒸発の状態で発熱部を流れ、発熱部の蒸発生成物を溶出させる。
【0012】
以下本発明の実施例を図1を参照して説明する。
【0013】
図1において、10は水を加熱気化させる蒸気発生手段、11は蒸発室で上部に蒸気発生手段へ液体を供給する手段としての液体供給管12、下部に蒸気を利用場所に送る蒸気流出管13が接続されている。前記蒸発室11の外周には励磁コイル14が巻かれ、蒸発室11内には前記励磁コイルにより誘起される磁界の磁気回路構成体となる発熱体15が挿入されている。16は未蒸発水や結露水を外部は導く排水管である。17は流量制御弁で流入管は開閉バルブ18を介し水源へ、流出管は水処理手段19へ接続されている。20は水処理手段19に封入され、カルシウムとマグネシウム等の硬度水成分を吸着除去し、供給水を軟水化するイオン交換樹脂である。
【0014】
制御手段21は、供給水量を可変する流量制御弁駆動回路22と、励磁コイル17への交流電力発生用の高周波電源回路23と、供給水量と加熱量との比を設定する設定部24と、設定部の信号に基ずき水供給手段の供給水量と蒸気発生手段10の加熱量を制御する制御部25で構成されている。
【0015】
図2は設定部24にセットされたクリーニング運転モードの実施例を示すシーケンスである。運転開始T1後に水供給手段からの供給水量と蒸気発生手段の加熱量との比を変えている。即ち供給水量の割合を大きくしている。
【0016】
上記構成において動作を説明する。制御手段21の設定部24でT1時間後クリーニングを開始し、供給水量を増加させる運転モードをセットする。セット後、蒸気発生装置10を始動する。制御部25ではモード信号に基づき図2のように動作する。制御部25からのシーケンス信号を受け流量制御弁駆動回路22により流量制御弁17が開き設定された水量Q1が水処理手段19へ送られる。軟水化処理された水は蒸気発生手段10の液体供給管12から発熱体15上に滴下される。
【0017】
一方、高周波電源回路23からは励磁コイル17へ交流電力が供給されると、励磁コイル17によって発生した磁力線が蒸気室11中の発熱体15中を貫通する。供給された交流のサイクルにしたがって磁力線の方向が変化すると、発熱体15中には、その磁力線変化を阻止しようとする電気的力が作用し、発熱体中にはコイル電流と逆方向の電流が誘起される。この誘起された誘導電流により発熱体15は発熱する。この発熱により液体供給管12から発熱体15に適下された水は加熱、気化し蒸気となる。水の加熱気化が継続されると、発熱体15に軟水化処理された水の蒸発残留物が発熱体15に堆積してくる。
【0018】
運転開始からT1時間経過すると、制御部25からの信号により流量制御弁17からの供給水量がQ1からQ2へと増加する。この給水量の増加により供給された水の一部は未蒸発のまま発熱体15中を流れ落ちる。この流れ落ちる水は堆積した蒸発生成物を溶出させ、発熱体15をクリーニングする。
【0019】
この実施例の構成によれば、クリーニング水量が多いため、水の分散がよく、均一なクリーニングができる。
【0020】
図3は、他のクリーニング運転モードの実施例を示すシーケンスである。上記実施例とは逆に、運転開始T2後に蒸気発生手段10の加熱量を減少させ供給水量割合を大きくしている。即ち、運転開始からT2時間経過すると、蒸気発生手段10の加熱量をW1からW2へと減少させ、給水量比を増加させる。この給水量比の増加により供給された水の一部は未蒸発のまま発熱体15中を流れ落ちる。この流れ落ちる水は堆積した蒸発生成物を溶出させ、発熱体15をクリーニングする。
【0021】
水供給手段の供給水量と蒸気発生手段の加熱量との比の制御は、供給水量の増加と蒸気発生手段の加熱量の減少とを同時に行っても、上記実施例に示した供給水が未蒸発の状態で発熱体中を流れ、発熱体中の蒸発生成物を溶出除去する効果が得られる。
【0022】
この実施例の構成によれば、発熱体により加熱された温水によるクリーニングとなり、蒸発生成物が溶解しやすく、短時間クリーニングができる。
【0023】
図4は、他のクリーニング運転モードの実施例を示すシーケンスである。設定部24にセットされる運転モードは蒸気発生運転終了後にクリーニングをおこなうものである。クリーニング運転は制御手段21の制御部25からの制御信号により、蒸気発生手段10の運転終了後、水供給手段である流量制御弁17の運転を継続し水を供給する。供給された水は一部蒸発するが殆ど水の状態で発熱体15中を流れ、発熱体中の蒸発生成物を溶出させる。溶出設定水量が流れると、流量制御弁17の運転を停止させクリニング運転は終了する。
【0024】
この実施例の構成によれば、発熱体の余熱により加熱された温水によるクリーニングとなり、蒸発生成物が溶解しやすく、エネルギーロスが少ないクリーニングができる。
【0025】
図5は、他のクリーニング運転モードの実施例を示すシーケンスである。設定部24に蒸気発生運転前にクリーニングをおこなう運転モードがセットされる。
【0026】
クリーニング運転は制御手段21の制御部25からの制御信号により、まず、水供給手段である流量制御弁17を始動し水を水処理手段19へ送る。供給された水は水処理手段19で軟水化された後、発熱体15中に流れ込む。水が発熱体中を流れると、前の蒸気発生運転で発熱体15中に堆積した蒸発残留生成物は水中に溶解し流出する。設定されたクリーニング運転が終わると、制御部25から蒸気発生手段10の始動信号が送られ、蒸気発生手段10は始動し、定常の蒸気発生運転となる。
【0027】
この実施例の構成によれば、給水遅れによる発熱体の空焚きが防止でき、蒸気発生部の安全性を高めることができる。
【0028】
図6は、他のクリーニング運転モードの実施例を示し、制御手段21は上記実施例に制御部25に時間信号を送る運転検知タイマー26が付加されている。
【0029】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する時間がセットされる。
【0030】
制御部25から流量制御弁駆動回路22と、高周波電源回路23へ駆動信号が送られると同時にタイマー20で時間計測を開始する。流量制御弁17、蒸気発生手段10は流量制御弁駆動回路22および高周波電源回路23からの駆動信号により始動する。運転検知タイマー26で検知された蒸気発生手段10の運転時間が設定部24のクリーニング設定時間に達すると、制御部25から供給水量と加熱量を制御する信号が送られ、供給水量と加熱量との比が変えられた運転、または、蒸気発生手段10を停止し、流量制御弁17を開き水供給のみの運転となり、供給水が未蒸発の状態で発熱体15中に流れる。蒸発により発熱体中に堆積した残留生成物は未蒸発で流れる水に溶出除去され、発熱体はクリーニングされる。
【0031】
この実施例の構成によれば、発熱体中に堆積した残留生成物に応じたクリーニングができるため、クリーニング水のロスを減少させることができる。
【0032】
図7は、他のクリーニング運転モードの実施例を示し、制御手段21は上記実施例に制御部25に運転の開始または停止をカウントするカウンタ回路27が付加されている。
【0033】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する発停回数がセットされる。
【0034】
クリーニング運転は、制御手段の蒸気発生手段の始動または停止がカウンタ回路27でカウントされ、始動または停止回数が設定部のクリーニング設定回数に達すると、制御部25から供給水量と加熱量を制御する信号が送られ、供給水量と加熱量との比が変えられ、供給水が未蒸発の状態で発熱体15中に流れる。蒸発により発熱体中に堆積した残留生成物は未蒸発で流れる水に溶出除去され、発熱体はクリーニングされる。
【0035】
図8は、他の水供給手段を用い供給水が未蒸発の状態で発熱体中を流れ、発熱体中の蒸発生成物を溶出除去するクリーニング運転モードの実施例を示す。水供給手段28は給水タンク29、水受け容器30とからなる水溜め部と、液体供給管12に配設された水圧送用ポンプ31とで構成されている。制御手段21はポンプ駆動回路32と制御部25にタイマー時間信号を送る運転検知タイマー33が付加されている。
【0036】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する時間がセットされる。設定部24からの運転信号に基づき制御部25からポンプ駆動回路32、高周波電源回路23へ運転信号が送られる。ポンプ31が始動すると運転検知タイマー33が運転時間の計測を始める。給水タンク29の水は水受け容器30から水処理手段19へ送られ、軟水化処理され蒸気発生手段10の液体供給管12から誘導電流により発熱した発熱体15に適下され加熱、気化し蒸気となる。
【0037】
運転検知タイマー33で検知されたポンプ31の運転時間が設定部24のクリーニング設定時間に達すると、ポンプ32の水圧送水量と加熱量との比を変えた運転、または、ポンプ32の運転を継続し、蒸気発生手段10を停止させて、供給水を未蒸発の状態で発熱体15中に流し、発熱体中の蒸発生時の残留生成物を溶出除去する。
【0038】
この実施例の構成によれば、発熱体で蒸発した水量に応じたクリーニングとなり、ほぼ発熱体中に堆積した残留生成物に応じたクリーニングとなるため、クリーニング水のロスを減少させることができる。
【0039】
図9は、水圧送用ポンプ32にパルス駆動ポンプを用いたクリーニング運転モードの実施例を示す。制御手段21は高周波電源回路23、設定部24、制御部25にポンプ駆動用駆動パルス発生回路34とパルスカウンタ回路35が付加されている。
【0040】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始するポンプ駆動パルス発生回路34へ送るパルス数がセットされる。
【0041】
クリーニング運転は、制御部25からポンプ駆動パルス発生回路34へ送られたパルス数がパルスカウンタ回路35により計数されたパルス数が設定部24のクリーニング設定パルス数に達すると、供給水量と加熱量との比を変え、供給水が未蒸発の状態で発熱体中を流れる状態にし、発熱体中の蒸発生成物を溶出除去する。
【0042】
この実施例の構成によれば、ポンプ駆動パルスを直接カウントするため、ポンプで送られる送水量がより正確にでき、クリーニング設定が精度よくできクリーニング効率を高めることができる。
【0043】
図10は、蒸気発生手段10に流入する流量を検知する流量検知手段36を給水路に配設した実施例である。流量検知手段36は通水量に比例して回転数が変わり、磁性体が埋め込まれた回転体37と、回転を検知する磁気センサ38とで構成されている。制御手段21は高周波電源回路23、流量制御弁駆動回路22、設定部24、制御部25に流量検知回路39が付加されている。
【0044】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する通水量がセットされる。設定部24からの運転信号に基づき制御部25から流量制御弁駆動回路22、高周波電源回路23へ運転信号が送られる。水が圧送されると流量検知手段36の回転体37が回転し、磁気センサ38で検知された信号が流量検知回路39に送られ、流量が計量される。流量検知回路39で算出された流量が設定部24の設定水量に達すると、供給水量と加熱量との比を変え、供給水が未蒸発の状態で発熱体中を流れる状態にし、発熱体中の蒸発生成物を溶出除去する。
【0045】
この実施例の構成によれば、通水量が正確に把握でき、クリーニング設定が精度よくできクリーニング効率を高めることができる。
【0046】
図11は、水供給手段の給水タンク29の装着または離脱を検知する装着検知手段39を取り付けた実施例である。装着検知手段40は水受け容器30に取り付けたマイクロスイッチである。制御手段21は装着検知手段からの信号を受け給水タンク29の装着回数をカウントし、制御部25にカウント信号を送るカウンタ41が付加されている。
【0047】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する給水タンク29の装着回数がセットされる。
【0048】
クリーニング運転は、装着検知手段40の信号を受け、カウンタ41でカウントされた装着回数が制御部25へ送られる。制御部25ではカウンタ41でカウントされた装着回数が設定部24のクリーニング設定装着回数に達すると、供給水量と加熱量との比を変え、供給水が未蒸発の状態で発熱体中を流れる状態にし、発熱体中の蒸発生成物を溶出除去する。
【0049】
この実施例の構成によれば、クリーニングをおこなうタイミングの設定と、タンクの有無の検知を兼ねることができ、タンクの装着忘れによる発熱体の空焚きが防止でき、蒸気発生部の安全性が高めることができる。
【0050】
図12は、蒸気発生手段10の蒸気温度検知手段を取り付けた実施例である。蒸気温度検知手段42は蒸気発生手段10の蒸気流出管13に取り付けられている。制御手段21には温度検知回路43が付加されている。
【0051】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する蒸気温度がセットされる。設定部24からの運転信号に基づき制御部25からポンプ駆動回路32、高周波電源回路23へ運転信号が送られる。ポンプ31が始動すると給水タンク29の水は水受け容器30から水処理手段19へ送られ、軟水化処理され蒸気発生手段10の液体供給管12から誘導電流により発熱した発熱体15に適下され加熱、気化し蒸気となる。発生した蒸気は蒸気流出管13から利用場所に送られる。蒸気の温度は蒸気温度検知手段42で検知され温度検知回路43から制御部24へ送られる。水の加熱気化が継続されると、発熱体15に軟水化処理された水の蒸発残留物が発熱体15に堆積してくる。蒸発残留物の発熱体15への堆積により滴下された水の流れの分布が悪くなり、水の一部は未蒸発のまま排水管16に流れ落ち、蒸気流出管13から吹き出す蒸気の温度が上昇する。
【0052】
制御部25へ送られた蒸気温度検知手段42の温度が設定部24のクリーニング設定温度に達すると、ポンプ32の水圧送水量と加熱量との比を変えた運転、または、ポンプ32の運転を継続し、蒸気発生手段10を停止させて、供給水を未蒸発の状態で発熱体15中に流し、発熱体中の蒸発生時の残留生成物を溶出除去する。
【0053】
この実施例の構成によれば、発熱体中に堆積した残留生成物量に応じたクリーニングのタイミングの設定ができると共に、発生蒸気の温度制御ができるため制御回路構成が簡単で、低コストにすることができる。
【0054】
図13は、蒸気発生手段10の発熱体15に温度検知手段を取り付けた実施例である。温度検知手段44は発熱体15の下部に取り付けられている。
【0055】
上記構成において、蒸気発生手段10を始動する前に、設定部24にクリーニングを開始する発熱体温度がセットされる。設定部24からの運転信号に基づき制御部25からポンプ駆動回路32、高周波電源回路23へ運転信号が送られと、上記実施例と同様蒸気が発生し、運転の継続、繰り返しにより、蒸発残留物が発熱体15へ堆積し発熱体15の温度が上昇する。
【0056】
制御部25へ送られた発熱体15の温度検知手段44の温度が設定部24のクリーニング設定温度に達すると、ポンプ32の水圧送水量と加熱量との比を変えた運転、または、ポンプ32の運転を継続し、蒸気発生手段10を停止させて、供給水を未蒸発の状態で発熱体15中に流し、発熱体中の蒸発生時の残留生成物を溶出除去する。
【0057】
この実施例の構成によれば、発熱体中に堆積した残留生成物量に応じたクリーニングのタイミングの設定ができると共に、発熱体温度の直接検知で、発熱体の異常温度上昇防止の安全回路を兼ねることができるため、クリーニング効率を高めると共に、発生蒸気部の安全性を高めることができる。
【0058】
【発明の効果】
以上説明から本発明の蒸気発生装置は以下の効果を奏する。
【0059】
)発熱体へのスケール付着がなく、発熱体の蒸気発生阻害する要因を取り除かれ、放熱がよい状態が持続され、発熱体の温度上昇がおさえられ、発熱体の熱破損を防ぐことがさきる。
【図面の簡単な説明】
【図1】 本発明の一実施例における蒸気発生装置の原理を示す断面図
【図2】 同蒸気発生装置のクリーニング運転のシーケンス図
【図3】 本発明の他の実施例の蒸気発生装置のクリーニング運転のシーケンス図
【図4】 本発明の他の実施例の蒸気発生装置のクリーニング運転のシーケンス図
【図5】 本発明の他の実施例の蒸気発生手段のクリーニング運転のシーケンス図
【図6】 本発明の他の実施例の蒸気発生手段の制御手段の回路構成図
【図7】 本発明の他の実施例の蒸気発生手段の制御手段の回路構成図
【図8】 本発明の他の実施例における蒸気発生装置の原理を示す断面図
【図9】 本発明の他の実施例における蒸気発生手段の制御手段の回路構成図
【図10】 本発明の他の実施例における蒸気発生装置の原理を示す断面図
【図11】 本発明の他の実施例における蒸気発生装置の原理を示す断面図
【図12】 本発明の他の実施例における蒸気発生装置の原理を示す断面図
【図13】 本発明の他の実施例における蒸気発生装置の原理を示す断面図
【図14】 従来の蒸気発生装置の正面断面図
【図15】 従来の蒸気発生装置の正面断面図
【符号の説明】
10 蒸気発生手段
11 蒸発室
12 液体供給管(液体供給手段)
14 励磁コイル
15 発熱体(発熱部)
17 流量制御弁
19 水処理手段
20 イオン交換樹脂(軟水化装置)
21 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam and hot air generator used for thawing food for home and business use, food processing processes such as cooking or bread, air conditioning, indoor cleaning, clothing press, sterilization and the like.
[0002]
[Prior art]
As shown in Japanese Patent Laid-Open No. 4-371704 shown in FIG. 14, the conventional steam generator is filled with three kinds of solid bodies 2a, 2b, 2c having different specific gravity in the can body 1 of the steam generator. Due to the random movement of the individual, the individual 2a is prevented from adhering and depositing the scale in the air-water separation area, the individual 2b is in the lower surface area, and the individual 2c is in the intermediate area, or the accumulated scale is crushed and separated.
[0003]
Other conventional steam generators store ion exchange resin 4 at the bottom of open-type water supply tank 3 as disclosed in Japanese Patent Publication No. 4-46324 shown in FIG. A drive signal is sent from the control means 5 to the water supply valve 6, the valve is opened, and tap water is pumped. The tap water passes through the layer of the ion exchange resin 4 and is supplied to the steam generator 8 by the water supply pump 7.
[0004]
When the tap water passes while contacting the ion exchange resin 4, calcium and magnesium contained in the tap water are adsorbed and removed by the ion exchange resin 4.
[0005]
[Problems to be solved by the invention]
However, in the configuration of the above-mentioned conventional Japanese Patent Laid-Open No. 4-371704, it is possible to prevent the adhesion and accumulation of scale, but the edge portion of the solid may be worn and the scale peeling performance may be deteriorated or the can body may be damaged. .
[0006]
Moreover, in the structure of the above-mentioned conventional Japanese Patent Publication No. 4-46324, the compound of soft water ion components, such as a sodium ion generated when ion-exchange of calcium and magnesium is performed with an ion exchange resin, remains in the steam generator. Become.
[0007]
The present invention solves the above-mentioned problem, and prevents precipitation of scale components such as dissolved water in water and hardness components in water, such as calcium and magnesium, in the evaporation chamber and heating element of the steam generator. An object of the present invention is to provide a steam generator that can stably generate steam.
[0008]
[Means for Solving the Problems]
Steam generator of the present invention, a steam generator having a heat generating portion to vaporize water, and a water supply means for feeding water to the steam generating means, and control means for controlling the water supply means and said steam generating means The control means controls the ratio of the amount of water supplied by the water supply means and the amount of heating by the steam generation means, and elutes the evaporated product adhering to the heat generating part while part of the supplied water is not evaporated. Ru apparatus der to be removed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In order to achieve the above object, the present invention has the following configuration.
[0010]
In addition, the steam generation means having a heat generating portion for vaporizing water, water supply means for sending water to the steam generation means, control means for controlling the steam generation means and the water supply means, the control means The ratio between the amount of water supplied by the water supply means and the amount of heating by the steam generating means is controlled to evaporate and remove the evaporated products adhering to the heat generating portion while part of the supplied water is not evaporated .
[0011]
Control of the ratio between the amount of water supplied and the amount of heating increases the flow rate so that the amount of water supplied is equal to or greater than the amount of water generated by steam, and flows through the heat generating part in a state where the water supplied is not evaporated, thereby eluting the evaporation product of the heat generating part. Conversely, the heating amount is reduced to a heating input that is equal to or less than the evaporation amount set value, and the supply water flows through the heat generating portion in an unevaporated state, and the evaporation product of the heat generating portion is eluted.
[0012]
An embodiment of the present invention will be described below with reference to FIG.
[0013]
In FIG. 1, 10 is a steam generating means for heating and vaporizing water, 11 is an evaporation chamber, a liquid supply pipe 12 as means for supplying liquid to the steam generating means at the upper part, and a steam outlet pipe 13 for sending steam to the use place at the lower part. Is connected. An excitation coil 14 is wound around the outer periphery of the evaporation chamber 11, and a heating element 15 serving as a magnetic circuit component of a magnetic field induced by the excitation coil is inserted into the evaporation chamber 11. Reference numeral 16 denotes a drain pipe for guiding non-evaporated water or condensed water to the outside. Reference numeral 17 denotes a flow rate control valve. An inflow pipe is connected to a water source through an on-off valve 18, and an outflow pipe is connected to a water treatment means 19. An ion exchange resin 20 is enclosed in the water treatment means 19 and adsorbs and removes hardness water components such as calcium and magnesium and softens the supplied water.
[0014]
The control means 21 includes a flow rate control valve drive circuit 22 that varies the amount of supplied water, a high frequency power supply circuit 23 for generating AC power to the excitation coil 17, a setting unit 24 that sets a ratio of the amount of supplied water and the amount of heating, The control unit 25 is configured to control the supply water amount of the water supply means and the heating amount of the steam generation means 10 based on a signal from the setting unit.
[0015]
FIG. 2 is a sequence showing an embodiment of the cleaning operation mode set in the setting unit 24. The ratio of the amount of water supplied from the water supply means and the heating amount of the steam generation means is changed after the start of operation T1. That is, the ratio of the amount of supplied water is increased.
[0016]
The operation in the above configuration will be described. Cleaning is started after T1 time by the setting unit 24 of the control means 21, and an operation mode for increasing the amount of supplied water is set. After the setting, the steam generator 10 is started. The control unit 25 operates as shown in FIG. 2 based on the mode signal. In response to the sequence signal from the control unit 25, the flow rate control valve drive circuit 22 opens the flow rate control valve 17 and sends the set water amount Q 1 to the water treatment means 19. The water subjected to the softening treatment is dropped onto the heating element 15 from the liquid supply pipe 12 of the steam generating means 10.
[0017]
On the other hand, when AC power is supplied from the high frequency power supply circuit 23 to the exciting coil 17, the magnetic lines of force generated by the exciting coil 17 penetrate through the heating element 15 in the steam chamber 11. When the direction of the lines of magnetic force changes according to the supplied AC cycle, an electric force is applied in the heating element 15 to prevent the change in the lines of magnetic force, and a current in the direction opposite to the coil current is generated in the heating element. Induced. The heating element 15 generates heat due to the induced current. The water appropriately applied from the liquid supply pipe 12 to the heating element 15 by this heat generation is heated and vaporized to become steam. When the heating and vaporization of water is continued, the evaporation residue of the water softened by the heating element 15 accumulates on the heating element 15.
[0018]
When T1 time has elapsed from the start of operation, the amount of water supplied from the flow control valve 17 increases from Q1 to Q2 by a signal from the control unit 25. A part of the water supplied by the increase in the amount of water supplied flows down in the heating element 15 without being evaporated. This flowing water elutes the deposited evaporation product and cleans the heating element 15.
[0019]
According to the configuration of this embodiment, since the amount of cleaning water is large, water is well dispersed and uniform cleaning can be performed.
[0020]
FIG. 3 is a sequence showing an example of another cleaning operation mode. Contrary to the above embodiment, after the start of operation T2, the heating amount of the steam generating means 10 is decreased to increase the supply water amount ratio. That is, when T2 time elapses from the start of operation, the heating amount of the steam generating means 10 is decreased from W1 to W2, and the water supply ratio is increased. A part of the water supplied by the increase in the water supply ratio flows down in the heating element 15 without being evaporated. This flowing water elutes the deposited evaporation product and cleans the heating element 15.
[0021]
Control of the ratio of the amount of water supplied by the water supply means and the amount of heating by the steam generating means is not performed even if the increase in the amount of supplied water and the decrease in the amount of heating by the steam generating means are performed simultaneously. An effect of elution and removal of the evaporated product in the heating element is obtained by flowing through the heating element in the state of evaporation.
[0022]
According to the configuration of this embodiment, cleaning is performed with hot water heated by a heating element, and the evaporated product is easily dissolved, so that cleaning can be performed in a short time.
[0023]
FIG. 4 is a sequence showing an example of another cleaning operation mode. The operation mode set in the setting unit 24 is to perform cleaning after completion of the steam generation operation. In the cleaning operation, according to a control signal from the control unit 25 of the control means 21, after the operation of the steam generation means 10, the operation of the flow control valve 17 which is a water supply means is continued and water is supplied. Although the supplied water partially evaporates, it flows through the heating element 15 almost in the state of water, and the evaporated product in the heating element is eluted. When the elution setting water amount flows, the operation of the flow control valve 17 is stopped and the cleaning operation is ended.
[0024]
According to the configuration of this embodiment, cleaning is performed with warm water heated by the residual heat of the heating element, and the evaporated product is easily dissolved and cleaning with less energy loss can be performed.
[0025]
FIG. 5 is a sequence showing an example of another cleaning operation mode. An operation mode in which cleaning is performed before the steam generation operation is set in the setting unit 24.
[0026]
In the cleaning operation, first, the flow control valve 17 which is a water supply unit is started by a control signal from the control unit 25 of the control unit 21, and water is sent to the water treatment unit 19. The supplied water is softened by the water treatment means 19 and then flows into the heating element 15. When water flows through the heating element, the evaporation residual product deposited in the heating element 15 in the previous steam generation operation dissolves in the water and flows out. When the set cleaning operation is finished, the start signal of the steam generation means 10 is sent from the control unit 25, the steam generation means 10 is started, and a steady steam generation operation is performed.
[0027]
According to the configuration of this embodiment, the heating element can be prevented from being blown due to a delay in water supply, and the safety of the steam generating unit can be improved.
[0028]
FIG. 6 shows an example of another cleaning operation mode, and the control means 21 is added with an operation detection timer 26 for sending a time signal to the control unit 25 in the above example.
[0029]
In the above configuration, before starting the steam generation means 10, a time for starting cleaning is set in the setting unit 24.
[0030]
At the same time as the drive signal is sent from the control unit 25 to the flow control valve drive circuit 22 and the high frequency power supply circuit 23, the timer 20 starts time measurement. The flow control valve 17 and the steam generation means 10 are started by drive signals from the flow control valve drive circuit 22 and the high frequency power supply circuit 23. When the operation time of the steam generating means 10 detected by the operation detection timer 26 reaches the cleaning setting time of the setting unit 24, a signal for controlling the supply water amount and the heating amount is sent from the control unit 25, and the supply water amount and the heating amount are determined. Or the steam generating means 10 is stopped, the flow control valve 17 is opened, and only water supply is performed. The supplied water flows into the heating element 15 in an unevaporated state. Residual products deposited in the heating element due to evaporation are removed by elution with un-evaporated water, and the heating element is cleaned.
[0031]
According to the configuration of this embodiment, cleaning according to the residual product accumulated in the heating element can be performed, so that the loss of cleaning water can be reduced.
[0032]
FIG. 7 shows another embodiment of the cleaning operation mode, and the control means 21 is provided with a counter circuit 27 for counting the start or stop of the operation in the control unit 25 in the above embodiment.
[0033]
In the above configuration, before starting the steam generation means 10, the start / stop frequency for starting cleaning is set in the setting unit 24.
[0034]
In the cleaning operation, the start or stop of the steam generating means of the control means is counted by the counter circuit 27, and when the start or stop count reaches the cleaning set count of the setting section, a signal for controlling the supply water amount and the heating amount from the control section 25. , The ratio of the amount of supplied water and the amount of heating is changed, and the supplied water flows into the heating element 15 in an unevaporated state. Residual products deposited in the heating element due to evaporation are removed by elution with un-evaporated water, and the heating element is cleaned.
[0035]
FIG. 8 shows an example of a cleaning operation mode in which other water supply means is used to flow through the heating element in a state where the supply water is not evaporated, and the evaporative product in the heating element is eluted and removed. The water supply means 28 includes a water reservoir portion including a water supply tank 29 and a water receiving container 30, and a water pressure pump 31 disposed in the liquid supply pipe 12. The control means 21 is provided with an operation detection timer 33 for sending a timer time signal to the pump drive circuit 32 and the control unit 25.
[0036]
In the above configuration, before starting the steam generation means 10, a time for starting cleaning is set in the setting unit 24. Based on the operation signal from the setting unit 24, the operation signal is sent from the control unit 25 to the pump drive circuit 32 and the high frequency power supply circuit 23. When the pump 31 is started, the operation detection timer 33 starts measuring the operation time. The water in the water supply tank 29 is sent from the water receiving container 30 to the water treatment means 19 and is softened and appropriately applied to the heating element 15 that is heated by the induction current from the liquid supply pipe 12 of the steam generation means 10 to be heated and vaporized. It becomes.
[0037]
When the operation time of the pump 31 detected by the operation detection timer 33 reaches the cleaning setting time of the setting unit 24, the operation of changing the ratio of the hydraulic water supply amount and the heating amount of the pump 32 or the operation of the pump 32 is continued. Then, the steam generating means 10 is stopped, and the supplied water is allowed to flow into the heating element 15 in an unevaporated state, so that residual products in the heating element during evaporation are eluted and removed.
[0038]
According to the configuration of this embodiment, cleaning is performed according to the amount of water evaporated by the heating element, and cleaning is performed according to the residual product accumulated in the heating element, so that the loss of cleaning water can be reduced.
[0039]
FIG. 9 shows an example of a cleaning operation mode in which a pulse drive pump is used as the water pressure pump 32. In the control means 21, a pump drive pulse generation circuit 34 and a pulse counter circuit 35 are added to the high frequency power supply circuit 23, the setting unit 24, and the control unit 25.
[0040]
In the above configuration, before starting the steam generation means 10, the number of pulses to be sent to the pump drive pulse generation circuit 34 that starts cleaning is set in the setting unit 24.
[0041]
In the cleaning operation, when the number of pulses sent from the control unit 25 to the pump drive pulse generation circuit 34 reaches the cleaning set pulse number of the setting unit 24 when the number of pulses counted by the pulse counter circuit 35 reaches, The ratio is changed so that the feed water flows through the heating element in a state where the supply water is not evaporated, and the evaporation products in the heating element are eluted and removed.
[0042]
According to the configuration of this embodiment, the pump drive pulse is directly counted, so that the amount of water sent by the pump can be made more accurate, the cleaning setting can be made accurately, and the cleaning efficiency can be increased.
[0043]
FIG. 10 shows an embodiment in which the flow rate detecting means 36 for detecting the flow rate flowing into the steam generating means 10 is arranged in the water supply channel. The flow rate detecting means 36 is composed of a rotating body 37 in which the number of rotations changes in proportion to the amount of water flow, a magnetic body is embedded, and a magnetic sensor 38 that detects the rotation. In the control means 21, a flow rate detection circuit 39 is added to the high frequency power supply circuit 23, the flow rate control valve drive circuit 22, the setting unit 24, and the control unit 25.
[0044]
In the above configuration, before starting the steam generation means 10, a water flow amount for starting cleaning is set in the setting unit 24. Based on the operation signal from the setting unit 24, the operation signal is sent from the control unit 25 to the flow rate control valve drive circuit 22 and the high frequency power supply circuit 23. When water is pumped, the rotating body 37 of the flow rate detection means 36 rotates, and a signal detected by the magnetic sensor 38 is sent to the flow rate detection circuit 39 to measure the flow rate. When the flow rate calculated by the flow rate detection circuit 39 reaches the set water amount of the setting unit 24, the ratio of the supply water amount and the heating amount is changed so that the supply water flows through the heating element in an unevaporated state. The evaporative product is eluted off.
[0045]
According to the configuration of this embodiment, the water flow rate can be accurately grasped, the cleaning setting can be performed accurately, and the cleaning efficiency can be increased.
[0046]
FIG. 11 shows an embodiment in which a mounting detection means 39 for detecting the mounting or detachment of the water supply tank 29 of the water supply means is attached. The attachment detection means 40 is a micro switch attached to the water receiving container 30. The control means 21 is provided with a counter 41 that receives a signal from the attachment detection means, counts the number of times the water supply tank 29 is attached, and sends a count signal to the control section 25.
[0047]
In the above configuration, before starting the steam generation means 10, the number of installations of the water supply tank 29 that starts cleaning is set in the setting unit 24.
[0048]
In the cleaning operation, the signal of the attachment detection means 40 is received, and the number of attachments counted by the counter 41 is sent to the control unit 25. In the control unit 25, when the number of mountings counted by the counter 41 reaches the cleaning setting mounting number of the setting unit 24, the ratio between the amount of supplied water and the amount of heating is changed, and the state where the supplied water flows in the heating element in an unevaporated state And evaporate the evaporated product in the heating element.
[0049]
According to the configuration of this embodiment, it is possible to set the timing for performing cleaning and to detect the presence or absence of the tank, to prevent the heating element from being blown off due to forgetting to install the tank, and to improve the safety of the steam generation unit. be able to.
[0050]
FIG. 12 shows an embodiment in which the steam temperature detecting means of the steam generating means 10 is attached. The steam temperature detecting means 42 is attached to the steam outlet pipe 13 of the steam generating means 10. A temperature detection circuit 43 is added to the control means 21.
[0051]
In the above configuration, the steam temperature at which cleaning is started is set in the setting unit 24 before starting the steam generation means 10. Based on the operation signal from the setting unit 24, the operation signal is sent from the control unit 25 to the pump drive circuit 32 and the high frequency power supply circuit 23. When the pump 31 is started, the water in the water supply tank 29 is sent from the water receiving container 30 to the water treatment means 19, softened, and appropriately applied to the heating element 15 that generates heat from the liquid supply pipe 12 of the steam generation means 10 by the induced current. Heats, vaporizes and becomes steam. The generated steam is sent from the steam outlet pipe 13 to the place of use. The temperature of the steam is detected by the steam temperature detection means 42 and sent from the temperature detection circuit 43 to the control unit 24. When the heating and vaporization of water is continued, the evaporation residue of the water softened by the heating element 15 accumulates on the heating element 15. The distribution of the flow of the dripped water is deteriorated due to the evaporation residue deposited on the heating element 15, part of the water flows down to the drain pipe 16 without being evaporated, and the temperature of the steam blown out from the steam outlet pipe 13 rises. .
[0052]
When the temperature of the steam temperature detecting means 42 sent to the control unit 25 reaches the cleaning set temperature of the setting unit 24, the operation of changing the ratio of the hydraulic water supply amount and the heating amount of the pump 32 or the operation of the pump 32 is performed. Continuously, the steam generating means 10 is stopped, and the supplied water is allowed to flow into the heating element 15 in an unevaporated state, and the residual products in the heating element during evaporation are eluted and removed.
[0053]
According to the configuration of this embodiment, the cleaning timing can be set according to the amount of residual product accumulated in the heating element, and the temperature of the generated steam can be controlled, so the control circuit configuration is simple and the cost is reduced. Can do.
[0054]
FIG. 13 shows an embodiment in which a temperature detecting means is attached to the heating element 15 of the steam generating means 10. The temperature detecting means 44 is attached to the lower part of the heating element 15.
[0055]
In the above configuration, the heating element temperature at which cleaning is started is set in the setting unit 24 before starting the steam generating means 10. Setting unit 24 pump drive circuit 32 from the control unit 25 based on the operating signal from the operating signal to the high-frequency power supply circuit 23 is sent, the embodiments and the same steam occurs and continuation of the operation, more Shi repeatedly, The evaporation residue accumulates on the heating element 15 and the temperature of the heating element 15 rises.
[0056]
When the temperature of the temperature detecting means 44 of the heating element 15 sent to the control unit 25 reaches the cleaning set temperature of the setting unit 24, an operation in which the ratio of the hydraulic water supply amount and the heating amount of the pump 32 is changed, or the pump 32 Then, the steam generating means 10 is stopped, the supplied water is allowed to flow into the heating element 15 in an unevaporated state, and the residual products in the heating element during evaporation are eluted and removed.
[0057]
According to the configuration of this embodiment, it is possible to set the cleaning timing according to the amount of residual product accumulated in the heating element, and also serves as a safety circuit for preventing the abnormal temperature rise of the heating element by directly detecting the heating element temperature. Therefore, the cleaning efficiency can be improved and the safety of the generated steam part can be increased.
[0058]
【The invention's effect】
From the above description, the steam generator of the present invention has the following effects.
[0059]
( 1 ) There is no scale adherence to the heating element, the factor that inhibits steam generation of the heating element is removed, good heat dissipation is maintained, the temperature of the heating element is suppressed, and the heating element is prevented from being damaged by heat. Sakiru.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the principle of a steam generator according to an embodiment of the present invention. FIG. 2 is a sequence diagram of a cleaning operation of the steam generator. FIG. 4 is a sequence diagram of the cleaning operation of the steam generator according to another embodiment of the present invention. FIG. 5 is a sequence diagram of the cleaning operation of the steam generating means according to another embodiment of the present invention. FIG. 7 is a circuit configuration diagram of the control means of the steam generating means according to another embodiment of the present invention. FIG. 7 is a circuit configuration diagram of the control means of the steam generating means according to another embodiment of the present invention. FIG. 9 is a cross-sectional view showing the principle of the steam generating apparatus in the embodiment. FIG. 9 is a circuit configuration diagram of the control means of the steam generating means in another embodiment of the present invention. Sectional view showing the principle [Fig. 1 is a cross-sectional view showing the principle of a steam generator according to another embodiment of the present invention. FIG. 12 is a cross-sectional view showing the principle of a steam generator according to another embodiment of the present invention. Cross-sectional view showing the principle of a steam generator in an example [FIG. 14] Front cross-sectional view of a conventional steam generator [FIG. 15] Front cross-sectional view of a conventional steam generator [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Steam generating means 11 Evaporating chamber 12 Liquid supply pipe (liquid supply means)
14 Excitation coil 15 Heating element (heat generating part)
17 Flow control valve 19 Water treatment means 20 Ion exchange resin (water softening device)
21 Control means

Claims (1)

水を気化する発熱部を有する蒸気発生手段と、前記蒸気発生手段に水を送る水供給手段と、前記蒸気発生手段と前記水供給手段を制御する制御手段とを備え、前記制御手段は、前記水供給手段の供給水量と前記蒸気発生手段の加熱量との比を制御し、供給水の一部が未蒸発のまま前記発熱部に付着した蒸発生成物を溶出除去する構成とした蒸気発生装置。Steam generating means having a heat generating part for vaporizing water, water supply means for sending water to the steam generating means, control means for controlling the steam generating means and the water supply means, the control means , A steam generator configured to control the ratio between the amount of water supplied by the water supply means and the amount of heating of the steam generating means, and to elute and remove the evaporated products adhering to the heat generating part while part of the supplied water is not evaporated .
JP08125096A 1996-04-03 1996-04-03 Steam generator Expired - Fee Related JP3671512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08125096A JP3671512B2 (en) 1996-04-03 1996-04-03 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08125096A JP3671512B2 (en) 1996-04-03 1996-04-03 Steam generator

Publications (2)

Publication Number Publication Date
JPH09273705A JPH09273705A (en) 1997-10-21
JP3671512B2 true JP3671512B2 (en) 2005-07-13

Family

ID=13741154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08125096A Expired - Fee Related JP3671512B2 (en) 1996-04-03 1996-04-03 Steam generator

Country Status (1)

Country Link
JP (1) JP3671512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532842B2 (en) * 2009-11-17 2014-06-25 株式会社Ihi Glycerin reforming apparatus and glycerin reforming method
JP5510123B2 (en) * 2010-06-30 2014-06-04 三浦工業株式会社 Operation method of steam boiler

Also Published As

Publication number Publication date
JPH09273705A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
EP2116516B1 (en) Machine with water heating means and anti-scale device
US7730568B2 (en) Removal of scale and sludge in a steam generator of a fabric treatment appliance
RU2655224C2 (en) Apparatus for generating steam
JP3747156B2 (en) Equipment for electronic monitoring of lime deposits
TWI278549B (en) Ion elution unit appliance incorporating an ion elution unit
US20070283509A1 (en) Draining liquid from a steam generator of a fabric treatment appliance
US6959668B2 (en) Method and apparatus for generating steam for a cooking device
EP0523489B1 (en) Steam generation arrangement for food cooking equipment, in particular ovens and similar appliances
TW200521380A (en) Steam generating apparatus and heating cooker therewith
EP2596287B1 (en) Prevention or reduction of scaling on a heater element of a water heater
CN101245540A (en) Washing machine and method for controlling the same
EP2826909B1 (en) Method for operating a steam generation unit in a laundry dryer and method of operating a laundry dryer
US8025740B2 (en) Process for conducting cleaning operations in a fluid-receiving device of a foodstuff-processing apparatus, and fluid-receiving device and foodstuff-processing apparatus therefor
JP3671512B2 (en) Steam generator
CN114901601A (en) Removable scale collector and inhibitor filter
JPS63502771A (en) steam generator
JPH04268180A (en) Electric controller for ice making machine
JPH06323580A (en) Humidifier
EP2201883B1 (en) Dishwashing machine with nebuliser and dish treatment method
JP2626385B2 (en) Head drawer type faucet device
JP2004028578A (en) High-frequency heating device
EP3852595B1 (en) A dishwasher comprising a heat pump
JP2007322047A (en) Heating cooker
JPH0445302A (en) Steam generator
CN113260757A (en) Anti-calcification improvements for steam stations

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees