JP3670254B2 - Repeater device and control program for repeater device - Google Patents

Repeater device and control program for repeater device Download PDF

Info

Publication number
JP3670254B2
JP3670254B2 JP2002197830A JP2002197830A JP3670254B2 JP 3670254 B2 JP3670254 B2 JP 3670254B2 JP 2002197830 A JP2002197830 A JP 2002197830A JP 2002197830 A JP2002197830 A JP 2002197830A JP 3670254 B2 JP3670254 B2 JP 3670254B2
Authority
JP
Japan
Prior art keywords
signal
suppression
transmission
amplitude
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197830A
Other languages
Japanese (ja)
Other versions
JP2004040665A (en
Inventor
利幸 前山
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2002197830A priority Critical patent/JP3670254B2/en
Publication of JP2004040665A publication Critical patent/JP2004040665A/en
Application granted granted Critical
Publication of JP3670254B2 publication Critical patent/JP3670254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無線通信に用いられ、同一周波数で、送信信号の受信アンテナへの回り込みによる干渉信号を抑制する機能を備えたリピータ装置及びリピータ装置の制御プログラムに関する。
【0002】
【従来の技術】
無線基地局の電波の届きにくいビル内やトンネル内若しくは山岳地域等の電波状況を改善するものとして、リピータ装置(中継装置や無線中継ブースタとも称される)が用いられている。このリピータ装置は、基本的には受信した電波を増幅して送信するだけなので、前進基地局のように専用回線を敷設する必要がなく、設備コストを低減できるという利点がある。
【0003】
ところで、リピータ装置の受信電波と送信電波の周波数が同一であることから、送信信号が受信アンテナに回り込んで干渉信号となり、発振を生じる問題がある。この場合、送信アンテナと受信アンテナを物理的に離間させてアンテナ間の結合量を小さくするのは、設備規模が大きくなり物理的に置局できない場合があるので現実的ではない。
【0004】
このようなことから、例えば特開平9−284195号公報には、上記干渉信号を除去(抑制)する技術が開示されている。同公報に添付の図4及び段落0007〜0014によると、上記回り込み干渉信号を抑制する抑圧信号を制御器12で生成し、結合器3から受信信号にフィードバックさせる技術が例示されている。そして、抑圧信号自体は、次の2つの信号を複素相関器14で複素相関して得られる残留干渉信号を、減衰器10、移相器9で適宜処理して生成される。複素相関するための2つの信号は、フィードバックされた受信信号(キャンセラ出力信号)を直交検波器4で直交検波した信号と、この信号を復調器5でデジタルデータに復調した後波形生成器6で再生した再生直交信号とからなる。ここで、再生直交信号は上記残留干渉信号を検出するリファレンスであり、このリファレンスとキャンセラ出力信号の検波信号とを比較(複素相関)することで、残留干渉信号が抽出される。そして、信号復調器5で復調した後に波形生成器6を用いることでリファレンスが生成されることが特徴となっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術の場合、受信電波を復調器5で一旦データに変換した後、波形生成器6を経て直交変調器7で再度変調して送信電波を生成するため、変復調の演算時間の分だけ受信信号を送信する迄に遅延が生じ、特に遅延量の影響を受け易い動画配信等には適さないという問題がある。
【0006】
このようなことから、本発明者らは、特開2001−196994号公報において、受信信号を変復調せずに送信信号として出力するリピータ装置を提案したが、回り込み干渉信号を低減するための具体的制御手法については未検討であった。
【0007】
本発明は、上記した問題点に鑑みてなされたもので、受信信号を変復調せずに送信信号として出力する場合に、送信信号の受信アンテナへの回り込みによる干渉信号を低減可能なリピータ装置及びリピータ装置の制御プログラムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、本発明のリピータ装置は、受信アンテナから受信された受信信号を直接中継して送信アンテナから送信信号として出力するリピータ装置であって、前記受信信号に所定の第1の遅延量を付加する第1の遅延量付加手段と、前記遅延量が付加された信号が前記送信信号として出力される場合に、該送信信号の前記受信アンテナへの回り込みによる干渉信号を抑制するための抑圧信号を生成する抑圧制御信号生成手段と、前記抑圧信号を前記受信信号にフィードバックさせるフィードバック手段とを備え、前記抑圧制御信号生成手段は、前記フィードバックされた受信信号と前記送信信号とに基づく相関演算を行って干渉信号の残差成分を検出し、該残差成分に基づいて前記抑圧信号を生成するリピータ装置であり、前記抑圧制御信号生成手段は、前記送信信号に前記受信アンテナと前記送信アンテナ間の伝搬遅延を付加する第2の遅延量付加手段と、前記フィードバックされた受信信号と前記伝搬遅延が付加された送信信号とを複素相関演算する演算手段と、この複素相関演算結果がゼロとなるように、前記伝搬遅延が付加された送信信号の位相および振幅を制御し、前記抑圧信号を生成する制御手段とを具備することを特徴とする。
このようにすると、フィードバックされた受信信号と送信信号とに基づく相関演算を行って残差成分を検出し、該残差成分に基づいて抑圧信号を生成する際、送信信号に遅延量が付加されている。従って、リファレンス信号と残差成分との相関以外の信号の相関が低くなり、残差成分を精度よく検出して抑圧信号を生成できる。その結果、受信信号を変復調せずに送信信号として出力するリピータ装置においても、回り込み干渉信号の低減を実現できる。さらに、リファレンス信号と残差成分の位相がほぼ完全に揃うので、残差成分をさらに精度よく検出して抑圧信号を生成できる。
【0010】
前記リピータ装置が符号分割多元接続方式による無線通信に用いられる場合に、前記第1の遅延量は、前記符号分割多元接続方式における拡散変調速度の逆数以上の値としてもよい。
このようにすると、リファレンス信号と残差成分との相関以外の信号の相関がさらに低くなり、残差成分を極めて精度よく検出して抑圧信号を生成できる。
【0011】
本発明において、前記抑圧制御信号生成手段は、前記干渉信号と振幅が略同一でかつ逆位相の信号となるよう、前記抑圧信号を生成してもよい。
このようにすると、振幅の大きな抑圧信号が残差成分に加算されるので、収束が速くなる利点がある。
【0012】
前記抑圧制御信号生成手段は、前記残差成分より振幅が小さく、かつ逆位相の信号となるようなベクトル信号を生成し、前記抑圧信号にベクトル加算してもよい。
このようにすると、残差成分の変動や相関演算での計算誤差により誤った抑圧信号を加算しても、抑圧信号の振幅が小さいためにその影響が低減される。
【0013】
前記抑圧制御信号生成手段は、前記残差成分と逆位相の信号となるよう、ベクトル信号を生成し、前記フィードバック数に応じて、該ベクトル信号の振幅と位相とを決定してもよい。
このようにすると、抑圧信号の誤差が少ない場合等には振幅の大きな抑圧信号を残差成分に加算して収束を速め、抑圧信号に誤差を含む場合等には抑圧信号の振幅を小さくして誤差の影響を低減させるので、より迅速かつ確実に収束できる。
【0014】
本発明のリピータ装置の制御プログラムは、受信アンテナから受信された受信信号を直接中継して送信アンテナから送信信号として出力するリピータ装置の制御プログラムであって、前記受信信号に所定の第1の遅延量が付加された信号が前記送信信号として出力される場合に、該送信信号の前記受信アンテナへの回り込みによる干渉信号を抑制するための抑圧信号を生成する過程と、前記抑圧信号を前記受信信号にフィードバックさせる過程とを前記リピータ装置に実行させ、前記抑圧信号生成過程、前記フィードバックされた受信信号と前記送信信号とに基づく相関演算を行って干渉信号の残差成分を検出し、該残差成分に基づいて前記抑圧信号を生成するものであり、前記抑圧信号生成過程において、前記送信信号に前記受信アンテナと前記送信アンテナ間の伝搬遅延を付加し、前記フィードバックされた受信信号と前記伝搬遅延が付加された送信信号とを複素相関演算し、この複素相関演算結果がゼロとなるように、前記伝搬遅延が付加された送信信号の位相および振幅を制御し、前記抑圧信号を生成することを特徴とする。
【0015】
前記抑圧信号生成過程において、前記干渉信号と振幅が略同一でかつ逆位相の信号となるよう、前記抑圧信号を生成してもよい。
【0016】
前記抑圧信号生成過程において、前記残差成分より振幅が小さくかつ逆位相の信号となるようなベクトル信号を生成し、前記抑圧信号にベクトル加算してもよい。
【0017】
前記抑圧信号生成過程において、前記残差成分と逆位相の信号となるよう、ベクトル信号を生成し、前記フィードバック数に応じて、該ベクトル信号の振幅と位相とを決定してもよい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について、各図を参照して説明する。図1は、本発明にかかるリピータ装置2の構成ブロック図の一例である。以下では、信号の流れを追って説明する。
【0019】
この図において、リピータ装置2は、基地局向けアンテナ20によって、基地局1から送信された下り回線周波数fD電波の信号を受信する。受信された信号は、アンテナ共用器(DPX)又はサーキュレータによって分配され、リピータ部22へ送信される。この信号は、リピータ部22内で増幅され、増幅された信号は、アンテナ共用器又はサーキュレータを介して移動局向けアンテナ21から移動局3へ下り回線周波数fDの電波で再送信される。
【0020】
逆に、リピータ装置2は、移動局向けアンテナ21によって、移動局3から送信された上り回線周波数fU電波の信号を受信する。受信された信号は、アンテナ共用器(DPX)又はサーキュレータによって分配され、リピータ部22へ送信される。この信号は、リピータ部22内で増幅され、増幅された信号は、アンテナ共用器を介して、基地局向けアンテナ20から基地局1へ上り回線周波数fUの電波で再送信される。
【0021】
図2は、本発明によるリピータ部22の回路構成図である。以下では、基地局向けアンテナ20から受信した電波の信号を、移動局向けアンテナ21から再送信する場合を想定するが、逆の場合も同様であり、送受信するアンテナが入れ替わるだけであるので説明を省略する。
【0022】
この図において、リピータ部22は、受信アンテナ(基地局向けアンテナ)20の受信信号を直接中継、つまり、受信信号を変復調せずに送信アンテナ(移動局向けアンテナ)21から送信信号として出力する。リピータ部22は、遅延回路(遅延量付加手段)30、抑圧信号生成回路(抑圧制御信号生成手段)32、加算器(フィードバック手段)34、低雑音増幅器36、37及び高出力増幅器38、所定の分配器40〜42を備えている。また、抑圧信号生成回路32は、入力された信号をアナログ/デジタル変換するAD変換部32b、AD変換部32bでデジタル変換された信号を処理するデジタル信号処理部32a、遅延回路33c、信号の位相・振幅制御をする位相制御部33d及び振幅制御部33eを備えている。
【0023】
次に、上記リピータ部22での信号の処理について説明する。まず、受信アンテナ20は、送信アンテナの送信信号S(t)(以下、各種信号を時間tの関数として表す)に対し、回り込み干渉波I(t)が加算された受信信号R(t)を受信する。そして受信信号R(t)に対し、加算器34から抑圧信号M(t)が加算され、リピータ部22内の信号はR’(t)となる。さらに、R’(t)は低雑音増幅器36で増幅された後、分配器40により2系統に分波される。分波された信号のうち主信号系を伝送する信号は、低雑音増幅器37で増幅された後、遅延回路30により遅延量τを与えられ、さらに高出力増幅器38で増幅され、分配器41により2系統に分波され、一方の信号が送信アンテナ21から送信される。
【0024】
また、分配器41により分波された他の信号L(t)(参照信号とする)は、さらに分配器42により2系統に分波される。
【0025】
そして、分配器40で分波された他の信号R’(t)と、分配器42で分波された信号L(t)の一部は、抑圧信号生成回路32のAD変換部32bに入力されてデジタル変換された後、デジタル信号処理部32aで複素相関演算され、回り込み干渉波信号成分を抽出する。複素相関演算については後述する。
【0026】
さらに、分配器42で分波された他の信号L(t)は、抑圧信号生成回路32の遅延回路33cで伝搬遅延dを付加された後、デジタル信号処理部32aの複素相関演算結果をゼロとする(回り込み干渉波成分が抑圧信号によりキャンセルされる)よう位相制御部33d及び振幅制御部33eで位相振幅制御され、抑圧信号M(t)となる。ここで、伝搬遅延dは、受信アンテナ20と送信アンテナ21間の伝搬距離等に起因する遅延である。また、位相制御部33d及び振幅制御部33eは、デジタル信号処理部32aからの制御信号により制御を行う。以後、抑圧信号M(t)が生成されて受信信号R(t)に加算されるフィードバックが繰り返され、干渉波I(t)が抑制されることになる。なお、ここでは、回り込み干渉波成分が抑圧信号によりキャンセルされ、相関がなくなるように位相と振幅をフィードバック制御するようになっている。
【0027】
次に、デジタル信号処理部32aにおける複素相関演算について説明する。まず、受信信号R(t)は、
R(t)=S(t)+I(t) (1)
で表される。ここで、I(t)は、遅延量τ及びd、並びに受信アンテナと送信アンテナ間のアイソレーション減衰kを受けるので、
I(t)=k×S(t−τ−d) (2)
で表される。そして、上記方向性結合器34によりR(t)すなわちI(t)にM(t)が加算されると、I(t)は抑制されて残差成分εとなる。このεは、
ε(t−τ−d)=I(t)+M(t) (3)
で表される。従って、R’(t)は、
R’(t)=S(t)+ε(t−τ−d) (4)
となり、これに基づいて複素相関演算される。
【0028】
一方、同様に複素相関演算に用いられるL(t)は、R’(t)に遅延量τが付加されたものであるので、
L(t)=S(t−τ)+ε(t−2τ−d) (5)
で表される。
【0029】
以上のR’(t)及びL(t)に基づいて複素相関演算を行う。ここで、相関演算とは、2つの波形(関数)の類似性を求める演算であり、値がゼロであれば、相関がない、つまり波形の類似性がないことになる。そして、S(t)とε(t)の間の相関がゼロとなるようなM(t)を計算すれば、干渉波を抑制することができる。ところが、式(4)、(5)から明らかなように、本発明においては直接中継を行っているためにε(t)にリピータ部の信号経路上の遅延(τやt)が混じり、相関演算すべきS(t)とε(t)の位相が揃っていない。一方、前記した従来技術では、受信信号を復調する際に位相の揃った参照信号を得ることができるので、上記(4)、(5)式に相当する式をそのまま相関演算に用いることができる。
【0030】
そこで、デジタル信号処理部32a内でL(t)に遅延dをデータ上与えると、
L’(t)=S(t−τ−d)+ε(t−2τ−2d) (6)
となる。
式(4)と(6)を比較すると、式(4)と(6)の第1項同士、式(4)と(6)の第2項同士、式(4)の第1項と式(6)の第2項同士は、いずれも互いの遅延時間(位相)がτ以上異なるので、τを十分大きく取れば相関が低くなる。一方、式(4)の第2項と式(6)の第1項同士は遅延時間(位相)が等しいので、相関演算することができ、相関値E(t)として、
E(t)=S(t−τ−d)・ε(t−τ−d) (7)
を得ることができる。従って、この複素相関演算結果がゼロとなる(キャンセルする)ようなM(t)を生成すべく、位相・振幅制御をすればよいことになる。
【0031】
つまり、M(t)は、L’(t)に制御係数Dを乗じて、
M(t)=D×L’(t) (8)
となる。ここで、Dは、
【数1】

Figure 0003670254
で表される(μは忘却係数)。そして、位相Φと振幅Aの制御量は、
Φ(t)=angle(D) (10)
A(t)=abs(D) (11)
で求められる。
【0032】
遅延量τは、上記した式(4)と(6)の第1項同士、式(4)と(6)の第2項同士、式(4)の第1項と式(6)の第2項同士の相関が低くなるような値であればよい。特に、リピータ装置がCDMA等の符号分割多元接続方式による無線通信に用いられる場合、拡散変調速度(いわゆるビットレート)の逆数以上の値とすると、より相関が低くなるので、E(t)を精度よく抽出することができ好ましい。
【0033】
なお、上記の代わりに、式(4)の第1項と式(5)の第2項同士の遅延時間(位相)が揃うようにしてもよい。つまり、式(4)に(2τ+d)分の遅延を付加し、これを式(5)と比較してもよい。
【0034】
次に、抑圧信号生成回路32で抑圧信号M(t)を生成する場合の好ましい態様について説明する。上述のように、理想的にはデジタル信号処理部32aの複素相関演算結果がゼロとなる(残差成分をキャンセルする)抑圧信号M(t)を生成すればよいが、実際には、演算上の誤差、あるいは送受信アンテナが風で揺れて上記dが変動する等の理由により、抑制すべき残差成分(干渉波)自体が変動することがある。このことを、図3を参照して説明する。
【0035】
図3は、複素平面(I−Q平面)上で各種信号をベクトル表示した図である。この図において、抑圧信号Mは、干渉波Iと振幅が略同一でかつ逆位相であるので、理想的にはIが完全に抑制(キャンセル)される。しかし、例えば送受信アンテナが揺れてIの位相が変動してI’になると、IとMを加算した際に残差成分εが残る。この場合、Iが大きく変動するとεが生じ、I’をキャンセルするための抑圧信号M’やその残差成分ε’も存在領域が急に変化するので、収束点に近づくことが困難になる虞もある。
【0036】
そこで、好ましくは本発明において、残差成分より振幅が小さく、かつ逆位相の信号をベクトル信号として生成し、抑圧信号にベクトル加算するとよい。このことを、図4を参照して説明する。
【0037】
図4は、複素平面上で各種信号をベクトル表示した図である。ここで、干渉波Iは、残差成分と抑圧信号Mとから逆算して求められるものである。この図において、第1回目の抑圧信号Mは、前記図3と同様、干渉波Iと振幅が略同一でかつ逆位相である。これは、なるべく収束が速くなるよう、初期には振幅の大きな抑圧信号を生成させるためである。次のフィードバックでは、前記図3のM’でなく、εより振幅が小さく(この実施例では1/10)かつ逆位相のベクトル信号N1を抑圧信号Mにべクトル加算して正味の抑圧信号とする。このようにすると、残差成分の変動や相関演算での計算誤差により誤ったベクトル信号を生成しても、そのベクトル信号の振幅が小さいためにその影響が低減される。
【0038】
例えば、前述の特開平9−284195号公報記載の技術の場合、各フィードバック毎に、残留干渉信号が小さくなる(と思われる)方向にキャンセラ制御信号を生成するため、収束点に近づいたり離れたりを繰返し、なかなか収束しないことがある(同公報の明細書に添付の図3参照)。一方、本発明の好ましい態様によれば、抑圧信号(キャンセラ制御信号)のベクトル方向は、残差成分と逆向きであり、振幅だけが小さいので、各フィードバック毎に収束点にだんだん近づくことになり、また上述のように誤った抑圧信号を生成してもその影響が小さいので、結果として迅速かつ確実に収束させることができる。
【0039】
以下、Nnはεnの1/10の振幅で逆位相であり、M1にN1を加算して生じたM2に対しε2が生じ、ε2からベクトルN2が生成され、ベクトルN2を加算し、次にM2にN2を加算して生じたM3に対しε3が生じ、ε3からベクトルN3が生成され、ベクトルN3を加算するフィードバックを繰り返すと、ε4が生じ、いずれ収束する(ε=0)ようになる。このように、残差成分より振幅の小さなベクトル信号を生成することにより、残差成分を少しずつキャンセルするので、残差成分の変動や計算誤差によって誤ったベクトル信号が抑圧信号に加算される影響が小さくなり、迅速かつ確実に収束させることができる。
【0040】
ベクトル信号の振幅は上記実施例に限定されることはない。例えば、残差成分の変動や計算誤差が少ない場合は、残差成分と振幅が略同一でかつ逆位相の信号をベクトル信号として加算してもよい。又、ベクトル信号の振幅を小さくする方法としては、上記したようにフィードバック数(上記実施例では2回目のフィードバックから振幅を減らした)に応じてもよい。例えば、1回目から微小ベクトルを加算(フィードバック)する方法と、2回目から微小ベクトルを加算する方法の2通りがある。前者の場合は収束するまでの時間を要するが、後者の場合は、ある程度の信号抑圧を行った所からフィードバックが始まるので、収束が早くなるという利点がある。また、フィードバックの途中で振幅を残差成分と同一に戻してもよく、要は、いずれかのフィードバックでベクトル信号の振幅を小さくすればよい。
【0041】
なお、本発明のリピータ装置が行う上記動作は、コンピューターによって実行されるソフトウェアプログラムによって実現することができ、上記リピータ装置(コンピューター)内で実行されるソフトウェアプログラムは、コンピューター読み取り可能な記憶媒体あるいは通信回線を介して配布することが可能である。
【0042】
【発明の効果】
以上説明したように、本発明によれば、フィードバックされた受信信号と送信信号とに基づく相関演算を行って残差成分を検出し、該残差成分に基づいて抑圧信号を生成する際、送信信号に遅延量が付加されている。従って、リファレンス信号と残差成分との相関以外の信号の相関が低くなり、残差成分を精度よく検出して抑圧信号を生成できる。その結果、受信信号を変復調せずに送信信号として出力するリピータ装置においても、送信信号の受信アンテナへの回り込みによる干渉信号の低減を実現できる。さらに、送信信号に受信アンテナと送信アンテナ間の伝搬遅延を付加した後、相関演算を行うことにより、リファレンス信号と残差成分の位相がほぼ完全に揃うので、残差成分をさらに精度よく検出して抑圧信号を生成できる。
【0044】
本発明のリピータ装置が符号分割多元接続方式による無線通信に用いられる場合に、所定の遅延量を拡散変調速度以上とすれば、リファレンス信号と残差成分との相関以外の信号の相関がさらに低くなり、残差成分を極めて精度よく検出して抑圧信号を生成できる。
【0045】
本発明において、残差成分と振幅が略同一でかつ逆位相の信号をベクトル信号として生成し、抑圧信号にベクトル加算すれば、振幅の大きな抑圧信号が干渉波信号に加算されるので、収束が速くなる利点がある。
【0046】
本発明において、残差成分より振幅が小さく、かつ逆位相の信号をベクトル信号として生成し、抑圧信号にベクトル加算すれば、残差成分の変動や相関演算での計算誤差により誤ったベクトル信号を加算しても、ベクトル信号の振幅が小さいためにその影響が低減される。つまり、収束に時間がかかったり収束不能となる事態が防止される。
【0047】
本発明において、残差成分と逆位相の信号をベクトル信号として生成し、残差成分の位相若しくは振幅、又はフィードバック数に応じて、該ベクトル信号の振幅を決定すれば、抑圧信号の誤差が少ない場合等には振幅の大きなベクトル信号を抑圧信号に加算して収束を速め、抑圧信号に誤差を含む場合等にはベクトル信号の振幅を小さくして誤差の影響を低減させるので、より迅速かつ確実に収束できる。
【図面の簡単な説明】
【図1】 本発明のリピータ装置の構成図である。
【図2】 リピータ部の回路構成図である。
【図3】 複素平面上で各種信号をベクトル表示した図である。
【図4】 複素平面上で各種信号をベクトル表示した別の図である。
【符号の説明】
2 リピータ装置
20 受信アンテナ
21 送信アンテナ
22 リピータ部22
30 遅延量付加手段
32 抑圧制御信号生成手段
34 フィードバック手段
R(t) 受信信号
I(t) 干渉信号
M(t) 抑圧信号
R’(t) フィードバックされた受信信号
L(t) 送信信号
τ 所定の遅延量[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a repeater device and a control program for a repeater device that are used for wireless communication and have a function of suppressing an interference signal caused by a sneaking of a transmission signal to a reception antenna at the same frequency.
[0002]
[Prior art]
Repeater devices (also called relay devices or wireless relay boosters) are used to improve the radio wave conditions in buildings, tunnels, or mountainous areas where radio base station radio waves are difficult to reach. Since this repeater apparatus basically only amplifies and transmits the received radio wave, there is no need to install a dedicated line unlike the forward base station, and there is an advantage that the equipment cost can be reduced.
[0003]
By the way, since the frequency of the reception radio wave and the transmission radio wave of the repeater device is the same, there is a problem that the transmission signal goes around the reception antenna and becomes an interference signal, causing oscillation. In this case, it is not realistic to physically separate the transmitting antenna and the receiving antenna to reduce the coupling amount between the antennas because the equipment scale increases and physical placement may not be possible.
[0004]
For this reason, for example, Japanese Patent Laid-Open No. 9-284195 discloses a technique for removing (suppressing) the interference signal. According to FIG. 4 and paragraphs 0007 to 0014 attached to the publication, there is exemplified a technique in which a suppression signal for suppressing the sneak interference signal is generated by the controller 12 and fed back from the coupler 3 to the received signal. The suppression signal itself is generated by appropriately processing the residual interference signal obtained by complex correlation of the following two signals with the complex correlator 14 with the attenuator 10 and the phase shifter 9. The two signals for complex correlation are a signal obtained by quadrature detection of the feedback received signal (canceller output signal) by the quadrature detector 4, and this signal is demodulated into digital data by the demodulator 5 and then by the waveform generator 6. It consists of a reproduced quadrature signal. Here, the reproduced quadrature signal is a reference for detecting the residual interference signal, and the residual interference signal is extracted by comparing (complex correlation) this reference with the detection signal of the canceller output signal. A feature is that the reference is generated by using the waveform generator 6 after being demodulated by the signal demodulator 5.
[0005]
[Problems to be solved by the invention]
However, in the case of the above prior art, the received radio wave is once converted into data by the demodulator 5 and then modulated again by the quadrature modulator 7 via the waveform generator 6 to generate a transmission radio wave. There is a problem that a delay occurs until the received signal is transmitted, and it is not suitable for moving picture distribution that is particularly susceptible to the delay amount.
[0006]
In view of the above, the present inventors have proposed a repeater device that outputs a received signal as a transmission signal without modulating / demodulating in Japanese Patent Laid-Open No. 2001-196994, but a specific method for reducing a wraparound interference signal is proposed. The control method has not been studied.
[0007]
The present invention has been made in view of the above-described problems, and a repeater device and a repeater that can reduce an interference signal due to a wraparound of a transmission signal to a reception antenna when the reception signal is output as a transmission signal without modulation / demodulation. It is an object to provide a control program for an apparatus.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a repeater apparatus according to the present invention is a repeater apparatus that directly relays a received signal received from a receiving antenna and outputs the signal as a transmitted signal from a transmitting antenna . First delay amount adding means for adding a delay amount of 1 and when a signal to which the delay amount is added is output as the transmission signal, an interference signal due to the wraparound of the transmission signal to the reception antenna is suppressed. Suppression control signal generation means for generating a suppression signal for performing feedback, and feedback means for feeding back the suppression signal to the reception signal, wherein the suppression control signal generation means includes the feedback received signal and the transmission signal. a correlation calculation based on the performing detects the residual component of the interference signal, the repeater apparatus der to generate the suppression signal based on said residue difference component The suppression control signal generation means includes a second delay amount addition means for adding a propagation delay between the reception antenna and the transmission antenna to the transmission signal, and the feedback signal received and the propagation delay added. Arithmetic means for performing a complex correlation operation on the transmission signal; and control means for controlling the phase and amplitude of the transmission signal to which the propagation delay is added so that the result of the complex correlation operation becomes zero, and generating the suppression signal; It is characterized by comprising .
In this way, when performing a correlation operation based on the fed back received signal and transmission signal to detect a residual component and generating a suppression signal based on the residual component, a delay amount is added to the transmission signal. ing. Accordingly, the correlation of the signals other than the correlation between the reference signal and the residual component becomes low, and the suppression component can be generated by accurately detecting the residual component. As a result, even in a repeater device that outputs a received signal as a transmission signal without modulating / demodulating the received signal, reduction of a sneak interference signal can be realized. Furthermore, since the phases of the reference signal and the residual component are almost completely aligned, it is possible to detect the residual component more accurately and generate a suppression signal.
[0010]
When the repeater apparatus is used for wireless communication using the code division multiple access scheme, the first delay amount may be a value equal to or greater than the inverse of the spreading modulation rate in the code division multiple access scheme.
In this way, the correlation of signals other than the correlation between the reference signal and the residual component is further reduced, and the suppression component can be generated by detecting the residual component with extremely high accuracy.
[0011]
In the present invention, the suppression control signal generation means may generate the suppression signal such that the amplitude is substantially the same as that of the interference signal and has an opposite phase.
In this way, since a suppression signal having a large amplitude is added to the residual component, there is an advantage that convergence is quickened.
[0012]
The suppression control signal generation unit may generate a vector signal having an amplitude smaller than that of the residual component and an antiphase signal, and add the vector to the suppression signal.
In this way, even if an erroneous suppression signal is added due to residual component fluctuations or a calculation error in correlation calculation, the influence of the suppression signal is reduced because the amplitude of the suppression signal is small.
[0013]
The suppression control signal generation unit may generate a vector signal so as to be a signal having an opposite phase to the residual component, and determine the amplitude and phase of the vector signal according to the number of feedbacks.
In this way, when the error of the suppression signal is small, the suppression signal having a large amplitude is added to the residual component to speed up the convergence, and when the suppression signal includes an error, the amplitude of the suppression signal is decreased. Since the influence of error is reduced, convergence can be performed more quickly and reliably.
[0014]
A control program of the repeater device of the present invention is a control program of the repeater unit for outputting as a transmission signal the signal received from the receiving antenna directly relayed to the transmitting antenna, a first delay of a predetermined in the received signal When a signal with an amount added is output as the transmission signal, a process of generating a suppression signal for suppressing an interference signal due to a wraparound of the transmission signal to the reception antenna, and the suppression signal as the reception signal in a process of feedback is executed by the repeater device, the suppression signal generation process, the residual component of the interference signal is detected by performing a correlation calculation based on the feedback received signal and the transmission signal and, said residue is intended to generate the suppression signal based on the difference component, in the suppression signal generation process, the receiving antenna to the transmission signal And a propagation delay between the transmission antennas, a complex correlation operation is performed on the received signal fed back and the transmission signal to which the propagation delay is added, and the propagation delay is calculated so that a result of the complex correlation operation becomes zero. The suppression signal is generated by controlling the phase and amplitude of the transmission signal to which is added .
[0015]
In the suppression signal generation process, the suppression signal may be generated so that the amplitude is substantially the same as that of the interference signal and has an opposite phase.
[0016]
In the suppression signal generation process, a vector signal having an amplitude smaller than that of the residual component and an antiphase signal may be generated, and the vector addition may be performed on the suppression signal.
[0017]
In the suppression signal generation process, a vector signal may be generated so as to be a signal having an opposite phase to the residual component, and the amplitude and phase of the vector signal may be determined according to the number of feedbacks.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an example of a configuration block diagram of a repeater device 2 according to the present invention. Hereinafter, the signal flow will be described.
[0019]
In this figure, the repeater apparatus 2 receives a signal of a downlink frequency fD radio wave transmitted from the base station 1 by the base station antenna 20. The received signal is distributed by an antenna duplexer (DPX) or a circulator and transmitted to the repeater unit 22. This signal is amplified in the repeater unit 22, and the amplified signal is retransmitted from the mobile station antenna 21 to the mobile station 3 via the antenna duplexer or circulator as a radio wave having a downlink frequency fD.
[0020]
On the contrary, the repeater apparatus 2 receives the signal of the uplink frequency fU radio wave transmitted from the mobile station 3 by the mobile station antenna 21. The received signal is distributed by an antenna duplexer (DPX) or a circulator and transmitted to the repeater unit 22. This signal is amplified in the repeater unit 22, and the amplified signal is retransmitted from the base station antenna 20 to the base station 1 using the radio wave of the uplink frequency fU via the antenna duplexer.
[0021]
FIG. 2 is a circuit diagram of the repeater unit 22 according to the present invention. In the following, it is assumed that the radio wave signal received from the base station antenna 20 is retransmitted from the mobile station antenna 21, but the reverse case is also the same, and only the antenna for transmission and reception is switched. Omitted.
[0022]
In this figure, the repeater unit 22 directly relays the reception signal of the reception antenna (base station antenna) 20, that is, outputs the reception signal as a transmission signal from the transmission antenna (mobile station antenna) 21 without modulating / demodulating the reception signal. The repeater unit 22 includes a delay circuit (delay amount adding means) 30, a suppression signal generation circuit (suppression control signal generation means) 32, an adder (feedback means) 34, low noise amplifiers 36 and 37, and a high output amplifier 38, Distributors 40 to 42 are provided. The suppression signal generation circuit 32 also includes an AD conversion unit 32b that performs analog / digital conversion on the input signal, a digital signal processing unit 32a that processes a signal digitally converted by the AD conversion unit 32b, a delay circuit 33c, and a signal phase. A phase control unit 33d and an amplitude control unit 33e that perform amplitude control are provided.
[0023]
Next, signal processing in the repeater unit 22 will be described. First, the reception antenna 20 generates a reception signal R (t) obtained by adding a sneak interference wave I (t) to a transmission signal S (t) of the transmission antenna (hereinafter, various signals are expressed as a function of time t). Receive. Then, the suppression signal M (t) is added from the adder 34 to the received signal R (t), and the signal in the repeater unit 22 becomes R ′ (t). Further, R ′ (t) is amplified by the low noise amplifier 36 and then divided into two systems by the distributor 40. Of the demultiplexed signal, the signal transmitted through the main signal system is amplified by the low noise amplifier 37, given a delay amount τ by the delay circuit 30, further amplified by the high output amplifier 38, and distributed by the distributor 41. Two signals are demultiplexed, and one signal is transmitted from the transmission antenna 21.
[0024]
Further, another signal L (t) (referred to as a reference signal) demultiplexed by the distributor 41 is further demultiplexed into two systems by the distributor 42.
[0025]
The other signal R ′ (t) demultiplexed by the distributor 40 and a part of the signal L (t) demultiplexed by the distributor 42 are input to the AD conversion unit 32 b of the suppression signal generation circuit 32. After the digital conversion, the digital signal processing unit 32a performs a complex correlation operation to extract a wraparound interference wave signal component. The complex correlation calculation will be described later.
[0026]
Further, the other signal L (t) demultiplexed by the distributor 42 is added with a propagation delay d by the delay circuit 33c of the suppression signal generation circuit 32, and then the complex correlation calculation result of the digital signal processing unit 32a is set to zero. The phase control unit 33d and the amplitude control unit 33e perform phase / amplitude control so that the suppression signal M (t) is obtained so that the wraparound interference wave component is canceled by the suppression signal. Here, the propagation delay d is a delay due to a propagation distance or the like between the reception antenna 20 and the transmission antenna 21. Further, the phase control unit 33d and the amplitude control unit 33e perform control by a control signal from the digital signal processing unit 32a. Thereafter, the suppression signal M (t) is generated and the feedback added to the received signal R (t) is repeated, and the interference wave I (t) is suppressed. Here, feedback control is performed on the phase and amplitude so that the sneak interference signal component is canceled by the suppression signal and the correlation is lost.
[0027]
Next, the complex correlation calculation in the digital signal processing unit 32a will be described. First, the received signal R (t) is
R (t) = S (t) + I (t) (1)
It is represented by Here, since I (t) receives the delay amounts τ and d and the isolation attenuation k between the reception antenna and the transmission antenna,
I (t) = k × S (t−τ−d) (2)
It is represented by When M (t) is added to R (t), that is, I (t) by the directional coupler 34, I (t) is suppressed to become a residual component ε. This ε is
ε (t−τ−d) = I (t) + M (t) (3)
It is represented by Therefore, R ′ (t) is
R ′ (t) = S (t) + ε (t−τ−d) (4)
Based on this, the complex correlation is calculated.
[0028]
On the other hand, L (t) used in the complex correlation calculation is obtained by adding a delay amount τ to R ′ (t).
L (t) = S (t−τ) + ε (t−2τ−d) (5)
It is represented by
[0029]
Complex correlation calculation is performed based on the above R ′ (t) and L (t). Here, the correlation calculation is an operation for obtaining the similarity between two waveforms (functions). If the value is zero, there is no correlation, that is, there is no waveform similarity. Then, if M (t) is calculated such that the correlation between S (t) and ε (t) becomes zero, the interference wave can be suppressed. However, as is clear from the equations (4) and (5), in the present invention, since direct relaying is performed, delay (τ and t) on the signal path of the repeater unit is mixed with ε (t), and the correlation The phases of S (t) and ε (t) to be calculated are not aligned. On the other hand, in the above-described prior art, reference signals having the same phase can be obtained when demodulating the received signal, so that the expressions corresponding to the above expressions (4) and (5) can be used for the correlation calculation as they are. .
[0030]
Therefore, when a delay d is given to data in L (t) in the digital signal processing unit 32a,
L ′ (t) = S (t−τ−d) + ε (t−2τ−2d) (6)
It becomes.
Comparing equations (4) and (6), the first terms of equations (4) and (6), the second terms of equations (4) and (6), the first term and equation of equation (4) Since the second terms in (6) are different from each other in delay time (phase) by τ or more, the correlation becomes low if τ is sufficiently large. On the other hand, since the delay time (phase) is the same for the second term of Equation (4) and the first term of Equation (6), the correlation can be calculated, and the correlation value E (t) is
E (t) = S (t−τ−d) · ε (t−τ−d) (7)
Can be obtained. Therefore, phase / amplitude control may be performed to generate M (t) such that the complex correlation calculation result becomes zero (cancel).
[0031]
That is, M (t) is obtained by multiplying L ′ (t) by the control coefficient D,
M (t) = D × L ′ (t) (8)
It becomes. Where D is
[Expression 1]
Figure 0003670254
(Μ is a forgetting factor). And the controlled variable of phase Φ and amplitude A is
Φ (t) = angle (D) (10)
A (t) = abs (D) (11)
Is required.
[0032]
The delay amount τ is equal to the first terms of the above formulas (4) and (6), the second terms of the formulas (4) and (6), the first terms of the formula (4), and the first terms of the formula (6). Any value that lowers the correlation between the two terms is acceptable. In particular, when the repeater device is used for wireless communication by a code division multiple access scheme such as CDMA, if the value is equal to or greater than the inverse of the spread modulation rate (so-called bit rate), the correlation becomes lower, and therefore E (t) is accurate. It can be extracted well and is preferable.
[0033]
Instead of the above, the delay time (phase) of the first term of equation (4) and the second term of equation (5) may be aligned. That is, a delay of (2τ + d) may be added to equation (4) and compared with equation (5).
[0034]
Next, a preferable aspect when the suppression signal M (t) is generated by the suppression signal generation circuit 32 will be described. As described above, ideally, the suppression signal M (t) in which the complex correlation calculation result of the digital signal processing unit 32a is zero (cancellation of the residual component) may be generated. The residual component (interference wave) itself to be suppressed may fluctuate due to an error in the above, or because the transmission / reception antenna fluctuates in the wind and fluctuates. This will be described with reference to FIG.
[0035]
FIG. 3 is a diagram in which various signals are displayed as vectors on the complex plane (I-Q plane). In this figure, since the suppression signal M has substantially the same amplitude and opposite phase as the interference wave I, ideally I is completely suppressed (cancelled). However, for example, when the transmission / reception antenna shakes and the phase of I fluctuates to become I ′, the residual component ε remains when I and M are added. In this case, if I greatly fluctuates, ε is generated, and the existence region of the suppression signal M ′ for canceling I ′ and its residual component ε ′ also changes abruptly, which may make it difficult to approach the convergence point. There is also.
[0036]
Therefore, preferably, in the present invention, a signal having an amplitude smaller than that of the residual component and having an opposite phase is generated as a vector signal, and the vector is added to the suppression signal. This will be described with reference to FIG.
[0037]
FIG. 4 is a diagram in which various signals are displayed as vectors on the complex plane. Here, the interference wave I is obtained by back calculation from the residual component and the suppression signal M. In this figure, the first suppression signal M has substantially the same amplitude and opposite phase as the interference wave I as in FIG. This is to generate a suppression signal having a large amplitude in the initial stage so that the convergence is as fast as possible. In the next feedback, the vector signal N1 having an amplitude smaller than ε (1/10 in this embodiment) and having an opposite phase is added to the suppression signal M by vector addition to M ′ in FIG. 3 to obtain a net suppression signal. To do. In this way, even if an erroneous vector signal is generated due to fluctuations in the residual component or a calculation error in the correlation calculation, the influence is reduced because the amplitude of the vector signal is small.
[0038]
For example, in the case of the technique described in Japanese Patent Laid-Open No. 9-284195, the canceller control signal is generated in the direction in which the residual interference signal becomes smaller (perhaps) for each feedback. May be difficult to converge (see FIG. 3 attached to the specification of the publication). On the other hand, according to a preferred aspect of the present invention, the vector direction of the suppression signal (canceller control signal) is opposite to the residual component and only the amplitude is small, so that the feedback signal gradually approaches the convergence point for each feedback. In addition, even if an erroneous suppression signal is generated as described above, its influence is small, and as a result, it is possible to converge quickly and reliably.
[0039]
In the following, Nn is 1/10 the amplitude of εn and is in antiphase, ε2 is generated for M2 generated by adding N1 to M1, vector N2 is generated from ε2, vector N2 is added, and then M2 Ε3 is generated for M3 generated by adding N2 to ε3, and a vector N3 is generated from ε3. When feedback for adding the vector N3 is repeated, ε4 is generated and eventually converges (ε = 0). In this way, by generating a vector signal with a smaller amplitude than the residual component, the residual component is canceled little by little, so the effect of adding an incorrect vector signal to the suppression signal due to fluctuations in the residual component or calculation errors Becomes smaller and can be converged quickly and reliably.
[0040]
The amplitude of the vector signal is not limited to the above embodiment. For example, when there are few fluctuations or calculation errors in the residual component, a signal having substantially the same amplitude as that of the residual component and having an opposite phase may be added as a vector signal. As a method of reducing the amplitude of the vector signal, as described above, the number of feedbacks (in the above embodiment, the amplitude is reduced from the second feedback) may be used. For example, there are two methods: a method of adding (feedback) a minute vector from the first time and a method of adding a minute vector from the second time. In the former case, it takes time to converge, but in the latter case, since feedback starts from a place where a certain amount of signal suppression is performed, there is an advantage that convergence is accelerated. Further, the amplitude may be returned to the same as the residual component in the middle of feedback, and in short, the amplitude of the vector signal may be reduced by any feedback.
[0041]
The operation performed by the repeater device of the present invention can be realized by a software program executed by a computer, and the software program executed in the repeater device (computer) can be a computer-readable storage medium or communication. It is possible to distribute via a line.
[0042]
【The invention's effect】
As described above, according to the present invention, when a residual component is detected by performing a correlation operation based on a feedback received signal and a transmission signal, and a suppression signal is generated based on the residual component, transmission is performed. A delay amount is added to the signal. Accordingly, the correlation of the signals other than the correlation between the reference signal and the residual component becomes low, and the suppression component can be generated by accurately detecting the residual component. As a result, even in a repeater device that outputs a received signal as a transmission signal without modulating / demodulating the received signal, it is possible to reduce the interference signal due to the transmission signal wrapping around the reception antenna. Furthermore, after adding a propagation delay between the receiving antenna and the transmitting antenna to the transmission signal, the correlation operation is performed, so that the phases of the reference signal and the residual component are almost completely aligned, so that the residual component can be detected more accurately. To generate a suppression signal.
[0044]
When the repeater device of the present invention is used for wireless communication by the code division multiple access method, if the predetermined delay amount is set to be equal to or higher than the spread modulation speed, the correlation of signals other than the correlation between the reference signal and the residual component is further reduced. Thus, it is possible to generate the suppression signal by detecting the residual component with extremely high accuracy.
[0045]
In the present invention, if a signal having substantially the same amplitude as that of the residual component and an opposite phase is generated as a vector signal and added to the suppression signal, the suppression signal having a large amplitude is added to the interference wave signal. There is an advantage of getting faster.
[0046]
In the present invention, if a signal having an amplitude smaller than that of the residual component and having an opposite phase is generated as a vector signal, and the vector signal is added to the suppression signal, an erroneous vector signal is generated due to a variation in the residual component or a calculation error in the correlation calculation. Even if it adds, since the amplitude of a vector signal is small, the influence is reduced. In other words, it is possible to prevent a situation where the convergence takes time or the convergence is impossible.
[0047]
In the present invention, if a signal having an opposite phase to the residual component is generated as a vector signal, and the amplitude of the vector signal is determined according to the phase or amplitude of the residual component or the number of feedbacks, the error of the suppression signal is small. In some cases, a vector signal with a large amplitude is added to the suppression signal to speed up convergence, and when the suppression signal contains an error, the vector signal amplitude is reduced to reduce the influence of the error, making it faster and more reliable. Can converge.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a repeater device according to the present invention.
FIG. 2 is a circuit configuration diagram of a repeater unit.
FIG. 3 is a diagram in which various signals are vector-displayed on a complex plane.
FIG. 4 is another diagram in which various signals are vector-displayed on a complex plane.
[Explanation of symbols]
2 Repeater device 20 Reception antenna 21 Transmission antenna 22 Repeater unit 22
30 Delay amount adding means 32 Suppression control signal generating means 34 Feedback means R (t) Received signal I (t) Interference signal M (t) Suppressed signal R '(t) Received feedback signal L (t) Transmitted signal τ Predetermined Delay amount

Claims (9)

受信アンテナから受信された受信信号を直接中継して送信アンテナから送信信号として出力するリピータ装置であって、
前記受信信号に所定の第1の遅延量を付加する第1の遅延量付加手段と、
前記遅延量が付加された信号が前記送信信号として出力される場合に、該送信信号の前記受信アンテナへの回り込みによる干渉信号を抑制するための抑圧信号を生成する抑圧制御信号生成手段と、
前記抑圧信号を前記受信信号にフィードバックさせるフィードバック手段とを備え、
前記抑圧制御信号生成手段は、前記フィードバックされた受信信号と前記送信信号とに基づく相関演算を行って干渉信号の残差成分を検出し、該残差成分に基づいて前記抑圧信号を生成するリピータ装置であり、
前記抑圧制御信号生成手段は、
前記送信信号に前記受信アンテナと前記送信アンテナ間の伝搬遅延を付加する第2の遅延量付加手段と、
前記フィードバックされた受信信号と前記伝搬遅延が付加された送信信号とを複素相関演算する演算手段と、
この複素相関演算結果がゼロとなるように、前記伝搬遅延が付加された送信信号の位相および振幅を制御し、前記抑圧信号を生成する制御手段と、
を具備することを特徴とするリピータ装置。
A repeater device that directly relays a reception signal received from a reception antenna and outputs it as a transmission signal from a transmission antenna,
First delay amount adding means for adding a predetermined first delay amount to the received signal;
A suppression control signal generating means for generating a suppression signal for suppressing an interference signal due to a wraparound of the transmission signal to the reception antenna when the signal to which the delay amount is added is output as the transmission signal;
Feedback means for feeding back the suppression signal to the received signal,
The suppression control signal generating means, repeater a residual component of the interference signal is detected by performing a correlation calculation based on the feedback received signal and the transmitted signal and to generate the suppression signal based on said residue difference component Device,
The suppression control signal generation means includes
Second delay amount adding means for adding a propagation delay between the reception antenna and the transmission antenna to the transmission signal;
Arithmetic means for performing a complex correlation operation between the feedback signal received and the transmission signal to which the propagation delay is added;
Control means for controlling the phase and amplitude of the transmission signal to which the propagation delay is added so that the complex correlation calculation result is zero, and generating the suppression signal;
A repeater device comprising:
前記リピータ装置が符号分割多元接続方式による無線通信に用いられる場合に、
前記第1の遅延量は、前記符号分割多元接続方式における拡散変調速度の逆数以上の値であることを特徴とする請求項に記載のリピータ装置。
When the repeater device is used for wireless communication by a code division multiple access method,
The repeater apparatus according to claim 1 , wherein the first delay amount is a value equal to or greater than a reciprocal of a spread modulation rate in the code division multiple access scheme.
前記抑圧制御信号生成手段は、前記干渉信号と振幅が略同一でかつ逆位相の信号となるよう、前記抑圧信号を生成することを特徴とする請求項1又は2に記載のリピータ装置。 3. The repeater apparatus according to claim 1, wherein the suppression control signal generation unit generates the suppression signal so that the amplitude is substantially the same as that of the interference signal and has an opposite phase. 前記抑圧制御信号生成手段は、前記残差成分より振幅が小さくかつ逆位相の信号となるようなベクトル信号を生成し、前記抑圧信号にベクトル加算することを特徴とする請求項1又は2に記載のリピータ装置。The suppression control signal generating means generates a vector signal such as amplitude than the residual component is the signal of small and opposite phase, according to claim 1 or 2, characterized in that vector addition to the suppression signal Repeater device. 前記抑圧制御信号生成手段は、前記残差成分と逆位相の信号となるようなベクトル信号を生成し、
前記フィードバック数に応じて、該ベクトル信号の振幅と位相とを決定することを特徴とする請求項1から4のいずれかに記載のリピータ装置。
The suppression control signal generation means generates a vector signal that becomes a signal having an opposite phase to the residual component,
Depending on the speed feedback, the repeater apparatus according to any one of 4 claims 1, characterized in that determining the amplitude and phase of the vector signal.
受信アンテナから受信された受信信号を直接中継して送信アンテナから送信信号として出力するリピータ装置の制御プログラムであって、
前記受信信号に所定の第1の遅延量が付加された信号が前記送信信号として出力される場合に、該送信信号の前記受信アンテナへの回り込みによる干渉信号を抑制するための抑圧信号を生成する過程と、
前記抑圧信号を前記受信信号にフィードバックさせる過程とを前記リピータ装置に実行させ、
前記抑圧信号生成過程、前記フィードバックされた受信信号と前記送信信号とに基づく相関演算を行って干渉信号の残差成分を検出し、該残差成分に基づいて前記抑圧信号を生成するものであり、
前記抑圧信号生成過程において、
前記送信信号に前記受信アンテナと前記送信アンテナ間の伝搬遅延を付加し、
前記フィードバックされた受信信号と前記伝搬遅延が付加された送信信号とを複素相関演算し、
この複素相関演算結果がゼロとなるように、前記伝搬遅延が付加された送信信号の位相および振幅を制御し、前記抑圧信号を生成することを特徴とするリピータ装置の制御プログラム。
A control program for a repeater device that directly relays a reception signal received from a reception antenna and outputs it as a transmission signal from a transmission antenna,
When a signal in which a predetermined first delay amount is added to the reception signal is output as the transmission signal, a suppression signal is generated to suppress an interference signal due to the transmission signal wrapping around the reception antenna. Process,
Causing the repeater device to perform a process of feeding back the suppression signal to the received signal;
Said suppression signal generating process, in which the feedback received signal and performs a correlation calculation based on said transmission signal to detect a residual component of the interference signal, and generates the suppression signal based on said residue difference component Yes,
In the suppression signal generation process,
Adding a propagation delay between the reception antenna and the transmission antenna to the transmission signal;
A complex correlation operation is performed on the feedback signal received and the transmission signal to which the propagation delay is added,
A control program for a repeater device , wherein the suppression signal is generated by controlling the phase and amplitude of the transmission signal to which the propagation delay is added so that the complex correlation calculation result becomes zero .
前記抑圧信号生成過程において、前記干渉信号と振幅が略同一でかつ逆位相の信号となるよう、前記抑圧信号を生成することを特徴とする請求項に記載のリピータ装置の制御プログラム。The control program for a repeater apparatus according to claim 6 , wherein, in the suppression signal generation process, the suppression signal is generated so that the amplitude is substantially the same as that of the interference signal and has an opposite phase. 前記抑圧信号生成過程において、前記残差成分より振幅が小さくかつ逆位相の信号となるようなベクトル信号を生成し、前記抑圧信号にベクトル加算することを特徴とする請求項に記載のリピータ装置の制御プログラム。7. The repeater apparatus according to claim 6 , wherein in the suppression signal generation process, a vector signal having an amplitude smaller than that of the residual component and having an opposite phase is generated, and the vector addition is performed on the suppression signal. Control program. 前記抑圧信号生成過程において、前記残差成分と逆位相の信号となるよう、ベクトル信号を生成し、
前記フィードバック数に応じて、該ベクトル信号の振幅と位相とを決定することを特徴とする請求項6から8のいずれかに記載のリピータ装置の制御プログラム。
In the suppression signal generation process, a vector signal is generated so as to be a signal having an opposite phase to the residual component,
The control program for a repeater apparatus according to any one of claims 6 to 8 , wherein an amplitude and a phase of the vector signal are determined according to the number of feedbacks.
JP2002197830A 2002-07-05 2002-07-05 Repeater device and control program for repeater device Expired - Fee Related JP3670254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197830A JP3670254B2 (en) 2002-07-05 2002-07-05 Repeater device and control program for repeater device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197830A JP3670254B2 (en) 2002-07-05 2002-07-05 Repeater device and control program for repeater device

Publications (2)

Publication Number Publication Date
JP2004040665A JP2004040665A (en) 2004-02-05
JP3670254B2 true JP3670254B2 (en) 2005-07-13

Family

ID=31705495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197830A Expired - Fee Related JP3670254B2 (en) 2002-07-05 2002-07-05 Repeater device and control program for repeater device

Country Status (1)

Country Link
JP (1) JP3670254B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682714B1 (en) 2005-04-20 2007-02-15 (주) 엘지텔레콤 Backward noise detection device for repeater and method thereof
WO2007073092A1 (en) * 2005-12-22 2007-06-28 Sk Telecom Co., Ltd. Radio repeater for mobile communication system and repeating method using the same
KR100906365B1 (en) * 2006-12-20 2009-07-07 에스케이텔레시스 주식회사 Interference cancellation method and apparatus for microwave repeaters
KR100833684B1 (en) * 2006-12-20 2008-05-29 에스케이텔레시스 주식회사 Interference cancellation method and apparatus for microwave repeaters
KR101415340B1 (en) * 2007-10-12 2014-07-04 주식회사 지에스인스트루먼트 Feedback-signal cancellation unit in wireless repeater system
JP5327320B2 (en) 2009-05-22 2013-10-30 富士通株式会社 Relay device, radio communication system, and radio communication method
JP6247024B2 (en) * 2013-06-07 2017-12-13 マスプロ電工株式会社 Relay device and relay system

Also Published As

Publication number Publication date
JP2004040665A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US6385435B1 (en) Coupled interference concellation system for wideband repeaters in a cellular system
KR20060042106A (en) Wireless relay system, wireless relay apparatus, and wireless relay method
JP3670254B2 (en) Repeater device and control program for repeater device
US11533158B2 (en) Device for self-interference cancellation of full duplex communication system and method thereof
US7110794B1 (en) Adaptive array apparatus and compensation method for compensating a phase difference used for generating a directivity response pattern
JP2001177452A (en) Diversity transmission/reception method and system
US11626966B2 (en) Methods and apparatus for analog canceler tuning using neural networks
JP2005039336A (en) Interference signal suppression circuit and program
EP1093186B1 (en) Radio transmitter and transmission directivity adjusting method
JP4417058B2 (en) Repeater device
JP4614814B2 (en) Transmitter
JP3356979B2 (en) Wireless relay booster
JP2002077004A (en) Channel estimate device and channel estimate method for inverse equalization
JP2005117168A (en) Repeater apparatus
JP5075101B2 (en) Interference signal suppression method and apparatus, repeater apparatus
JP5075102B2 (en) Repeater device, interference signal suppressing device and method
JP2007020099A (en) Broadcasting wave repeating apparatus
KR20060099386A (en) Satellite communications system, key station and slave station
EP4329216A1 (en) Communication system, method, relay station, and control device
JPH09284195A (en) Radio relay booster
KR20090037537A (en) Feedback-signal cancellation unit in wireless repeater system
JP2024129317A (en) Distributed antenna system equipment
JPS643099B2 (en)
CN117595978A (en) Communication system, method, relay station and control device
JP4722992B2 (en) Repeater device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees