JP3671299B2 - Mechanical joint method of steel structure column beam joint - Google Patents

Mechanical joint method of steel structure column beam joint Download PDF

Info

Publication number
JP3671299B2
JP3671299B2 JP2003001023A JP2003001023A JP3671299B2 JP 3671299 B2 JP3671299 B2 JP 3671299B2 JP 2003001023 A JP2003001023 A JP 2003001023A JP 2003001023 A JP2003001023 A JP 2003001023A JP 3671299 B2 JP3671299 B2 JP 3671299B2
Authority
JP
Japan
Prior art keywords
tenon
hole
column
joint
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003001023A
Other languages
Japanese (ja)
Other versions
JP2004211451A (en
Inventor
幹夫 露木
賢司 高橋
英一 細田
剛志 雁部
邦夫 渡辺
康則 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003001023A priority Critical patent/JP3671299B2/en
Publication of JP2004211451A publication Critical patent/JP2004211451A/en
Application granted granted Critical
Publication of JP3671299B2 publication Critical patent/JP3671299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、比較的小型で鉄骨造の柱と梁を、ほぞと込み栓による機械式継手で結合する方法の技術分野に属する。
【0002】
【従来の技術】
従来、鉄骨造の柱と梁を結合する手段としては、ボルト止めや溶接が一般的である。
【0003】
しかし、外観意匠の良好性が要求される場合に、柱と梁の結合にボルト止めを実施すると、ボルトの頭や軸、或いはナットが露出するので好ましくない。
【0004】
鉄骨造の柱と梁の結合に溶接を実施する場合は、溶接金属の収縮により柱の芯芯間寸法、或いは梁梁間寸法が狂いやすい。その防止策として、予め溶接金属の収縮を予測した寸法の柱、梁部材を製作するが、前記寸法変化の予測は難しく、寸法精度の高い柱梁結合の実現は困難とされている。
【0005】
また、溶接には必ず溶接ビードが発生し、外観意匠上好ましくないので、後加工としてグラインダー等で研削、研磨を行うが、これがなかなか大変な労力と時間を必要とするほか、騒音の問題も発生する。
【0006】
しかも溶接は降雨時や強風時には作業ができないので、建設現場では敬遠される。
【0007】
従来、主には木造軸組み構造として、柱と梁を、ほぞと込み栓による機械式継手で結合する方法が公知である。
例えば特許文献1、2には、木造軸組み構造の通し柱と、これに架ける梁材(横架材)との結合を、梁材間へ水平方向に架け渡す「ほぞ」と、前記ほぞと各梁材とを結合する込み栓とによる機械式継手で結合する方法が開示されている。
【0008】
次に、特許文献3、4には、カーテンウオールに使用する板ガラスを、複数個の偏心リングを組み合わせて成る複合偏心リングを位置ずれ調節機構に採用した連結方法が開示されている。
【0009】
また、特許文献5には、ガラス窓のガラス板の如き建物の垂直板と、これを支持する構造物との連結に、2個の偏心リングを組み合わせて成る複合偏心リングを位置調節機構に採用した連結装置が開示されている。
【0010】
【特許文献1】
特公平4−23933号公報
【特許文献2】
特公平4−23934号公報
【特許文献3】
特開2000−309994号公報
【特許文献4】
特開2002−213036号公報
【特許文献5】
特許第3270507号公報
【0011】
【発明が解決しようとする課題】
比較的小型で鉄骨造の柱と梁の結合を、ほぞと込み栓による機械式継手で結合する方法は、上述したボルト止めの意匠性の悪さを改善できるし、また、溶接の上記問題点も回避できる。
【0012】
上述したように、木造軸組み構造においては、柱と梁の結合を、ほぞと込み栓による機械式継手で行うことが広く知られている。しかし、上記特許文献1、2の機械式継手方法にも見られるように、木材は加工が容易であるため、梁や柱の加工度が高く、鉄骨造の柱や梁の場合には到底至難の加工であることが多く、転用はできないのが普通である。また、上記特許文献1、2の構成では、柱の断面欠損が大きすぎて強度上の信頼性を確保しがたい構造である。寸法精度の向上もあまり期待できない構造である。
【0013】
次に、特許文献3〜5に開示された技術は、複合偏心リングの応用に注目点もあるが、板の取付構造に関する技術であり、柱梁接合への応用に見るべき点はない。
【0014】
本発明の目的は、比較的小型で鉄骨造の柱と梁の結合を、上記した問題のあるボルト止めや溶接を採用しないで、ほぞと込み栓による機械式継手による方法で行うことである。
【0015】
本発明の次の目的は、強度、剛性の面で構造上の安定性に優れ、寸法上の精度も十分に高く、加工が比較的簡単で実施が容易であり、特に柱芯芯間寸法の調整が容易に出来る、鉄骨構造柱梁仕口部の機械式継手方法を提供することである。
【0016】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る鉄骨構造柱梁仕口部の機械式継手方法は、
鉄骨造の柱と梁をほぞと込み栓による機械式継手で結合する方法において、
上下に結合する柱の端面部に軸線方向のほぞ孔を設け、前記ほぞ孔と直交する方向に貫通する込み栓用孔を設けること、
前記上下の柱の端面間に挟み込む梁に、前記柱のほぞ孔と中心が一致するほぞ孔を複合偏心リングの外径とほぼ等しい口径で設けること、
下位の柱のほぞ孔へほぞの下端部を嵌め込んで立て、同下位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定すること、
前記ほぞへ梁のほぞ孔を通すと共に、同ほぞ孔へ、柱の芯芯間寸法の建方等の誤差を吸収するように予め寸法を調整した複合偏心リングの外径部及びほぞの外径とほぼ等しい口径の内径部を組み合せ、ほぞとほぞ孔の隙間に嵌め込むこと、
前記ほぞの上端部へ上位の柱のほぞ孔を嵌め込み、同上位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定することを特徴とする。
【0017】
請求項2に記載した発明に係る鉄骨構造柱梁仕口部の機械式継手方法は、
鉄骨造の柱と梁をほぞと込み栓による機械式継手で結合する方法において、
上下に結合する柱の端面部に軸線方向のほぞ孔を設け、前記ほぞ孔と直交する方向に貫通する込み栓用孔を設けること、
上下の柱の端面間へ挟み込み突き合わせ接合する梁は、各々の突き合わせ端部に、上下方向の厚さを二分する程度に切り欠いた相欠け継手部を形成し、同継手部に、上下方向に貫通するほぞ孔を共通な中心線上に設けると共に、一方のほぞ孔は複合偏心リングの外径とほぼ等しい口径で設け、他方のほぞ孔はほぞの外径とほぼ等しい口径で設けること、
下位の柱のほぞ孔へほぞの下端部を嵌め込んで立て、同下位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定すること、
前記ほぞへ梁の端部のほぞ孔を通して相欠け継手を形成すると共に、前記一方のほぞ孔へ、柱の芯芯間寸法の建方等の誤差を吸収するように予め寸法を調整した複合偏心リングの外径部及びほぞの外径とほぼ等しい口径の内径部を組み合せ、ほぞとほぞ孔の隙間に嵌め込むこと、
前記ほぞの上端部へ上位の柱のほぞ孔を嵌め込み、同上位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定することを特徴とする。
【0018】
請求項3に記載した発明は、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法において、
上下の柱の端面と、梁の上下面との間に、両者を非接触に保つ隙間を形成したことを特徴とする。
【0019】
請求項4に記載した発明は、請求項2又は3に記載した鉄骨構造柱梁仕口部の機械式継手方法において、
上下の柱の端面間へ挟み込み相欠け継手で突き合わせ接合する梁の端部の前記相欠け継手部を形成する段部間に、柱の芯芯間寸法を調整可能にする隙間を設けたことを特徴とする。
【0020】
請求項5に記載した発明は、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法において、
ほぞは、梁のほぞ孔に嵌る部分を円柱状に形成し、上下の柱のほぞ孔へ嵌る部分は柱の断面欠損を可及的に低減する平板状の平ほぞに形成し、上下の柱のほぞ孔も前記平ほぞが嵌る平角孔に形成したことを特徴とする。
【0021】
請求項6に記載した発明は、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法において、
上下の柱の込み栓用孔へ差した込み栓は、その両端部を止め輪にて固定したことを特徴とする。
【0022】
【発明の実施形態】
以下に、図面に示した本発明の実施形態を説明する。
【0023】
図1〜図4は、請求項2〜6の発明の方法に係る鉄骨構造柱梁仕口部の機械式継手の構造を示し、図5は前記継手の各構成要素を分解して示す。
【0024】
図5が分かりやすいように、図示した上下の柱1、2は、一辺の長さが120mm程度のむくの鋼製角柱である。前記柱1、2の位置で突き合わせ接合する梁3、4は、厚さが120mm、幅が180mm程度の鋼製角材から成る。このように柱、梁はともに比較的小型の鉄骨造である。図示した梁3、4は、上下の柱1、2の端面間へ挟み込み相欠け継手で突き合わせ接合する構成であり、各々の突き合わせ端部に、上下方向の厚さを二分する程度に切り欠いた相欠け継手部3a、4aを形成している。
【0025】
これらの柱1、2と梁3、4を、ほぞ7と込み栓10による機械式継手で結合する方法として、上下に結合する柱1、2の端面部に軸線方向のほぞ孔5を設け、前記ほぞ孔5と直交する方向に貫通する込み栓用孔6を設けている。一例として、前記ほぞ孔5の大きさ、形状は、深さが155mmで、平面方向に見た形状は、縦×横が100mm×60mmの平角孔とされている。柱1、2の断面欠損を可及的に低減するためである。込み栓用孔6は、直径60mmの込み栓10がきっちり嵌る丸孔として設けられている。それぞれ機械加工で精密に仕上げられている。
【0026】
前記上下の柱1、2の端面間に挟み込む梁3、4の上記相欠け継手部3a、4aには、上記柱1、2のほぞ孔5と中心が一致するほぞ孔8、9を設けている。これも機械加工で精密に仕上げられている。
【0027】
ほぞ7は、鋳鋼等で製作しており、上下方向の高さを450mm、円柱部の外径を100mm程度に機械加工で精密に仕上げられている。上記梁3、4のほぞ孔8、9に嵌る部分を円柱状に形成し、上下の柱1、2のほぞ孔5へ嵌る部分は平板状の平ほぞ7aとして形成している。平ほぞ7aには、その平面と直角方向に、上下の柱1、2の込み栓用孔6と中心が一致する同径の込み栓用孔7b、7bを設けている。平ほぞ7aの端部は半円形状に丸く加工されている。柱1、2のほぞ孔5への嵌め込みを円滑にするためである。込み栓10も鋳鋼等で製作し、機械加工で精密に仕上げられている。
【0028】
なお、上記梁3、4のほぞ孔8、9のうち、上側の相欠け継手部4aのほぞ孔8の口径は、後述する偏心リング11の外径とほぼ等しい大きさで設け、下側の相欠け継手部3aのほぞ孔9は、ほぞ7の円柱部外径とほぼ等しい口径に精密に仕上げて設けている。要するに、下側の相欠け継手部3aを有する図中左側の梁3は、ほぞ7の円柱部とほぞ孔9とをきっちり高精度に嵌め合わせることにより、柱1、2との結合部にがたつきをなくして寸法精度の高い結合を行う。一方、上側の相欠け継手部4aを有する図中右側の梁4のほぞ孔8へは、後述の複合偏心リング11、12を設置して、柱の芯芯間寸法を調整可能とするためである。
【0029】
ところで、複合偏心リング11、12は、例えば上述した特許文献5の図4にも記載されているなど公知のものであり、がたつきのない構成で柱の芯芯間寸法を調整可能であり、機械加工で精密に仕上げられている。図6と図7に構成と寸法調整機能を詳示したように、外側の偏心リング11は、外径と内径を偏位量約2mmの偏心円として形成したもので、その外径を、上記上側の相欠け継手部4aのほぞ孔8の口径とほぼ等しく形成しており、高い嵌め合い公差でほぞ孔8へ嵌め込まれる。内側の偏心リング12も、外径と内径を偏位量約2mmの偏心円として形成したもので、その外径を前記外側の偏心リング11の内径とほぼ等しく形成しており、高い嵌め合い公差で外側の偏心リング11の内側へ嵌め込んで組み合わされている。内側の偏心リング12の内径は、上記ほぞ7の円柱部外径とほぼ等しく形成されており、高い嵌め合い公差でほぞ7の円柱部が密接に嵌め込まれる。
【0030】
したがって、この複合偏心リング11、12を図7a〜dのように相対的に回転することにより、上下の柱1、2の中心位置に固定されているほぞ7に対して、梁4の柱芯芯間寸法を、がたつきのない状態で最大約±4mmの範囲で調整できるのである。
【0031】
次に、請求項2に記載した鉄骨構造柱梁仕口部の機械式継手方法の手順を説明する。
先ず、下から立ち上がった下位の柱2の上端面のほぞ孔5へ、ほぞ7の下端部の平ほぞ7aを嵌め込んで立てる。更に同下位の柱2の込み栓用孔6を通じて前記平ほぞ7aの込み栓用孔7bを突き通すように込み栓10を打ち込んで貫通させ、もって前記ほぞ7を上向きに固定して柱2と結合する。その結果、ほぞ7の円柱部下端面と柱2の上端面との間には約5mmの隙間Sが、込み栓10によるほぞ7の位置決め効果として正確に確保される(図1を参照)。
【0032】
次に、上記のように柱2の上端に上向きに立つほぞ7の円柱部へ、相欠け継手部3aを有する下側の梁3のほぞ孔9を通して密接に嵌める。続いて相欠け継手部4aを有する上側の梁4のほぞ孔8を同じくほぞ7へ嵌めて、図1のように相欠け継手による接合を行う。次に、前記上側の梁4のほぞ孔8の内径面とほぞ7の外径面との隙間へ、上記複合偏心リング11、12を、予め図7a〜dの要領で同梁4に関する柱の芯芯間寸法の建方等の誤差を吸収するようにきっちり寸法調整した状態に組合わせたものを嵌め込み、内側の偏心リング12の内径部に前記ほぞ7の円柱部を密接に通す。このとき梁3、4の先端部と前記相欠け継手部3a、4aを形成する段部との間には、前述した柱の芯芯間寸法の調整を可能にする隙間Tを設けている(図1を参照)。よって、前記柱の芯芯間調整は無理なく許容される。
【0033】
最後に、前記ほぞ7の上端部の平ほぞ7aへ上位の柱1のほぞ孔5を嵌め込んで立て、更に同上位の柱1の込み栓用孔6を通じて前記平ほぞ7aの込み栓用孔7bを突き通すように込み栓10を打ち込み貫通させて梁との結合を行う。なお、込み栓10は、その両端部へ止め輪15を図4のように嵌め込んで抜け止め処理をおこなう。
【0034】
その結果、上位の柱1の下端面と、梁4の上面との間にも、両者を非接触に保つ隙間Sが形成される(図1を参照)。これら上下の隙間Sによって、上下の柱1、2の微小回転時に、摩擦による拘束力やきしみ音を発生させないで済む。
【0035】
上記の方法は、全天候型として実施できるし、機械加工部品の組み立てに等しいので、高い寸法精度で実施することが出来る。そして、完成した鉄骨構造柱梁仕口部の外観は、柱1、2の端部に込み栓10の端面が見える程度のシンプルなもので、意匠的に良好なものである。
【0036】
なお、請求項1に記載した発明に係る鉄骨構造柱梁仕口部の機械式継手方法は、実施形態を図示することは省略したが、柱が間柱のように梁の中間位置において結合される場合の継手方法に関する。即ち、梁は一本物として連続し、同梁に貫通して設けるほぞ孔は、基本的に上記複合偏心リング11、12の外径と略等しい口径に形成する。その他は上記請求項2の発明と同じである。
【0037】
【発明の効果】
請求項1及び2〜6に記載した発明に係る鉄骨構造柱梁仕口部の機械式継手方法は、上記したようにボルト止めや溶接の手段は一切採用せず、ほぞと込み栓による機械式継手による方法であるから、外観意匠を良好にできるし、溶接のような後加工も必要としない。基本的に機械加工で精密に仕上げた製品の組み立てによる方法であり、高い寸法精度の柱梁結合を行え、がたつきのない柱と梁の結合を実現できる。
【0038】
更に、本発明に係る鉄骨構造柱梁仕口部の機械式継手方法は、強度、剛性の面で構造上の安定性に優れ、全天候型で比較的簡単に実施でき、意匠的な外観の良好性が得られるほか、特に柱芯芯間寸法の調整が容易に出来る等々の効果を奏する。
【図面の簡単な説明】
【図1】本発明の方法を実施した機械式継手の縦断面図である。
【図2】図1のII−II線矢視の断面図である。
【図3】図1のIII−III線矢視の断面図である。
【図4】図1のIV−IV線矢視の断面図である。
【図5】上記機械式継手の構成要素を分解状態で示す斜視図である。
【図6】複合偏心リングの平面図である。
【図7】a〜dは複合偏心リングの寸法調整の要領を示す平面図である。
【符号の説明】
1 柱
2 柱
3 梁
4 梁
5 ほぞ孔
6 込み栓用孔
7 ほぞ
8、9 ほぞ孔
10 込み栓
11 外側の偏心リング
12 内側の偏心リング
3a 梁の相欠け継手部
4a 梁の相欠け継手部
S 隙間
T 隙間
7a 平ほぞ
15 止め輪
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a method for joining relatively small and steel-framed columns and beams by a mechanical joint using a tenon and a plug.
[0002]
[Prior art]
Conventionally, bolting and welding are generally used as means for connecting a steel column and a beam.
[0003]
However, when good appearance design is required, it is not preferable to perform bolting to join the column and beam because the head, shaft, or nut of the bolt is exposed.
[0004]
When welding is performed for the connection between a steel-structured column and a beam, the dimension between the cores of the column or the dimension between the beams tends to be distorted due to shrinkage of the weld metal. As a preventive measure, columns and beam members having dimensions in which the shrinkage of the weld metal is predicted in advance are manufactured. However, it is difficult to predict the dimensional change, and it is difficult to realize column beam connection with high dimensional accuracy.
[0005]
In addition, weld beads are always generated in welding, which is not preferable in terms of appearance design. Grinding and polishing with a grinder or the like is performed as post-processing, but this requires considerable labor and time, and noise problems also occur. To do.
[0006]
Moreover, welding cannot be done during rain or strong winds, so it is avoided at construction sites.
[0007]
2. Description of the Related Art Conventionally, a method of connecting a column and a beam with a mechanical joint using a tenon and a plug is mainly known as a wooden frame structure.
For example, Patent Documents 1 and 2 disclose that a tenon with a through-hole of a wooden frame structure and a beam member (horizontal member) spanned between the pillars and the tenon and each of the tenon A method of connecting with a mechanical joint by a bayonet that connects a beam material is disclosed.
[0008]
Next, Patent Documents 3 and 4 disclose a connection method in which a composite eccentric ring formed by combining a plurality of eccentric rings and a plate glass used for a curtain wall is adopted as a positional deviation adjusting mechanism.
[0009]
Further, in Patent Document 5, a composite eccentric ring, which is a combination of two eccentric rings, is used as a position adjustment mechanism for connecting a vertical plate of a building such as a glass plate of a glass window and a structure supporting the same. A connecting device is disclosed.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 4-23933 [Patent Document 2]
Japanese Patent Publication No. 4-23934 [Patent Document 3]
JP 2000-309994 A [Patent Document 4]
Japanese Patent Laid-Open No. 2002-213036 [Patent Document 5]
Japanese Patent No. 3270507
[Problems to be solved by the invention]
The method of connecting a relatively small steel column and beam with a mechanical joint using a tenon and a plug can improve the above-mentioned poor design of the bolting and also has the above-mentioned problems of welding. Can be avoided.
[0012]
As described above, in a wooden frame structure, it is widely known that a column and a beam are connected by a mechanical joint using a tenon and a plug. However, as can be seen in the mechanical joint methods of Patent Documents 1 and 2, since wood is easy to process, the degree of processing of beams and columns is high, and it is extremely difficult in the case of steel columns and beams. In many cases, it is not possible to divert. Moreover, in the structure of the said patent documents 1, 2, it is a structure where the cross-sectional defect | deletion of a column is too large and it is hard to ensure the reliability on intensity | strength. The structure cannot be expected to improve dimensional accuracy.
[0013]
Next, the techniques disclosed in Patent Documents 3 to 5 have a focus on the application of the composite eccentric ring, but the technique relates to the plate mounting structure, and there is no point to be seen in the application to the column beam connection.
[0014]
It is an object of the present invention to connect a relatively small and steel column and beam by a mechanical joint method using a tenon and a spigot without using the above-mentioned problematic bolting and welding.
[0015]
The next object of the present invention is excellent in structural stability in terms of strength and rigidity, sufficiently high in dimensional accuracy, relatively easy to process and easy to implement, It is an object of the present invention to provide a mechanical joint method for a steel structure column beam joint that can be easily adjusted.
[0016]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, a mechanical joint method for a steel structure column beam joint according to the invention described in claim 1 is:
In a method of joining steel columns and beams with a mortise and a mechanical joint with a stopper,
Providing a tenon hole in the axial direction on the end face of the column coupled vertically, and providing a plug hole penetrating in a direction perpendicular to the tenon hole;
Providing a tenon hole whose center coincides with the tenon hole of the column in the beam sandwiched between the end faces of the upper and lower columns with a diameter substantially equal to the outer diameter of the composite eccentric ring;
Fit the lower end of the tenon into the tenon hole of the lower column, and fix the tenon with the insertion plug inserted into the insertion hole for the lower column,
The mortise of the beam is passed through the tenon, and the outer diameter of the composite eccentric ring and the outer diameter of the tenon are adjusted in advance so as to absorb errors such as the construction of the dimensions between the cores of the columns. Combine the inner diameter part of the caliber that is almost equal to
The tenon hole of the upper column is fitted into the upper end of the tenon, and the tenon is fixed by the insertion plug inserted into the insertion hole for the upper column.
[0017]
A mechanical joint method of a steel structure column beam joint according to the invention described in claim 2 is:
In a method of joining steel columns and beams with a mortise and a mechanical joint with a stopper,
Providing a tenon hole in the axial direction on the end face of the column coupled vertically, and providing a plug hole penetrating in a direction perpendicular to the tenon hole;
Beams that are sandwiched between the end faces of the upper and lower columns and butt-joined are formed with phase-separated joints that are notched to halve the vertical thickness at each butt end. A tenon hole is provided on a common center line, one tenon hole is provided with a diameter substantially equal to the outer diameter of the composite eccentric ring, and the other tenon hole is provided with a diameter substantially equal to the outer diameter of the tenon.
Fit the lower end of the tenon into the tenon hole of the lower column, and fix the tenon with the insertion plug inserted into the insertion hole for the lower column,
A composite eccentric in which a joint is formed through a tenon hole at the end of the beam to the tenon, and the dimension is adjusted in advance so as to absorb an error in the construction between the cores of the pillars in the one tenon hole. Combining the outer diameter part of the ring and the inner diameter part of the caliber approximately equal to the outer diameter of the tenon, and fitting them into the gap between the tenon and the tenon hole,
The tenon hole of the upper column is fitted into the upper end of the tenon, and the tenon is fixed by the insertion plug inserted into the insertion hole for the upper column.
[0018]
The invention described in claim 3 is a mechanical joint method of a steel structure column beam joint according to claim 1 or 2,
A gap is formed between the end surfaces of the upper and lower columns and the upper and lower surfaces of the beam so as to keep them in non-contact.
[0019]
The invention described in claim 4 is a mechanical joint method of a steel structure column beam joint according to claim 2 or 3,
The gap between the end surfaces of the upper and lower pillars is sandwiched between the stepped portions forming the phased joints at the ends of the beams to be butt-joined by the phased joints. Features.
[0020]
The invention described in claim 5 is the mechanical joint method for a steel structure column beam joint according to claim 1 or 2,
The tenon is formed in a columnar shape that fits into the tenon hole of the beam, and the part that fits in the tenon hole in the upper and lower columns is formed into a flat flat tenon that reduces the cross-sectional defect of the column as much as possible. The tenon hole is also formed as a flat hole into which the flat tenon fits.
[0021]
The invention described in claim 6 is the mechanical joint method for a steel structure column beam joint according to claim 1 or 2,
The insertion plugs inserted into the insertion holes for the upper and lower pillars are characterized in that both ends thereof are fixed with retaining rings.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention shown in the drawings will be described below.
[0023]
1 to 4 show the structure of a mechanical joint of a steel structure column beam joint according to the methods of the inventions of claims 2 to 6, and FIG. 5 is an exploded view of each component of the joint.
[0024]
As shown in FIG. 5, the upper and lower columns 1 and 2 shown in the drawing are steel square columns having a side length of about 120 mm. The beams 3 and 4 to be butt-joined at the positions of the columns 1 and 2 are made of steel squares having a thickness of about 120 mm and a width of about 180 mm. Thus, both the columns and beams are relatively small steel structures. The illustrated beams 3 and 4 are sandwiched between end faces of the upper and lower columns 1 and 2 and butt-joined with phase-joint joints, and are cut out at each butt end so as to halve the thickness in the vertical direction. Phase missing joint portions 3a and 4a are formed.
[0025]
As a method of connecting the columns 1 and 2 and the beams 3 and 4 with a mechanical joint using a tenon 7 and a spigot 10, an axial tenon hole 5 is provided in the end surface portion of the columns 1 and 2 that are connected vertically. A plug hole 6 penetrating in a direction perpendicular to the tenon hole 5 is provided. As an example, the size and shape of the mortise 5 have a depth of 155 mm, and the shape seen in the plane direction is a rectangular hole of 100 mm × 60 mm in length × width. This is to reduce the cross-sectional defects of the columns 1 and 2 as much as possible. The plug hole 6 is provided as a round hole into which the plug 10 having a diameter of 60 mm fits tightly. Each is precisely finished by machining.
[0026]
Tensile holes 8 and 9 whose centers coincide with the tenon holes 5 of the columns 1 and 2 are provided in the phase-separated joint portions 3a and 4a of the beams 3 and 4 sandwiched between the end surfaces of the upper and lower columns 1 and 2, respectively. Yes. This is also precisely finished by machining.
[0027]
The tenon 7 is made of cast steel or the like, and is precisely finished by machining so that the height in the vertical direction is 450 mm and the outer diameter of the cylindrical portion is about 100 mm. The portions that fit into the tenon holes 8 and 9 of the beams 3 and 4 are formed in a cylindrical shape, and the portions that fit into the tenon holes 5 of the upper and lower columns 1 and 2 are formed as a flat flat tenon 7a. The flat tenon 7a is provided with plug-in holes 7b and 7b having the same diameter and the same center as the plug-in holes 6 of the upper and lower columns 1 and 2 in a direction perpendicular to the plane. The end of the flat tenon 7a is rounded into a semicircular shape. This is because the fitting of the columns 1 and 2 into the mortise 5 is made smooth. The plug 10 is also made of cast steel or the like, and is finished with precision by machining.
[0028]
Of the mortises 8 and 9 of the beams 3 and 4, the diameter of the mortise 8 of the upper phase-separated joint 4 a is set to be approximately equal to the outer diameter of the eccentric ring 11, which will be described later. The tenon hole 9 of the phase-separated joint 3a is precisely finished to have a diameter substantially equal to the outer diameter of the columnar part of the tenon 7. In short, the beam 3 on the left side in the figure having the lower phase-joint joint portion 3a is formed by fitting the cylindrical portion of the tenon 7 and the tenon hole 9 with high precision, so that the connecting portion with the columns 1 and 2 is removed. It eliminates rattling and performs dimensional accuracy. On the other hand, in the mortise 8 of the beam 4 on the right side in the figure having the upper phase-break joint portion 4a, composite eccentric rings 11 and 12 described later are installed so that the dimension between the cores of the columns can be adjusted. is there.
[0029]
By the way, the composite eccentric rings 11 and 12 are publicly known, for example, also described in FIG. 4 of Patent Document 5 described above, and the center-to-core dimension of the columns can be adjusted with a structure without rattling. It is precisely finished by machining. As shown in detail in FIG. 6 and FIG. 7, the outer eccentric ring 11 is formed as an eccentric circle having an outer diameter and an inner diameter of about 2 mm. It is formed to be almost equal to the diameter of the mortise hole 8 of the upper phase missing joint portion 4a, and is fitted into the mortise hole 8 with a high fitting tolerance. The inner eccentric ring 12 is also formed as an eccentric circle having an outer diameter and an inner diameter of about 2 mm. The outer diameter is substantially equal to the inner diameter of the outer eccentric ring 11, and has a high fitting tolerance. And are combined by being fitted inside the outer eccentric ring 11. The inner diameter of the inner eccentric ring 12 is formed substantially equal to the outer diameter of the cylindrical portion of the tenon 7, and the cylindrical portion of the tenon 7 is closely fitted with a high fitting tolerance.
[0030]
Therefore, the composite eccentric rings 11 and 12 are relatively rotated as shown in FIGS. 7a to 7d, so that the column core of the beam 4 is fixed to the tenon 7 fixed at the center position of the upper and lower columns 1 and 2. The center-to-core dimension can be adjusted within a range of about ± 4 mm at maximum without rattling.
[0031]
Next, the procedure of the mechanical joint method for a steel structure column beam joint according to claim 2 will be described.
First, a flat tenon 7a at the lower end portion of the tenon 7 is fitted into the tenon hole 5 on the upper end surface of the lower column 2 rising from the bottom, and stood up. Further, a bayonet plug 10 is driven through and penetrated through the bayonet hole 7b of the flat tenon 7a through the bayonet hole 6 of the lower column 2 so that the tenon 7 is fixed upward and coupled to the column 2. To do. As a result, a gap S of about 5 mm is accurately ensured as the positioning effect of the tenon 7 by the bayonet plug 10 between the lower end surface of the column portion of the tenon 7 and the upper end surface of the column 2 (see FIG. 1).
[0032]
Next, it closely fits through the tenon hole 9 of the lower beam 3 having the phase missing joint portion 3a to the cylindrical portion of the tenon 7 standing upward at the upper end of the column 2 as described above. Subsequently, the tenon hole 8 of the upper beam 4 having the phase-separated joint portion 4a is similarly fitted into the tenon 7 and joined by the phase-separated joint as shown in FIG. Next, the composite eccentric rings 11 and 12 are inserted into the gap between the inner diameter surface of the tenon hole 8 of the upper beam 4 and the outer diameter surface of the tenon 7 in advance as shown in FIGS. A combination in a state in which the dimensions are precisely adjusted so as to absorb errors such as the construction of the dimension between the cores is fitted, and the cylindrical part of the tenon 7 is closely passed through the inner diameter part of the inner eccentric ring 12. At this time, a gap T is provided between the distal ends of the beams 3 and 4 and the stepped portions forming the phase-separated joints 3a and 4a, which enables the adjustment of the dimension between the cores of the columns. (See FIG. 1). Therefore, adjustment between the cores of the columns is allowed without difficulty.
[0033]
Finally, the tenon hole 5 of the upper column 1 is fitted into the flat tenon 7a at the upper end of the tenon 7, and further, the plug hole of the flat tenon 7a is inserted through the plug hole 6 of the upper column 1. The insertion plug 10 is driven so as to penetrate through 7b and penetrates it, thereby coupling to the beam. Note that the bayonet plug 10 is fitted with stopper rings 15 at both ends thereof as shown in FIG.
[0034]
As a result, a gap S is formed between the lower end surface of the upper pillar 1 and the upper surface of the beam 4 (see FIG. 1) to keep them in non-contact. Due to these upper and lower gaps S, it is not necessary to generate a binding force or a squeak noise due to friction when the upper and lower columns 1 and 2 are rotated slightly.
[0035]
The above method can be carried out as an all-weather type and can be carried out with high dimensional accuracy since it is equivalent to assembling machined parts. And the external appearance of the completed steel-structured column beam joint part is a simple thing of the grade which can see the end surface of the plug 10 in the edge part of the pillars 1 and 2, and is good in design.
[0036]
The mechanical joint method of the steel structure column beam joint according to the invention described in claim 1 omits the illustration of the embodiment, but the column is coupled at an intermediate position of the beam like an intermediate column. The case relates to a joint method. That is, the beam is continuous as a single object, and the mortise provided through the beam is basically formed to have a diameter substantially equal to the outer diameter of the composite eccentric rings 11 and 12. Others are the same as the invention of the said Claim 2.
[0037]
【The invention's effect】
The mechanical joint method of the steel structure column beam joint according to the invention described in claims 1 and 2 to 6 does not employ any bolting or welding means as described above, and is a mechanical type using a mortise and a spigot. Since it is a method using a joint, the appearance design can be improved and no post-processing such as welding is required. Basically, it is a method of assembling products that have been precisely finished by machining, and it is possible to combine columns and beams with high dimensional accuracy, and to realize column and beam connections without rattling.
[0038]
Furthermore, the mechanical joint method for a steel structure column beam joint according to the present invention is excellent in structural stability in terms of strength and rigidity, can be carried out relatively easily in an all-weather type, and has a good design appearance. In addition to the advantages, the effects such as easy adjustment of the dimension between the column cores can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a mechanical joint in which the method of the present invention is performed.
2 is a cross-sectional view taken along the line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a perspective view showing components of the mechanical joint in an exploded state.
FIG. 6 is a plan view of a composite eccentric ring.
FIGS. 7A to 7D are plan views showing a procedure for adjusting the dimensions of the composite eccentric ring. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Column 2 Column 3 Beam 4 Beam 5 Mortise hole 6 Plug hole 7 Mortise 8, 9 Mortise hole 10 Plug 11 Outer eccentric ring 12 Inner eccentric ring 3a Beam phase joint 4a Beam phase joint S Gap T Gap 7a Flat tenon 15 Retaining ring

Claims (6)

鉄骨造の柱と梁をほぞと込み栓による機械式継手で結合する方法において、
上下に結合する柱の端面部に軸線方向のほぞ孔を設け、前記ほぞ孔と直交する方向に貫通する込み栓用孔を設けること、
前記上下の柱の端面間に挟み込む梁に、前記柱のほぞ孔と中心が一致するほぞ孔を複合偏心リングの外径とほぼ等しい口径で設けること、
下位の柱のほぞ孔へほぞの下端部を嵌め込んで立て、同下位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定すること、
前記ほぞへ梁のほぞ孔を通すと共に、同ほぞ孔へ、柱の芯芯間寸法の建方等の誤差を吸収するように予め寸法を調整した複合偏心リングの外径部及びほぞの外径とほぼ等しい口径の内径部を組み合せ、ほぞとほぞ孔の隙間に嵌め込むこと、前記ほぞの上端部へ上位の柱のほぞ孔を嵌め込み、同上位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定することを特徴とする、鉄骨構造柱梁仕口部の機械式継手方法。
In a method of joining steel columns and beams with a mortise and a mechanical joint with a stopper,
Providing a tenon hole in the axial direction on the end face of the column coupled vertically, and providing a plug hole penetrating in a direction perpendicular to the tenon hole;
Providing a tenon hole whose center coincides with the tenon hole of the column in the beam sandwiched between the end faces of the upper and lower columns with a diameter substantially equal to the outer diameter of the composite eccentric ring;
Fit the lower end of the tenon into the tenon hole of the lower column, and fix the tenon with the insertion plug inserted into the insertion hole for the lower column,
The mortise of the beam is passed through the tenon, and the outer diameter of the composite eccentric ring and the outer diameter of the tenon are adjusted in advance so as to absorb errors such as the construction of the dimensions between the cores of the columns. The inner diameter part of which is almost the same diameter as the mortar, and fit into the gap between the tenon and the tenon hole. The tenon is fixed by a mechanical joint method for a steel structure column beam joint.
鉄骨造の柱と梁をほぞと込み栓による機械式継手で結合する方法において、
上下に結合する柱の端面部に軸線方向のほぞ孔を設け、前記ほぞ孔と直交する方向に貫通する込み栓用孔を設けること、
上下の柱の端面間へ挟み込み突き合わせ接合する梁は、各々の突き合わせ端部に、上下方向の厚さを二分する程度に切り欠いた相欠け継手部を形成し、同継手部に、上下方向に貫通するほぞ孔を共通な中心線上に設けると共に、一方のほぞ孔は複合偏心リングの外径とほぼ等しい口径で設け、他方のほぞ孔はほぞの外径とほぼ等しい口径で設けること、
下位の柱のほぞ孔へほぞの下端部を嵌め込んで立て、同下位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定すること、
前記ほぞへ梁の端部のほぞ孔を通して相欠け継手を形成すると共に、前記一方のほぞ孔へ、柱の芯芯間寸法の建方等の誤差を吸収するように予め寸法を調整した複合偏心リングの外径部及びほぞの外径とほぼ等しい口径の内径部を組み合せ、ほぞとほぞ孔の隙間に嵌め込むこと、
前記ほぞの上端部へ上位の柱のほぞ孔を嵌め込み、同上位の柱の込み栓用孔へ差した込み栓により前記ほぞを固定することを特徴とする、鉄骨構造柱梁仕口部の機械式継手方法。
In a method of joining steel columns and beams with a mortise and a mechanical joint with a stopper,
Providing a tenon hole in the axial direction on the end face of the column coupled vertically, and providing a plug hole penetrating in a direction perpendicular to the tenon hole;
Beams that are sandwiched between the end faces of the upper and lower columns and butt-joined are formed with phase-separated joints that are notched to halve the vertical thickness at each butt end. A tenon hole is provided on a common center line, one tenon hole is provided with a diameter substantially equal to the outer diameter of the composite eccentric ring, and the other tenon hole is provided with a diameter substantially equal to the outer diameter of the tenon.
Fit the lower end of the tenon into the tenon hole of the lower column, and fix the tenon with the insertion plug inserted into the insertion hole for the lower column,
A composite eccentric in which a joint is formed through a tenon hole at the end of the beam to the tenon, and the dimension is adjusted in advance so as to absorb an error in the construction between the cores of the pillars in the one tenon hole. Combining the outer diameter part of the ring and the inner diameter part of the caliber approximately equal to the outer diameter of the tenon, and fitting them into the gap between the tenon and the tenon hole,
A steel structure column beam joint, wherein a tenon hole of an upper column is fitted into the upper end portion of the tenon, and the tenon is fixed by a bayonet plug inserted into a hole for the upper column of the upper column. Type joint method.
上下の柱の端面と、梁の上下面との間に、両者を非接触に保つ隙間を形成したことを特徴とする、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法。The mechanical structure of a steel structure column beam joint according to claim 1 or 2, wherein a gap is formed between the end surfaces of the upper and lower columns and the upper and lower surfaces of the beam in a non-contact manner. Joint method. 上下の柱の端面間へ挟み込み相欠け継手で突き合わせ接合する梁の端部の前記相欠け継手部を形成する段部間に、柱の芯芯間寸法を調整可能にする隙間を設けたことを特徴とする、請求項2又は3に記載した鉄骨構造柱梁仕口部の機械式継手方法。A gap is provided between the stepped portions forming the phase-separated joint at the end of the beam that is sandwiched between the end faces of the upper and lower columns and butt-joined with the phase-separated joint, so that the dimension between the cores of the columns can be adjusted. The mechanical joint method for a steel structure column beam joint according to claim 2 or 3, wherein ほぞは、梁のほぞ孔に嵌る部分を円柱状に形成し、上下の柱のほぞ孔へ嵌る部分は柱の断面欠損を可及的に低減する平板状の平ほぞに形成し、上下の柱のほぞ孔も前記平ほぞが嵌る平角孔に形成したことを特徴とする、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法。The tenon is formed in a columnar shape that fits into the tenon hole of the beam, and the part that fits into the tenon hole of the upper and lower columns is formed into a flat flat tenon that reduces the cross-sectional defect of the column as much as possible. The mechanical joint method for a steel structure column beam joint according to claim 1 or 2, wherein the tenon hole is also formed into a flat hole into which the flat tenon fits. 上下の柱の込み栓用孔へ差した込み栓は、その両端部を止め輪にて固定したことを特徴とする、請求項1又は2に記載した鉄骨構造柱梁仕口部の機械式継手方法。The mechanical joint of a steel structure column beam joint according to claim 1 or 2, wherein both ends of the plug inserted into the upper and lower column plug holes are fixed with retaining rings. Method.
JP2003001023A 2003-01-07 2003-01-07 Mechanical joint method of steel structure column beam joint Expired - Fee Related JP3671299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001023A JP3671299B2 (en) 2003-01-07 2003-01-07 Mechanical joint method of steel structure column beam joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001023A JP3671299B2 (en) 2003-01-07 2003-01-07 Mechanical joint method of steel structure column beam joint

Publications (2)

Publication Number Publication Date
JP2004211451A JP2004211451A (en) 2004-07-29
JP3671299B2 true JP3671299B2 (en) 2005-07-13

Family

ID=32819151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001023A Expired - Fee Related JP3671299B2 (en) 2003-01-07 2003-01-07 Mechanical joint method of steel structure column beam joint

Country Status (1)

Country Link
JP (1) JP3671299B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574928A (en) * 2017-10-10 2018-01-12 扬州工业职业技术学院 A kind of center pillar is with wearing girder connection joinery and its construction and its installation method
JP7103158B2 (en) * 2018-10-26 2022-07-20 日本製鉄株式会社 Planar structure of the beam
CN110258806A (en) * 2019-07-17 2019-09-20 天津大学 The mortise and tenon type node and spatial mesh structure of socket joint connection space network
CN114856005A (en) * 2020-01-20 2022-08-05 徐强 T-shaped mortise and tenon joint structure
CN112411750A (en) * 2020-11-11 2021-02-26 刘斌 Safe formula steel construction node component
CN112627335A (en) * 2020-12-07 2021-04-09 刘斌 Steel structure beam column

Also Published As

Publication number Publication date
JP2004211451A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
KR100459092B1 (en) Friction stir joining method and structure body manufactured according to friction stir joining method
JP3671299B2 (en) Mechanical joint method of steel structure column beam joint
JP4943747B2 (en) Column base structure and construction method of steel pipe column
JP2007107675A (en) Joint structure of pipes
JP2005098036A (en) Joining structure for wood member
JP2002242303A (en) Joint construction method for steel-pipe column
JP4570498B2 (en) Member connector
JP2007023763A (en) Steel pipe joint structure and steel pipe joining method
JP2004263548A (en) Connection structure between timbers in wooden building, and method of connecting the same
JP5041863B2 (en) Steel frame
JP6785213B2 (en) Joining metal fittings and building structure using them
JP2006274564A (en) Floor formation method and floor formation structure
JP4469300B2 (en) Bonded hardware
JP2006183427A (en) Joint metal fixture for construction
JPH1025817A (en) Special joint fitting for afc construction method, wood member jointing method using this fitting, and method of cutting this fitting
JP2006312819A (en) Column and beam joint fixture and column and beam joint structure
JP4031741B2 (en) Connection structure of base material and pillar material in wooden structure
JP2009121091A (en) Column joint structure
JP6914113B2 (en) Welding method, tank construction method
JP3111912U (en) Shaft dowels and architectural fittings
JP4029749B2 (en) Joint reinforcement structure in woody structure
JP3446160B2 (en) Backing material for seam welding
JP5698602B2 (en) Bonding bracket for building
TWI599701B (en) The connection device on the end of the brace element.
JP2020139327A (en) Pin bearing, bearing device, structural bearing structure, and manufacturing method for pin bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees