JP3670104B2 - Method for producing sterilized food - Google Patents

Method for producing sterilized food Download PDF

Info

Publication number
JP3670104B2
JP3670104B2 JP07614297A JP7614297A JP3670104B2 JP 3670104 B2 JP3670104 B2 JP 3670104B2 JP 07614297 A JP07614297 A JP 07614297A JP 7614297 A JP7614297 A JP 7614297A JP 3670104 B2 JP3670104 B2 JP 3670104B2
Authority
JP
Japan
Prior art keywords
food
sterilization
foods
sterilized
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07614297A
Other languages
Japanese (ja)
Other versions
JPH10262624A (en
Inventor
泰三 唐澤
憲二 武本
晃夫 小笹
幸博 秋武
亘宏 平田
雅夫 清田
明久 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Co Ltd
Original Assignee
Nissei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Co Ltd filed Critical Nissei Co Ltd
Priority to JP07614297A priority Critical patent/JP3670104B2/en
Publication of JPH10262624A publication Critical patent/JPH10262624A/en
Application granted granted Critical
Publication of JP3670104B2 publication Critical patent/JP3670104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Grain Derivatives (AREA)
  • Dairy Products (AREA)
  • Confectionery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多品種の殺菌済食品を製造する方法に関するものである。
【0002】
【従来の技術】
今日、食品に対する嗜好は多種多様さを要求され、同一の食品種であってもその内容は種々変化に富んだものとなっている。
【0003】
このような食品において、微生物特に食中毒菌や腐敗菌等、人に危害を加える微生物に対する対策は非常に重要であるが、近年では、食品加工技術の発達により、食品を無菌状態に殺菌する技術が確立され、このような殺菌済の食品が数多くみられるようになった。これらの殺菌済食品は、そのままの状態で長期間保存することができる利便性、また開封して直ちにあるいは若干加温する等の簡単な処理をするだけですぐに食することができる簡便性により、非常に有用な食品の形態である。
【0004】
同様の効果を持つ形態として、食品を加工した後、冷凍あるいは冷蔵温度で保存することにより、微生物の増殖を抑え長期間保存することのできる食品も存在する。しかしながら、これらの食品を低温度域で保管、流通するには、その温度まで食品を冷却する、あるいはその温度を維持するために、大規模な設備、また多大なエネルギ一を要する。これに対し、上記の殺菌済食品は常温温度域で保存することが可能であり、これら設備面、消費エネルギー面においても殺菌済食品は非常に有用である。
【0005】
このような殺菌処理は現在主として、食品を加熱することにより行われている。しかし、殺菌における過度の加熱処理は食品に対して様々な影響を及ぼし、場合によっては、その本来の性質を変化させてしまい、嗜好性を大きく低下させる原因となる。すなわち、加熱臭など風味の劣化、褐変などの色調の変化、粘性・食感の変化等である。そこで、殺菌に要する加熱処理をできるだけ短時間で行い、加熱による食品の劣化を最小限にするために、種々の殺菌方法が開発されている。
【0006】
たとえば、直接加熱法としてスチームインジェクション法(スチームインフュージョン法)、間接加熱法としてプレート式殺菌、チューブラー式殺菌、表面かき取り式殺菌、その他の方法として通電加熱殺菌等がある。
【0007】
【発明が解決しようとする課題】
しかし、これらの殺菌方法はいずれも、以下に述べるように、一品種の食品を連続して大量に製造するのには適しているが、多品種の食品を連続して製造するのには適さない。
【0008】
すなわち、これらの方法はすべて、殺菌後に充填包装する方法であり、殺菌から充填までを、連続した密閉されたインライン中で無菌状態で行わなければならない。このような無菌状態を保つための装置には、外部とインラインの境界にスチームによる遮断部を設ける等、外部からの微生物の混入を防止する必要があり、そのための付帯設備も含めた装置は大規模かつ経済的負担が大きい欠点がある。また、工程中に高温部分が存在するために作業面での危険性がある。
【0009】
さらに、製造を開始する際あるいは洗浄等により一旦中断後再開する際には必ずインラインの殺菌作業が必要であり、そのエネルギー消費や時間のロスによって効率が悪化する欠点もある。稼働効率を上げるには、なるべく無菌状態を持続させ、連続して製造する必要がある。しかし、これらの方法で、品種の異なる食品を連続して製造する場合には、品種が替わる間に両種の食品が混じった部分が生じ、その大部分がロスとなってしまう。このため、頻繁な品種の切替は困難である。また、色や風味に濃淡の差がある食品を連続して製造する場合、少しでもロスを減らすためには、必ず薄いものから製造する必要があり、製造上融通がきかない。
【0010】
このように、上記従来の殺菌処理方法を用いて製造した場合は、少品種の殺菌済食品を大量に生産するのには適しているが、種々多様な多品種の殺菌済食品を、同一ラインで連続してあるいは同時に製造するのには全く適さず、非常に困難であるという問題がある。
【0011】
本発明は、上記問題に鑑みなされたものであり、その目的は、食品を短時間で殺菌処理し、かつ多品種の殺菌済食品を容易に連続してあるいは同時に製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、請求項1記載の殺菌済食品の製造方法は、複数の充填系列をもつ非無菌的充填工程により食品を容器に充填し、1MHz〜数GHzの周波数の電界中での誘電加熱により上記容器中の食品を殺菌することを特徴としている。
【0013】
上記の方法により、食品は必要に応じて調合等の処理工程を経た後、複数の充填系列を持つ非無菌的充填工程により容器に充填される。容器に充填された食品は、容器ごとに1MHzから数GHzの周波数の電磁波を使用した誘電加熱によって加熱殺菌される。
【0014】
したがって、非無菌的な充填工程によって食品を容器に充填し、充填包装後に殺菌する。充填工程が非無菌的であるため、無菌的な充填装置に比べてはるかに簡単な装置で済み、また、他品種への切替時に無菌状態の維持や再無菌化の必要がないため、切替の際のエネルギーや時間のロスが少なくなる。また、充填包装後に殺菌するので、品種の異なる食品を連続してあるいは同時に製造しても、殺菌工程においてそれら両種の食品が混じる恐れがない。それゆえ、多品種の食品を連続してあるいは同時に殺菌処理し、多品種の殺菌済食品を短時間かつ容易に製造することができる。
【0015】
また、前述した従来の外部から加熱して殺菌する方法と異なり、食品の内部から発熱を起こすので、殺菌工程中の高温部分による危険性が少ない。
【0016】
また、本発明は、上記の構成に加えて、略同形状の容器に充填して誘電率をほぼ同じとした、充填系列ごとに異なる組成の食品を、同時に殺菌部に送り込み、次いで、これらの複数の充填系列から得られる食品を1回の加熱で同時に複数個ずつ加熱殺菌する。
本殺菌済食品の製造方法は、上記の構成に加えて、複数種の上記食品を略同形状の上記容器に充填し、上記食品に対して連続してあるいは同時に上記誘電加熱を行うように構成することもできる。
【0017】
上記の方法により、複数種の食品を略同形状の容器に充填し、連続してあるいは同時に誘電加熱にて殺菌する。
【0018】
容器の形状がほぼ一定なので、容器内の内容物である食品同士を容器ごとに比べてみた場合に、例えばその原料の組成や量等に極端な差が無ければ、容器と食品とを含めた加熱対象物の誘電率に大きな差が生じない。
【0019】
殺菌工程は、1MHzから数GHzの周波数の電磁波を使用した誘電加熱によって殺菌している。このような誘電加熱による殺菌では、殺菌効果の大小は加熱対象物の誘電率に影響される。しかし、上記のように、容器内の食品が替わっても加熱対象物の誘電率に大きな差が無いので、誘電加熱の条件をほぼ一定としたまま、連続してあるいは同時に異種の食品を十分殺菌することができる。
【0020】
したがって、品種が替わるごとに加熱条件を変更する手間や時間が大幅に減少する。それゆえ、多品種の殺菌済食品を、短時間かつ容易に製造することができる。
【0021】
【発明の実施の形態】
本発明の実施の一形態について図1ないし図3に基づいて説明すれば、以下の通りである。
【0022】
本発明における食品とは、広く一般的な食品すべてを含み、特にその性状、組成に限定を加えるものではない。すなわち、食品が液体状、半流動状、固体、粉体等どのような性状でもよく、粘弾性等の物性についても制限はなく、また、その組成において、水分含量の高低や糖分含量、塩類濃度、また非連続相の存在や固液混合等、その形状にも特に限定を加えるものではない。ただし、連続してあるいは同時に殺菌する食品は、極端に内容に変化があってはならない。誘電率が大きく変化すると、殺菌工程において個々の食品に応じた最適の設定へ調整しなければならないためである。
【0023】
充填工程は、複数の充填系列を持つ非無菌的な充填装置により行う。複数の充填系列とは、単独の装置に複数の充填部をもつものでも、単独の充填部をもつ複数の装置でもよい。
【0024】
充填した後に殺菌するため、充填装置は非無菌的な装置でよく、充填方式等に特に限定を加えるものではない。
【0025】
充填される容器の材質については、電磁波透過性がありかつ殺菌工程に耐えられる耐熱性があればよい。一般的にはCP(セルロースプロピオネート)、PP(ポリプロピレン)、ナイロン、PET(ポリエチレンテレフタレート)等、あるいはこれらの複合素材が適している。
【0026】
容器の形状については、特に限定を加えない。ピロータイプ包装(ピロー状容器)のような不定形でも、成形された定型容器でも良い。ただし、連続してあるいは同時に殺菌する複数種の食品は、同一形状の容器に充填されていることが望ましい。
【0027】
すなわち、図1に示すように同一形状の容器に多種の食品が充填されている場合は、内容物に極端な変化が無ければ、それら多種の食品を連続してあるいは同時に並行して殺菌処理することが可能である。
【0028】
同図に示すように、非無菌的充填工程11において、充填系列21、充填系列22、充填系列23がある。充填系列21では、充填器24により容器31に食品Aが充填される。充填系列22では、充填器25により同じく容器31に食品Bが充填される。充填系列23では、充填器26により同じく容器31に食品Cが充填される。
【0029】
各食品を充填された各容器31は、ベルトコンベヤ等により殺菌工程12に移り、順次、殺菌部13内へ送り込まれて殺菌される。この殺菌工程12において、同図に示すように、各容器31に入っている食品は一様でなく、食品Aが入っている場合、食品Bが入っている場合、食品Cが入っている場合がある。しかし、容器31が1種類で共通であるため、これらをどのような順序で殺菌部13へ送り込んでも、一定の加熱条件下でほぼ同様の殺菌処理効果を上げることが可能になっている。このため、同図に示すように、これらの食品を食品の品種に無関係に任意の順序で殺菌部13に送り込んで多種の食品を同時に並行して殺菌処理することが可能である。また、食品の種類順に殺菌部13に送り込んで品種の切り替え時も含めて多種の食品を連続して殺菌処理することも可能である。
【0030】
一方、図2に示すように、形状の異なる容器に多種の食品が充填されている場合を考える。非無菌的充填工程14において、充填系列21、充填系列22、充填系列23がある。充填系列21では、容器31に食品Aが充填されるが、充填系列22では、容器31とは異なる形状の容器32に食品Bが充填される。充填系列23では、容器31や容器32とは異なる形状の容器33に食品Cが充填される。
【0031】
各食品を充填された各容器31、32、33は、ベルトコンベヤ等により殺菌工程15に移り、順次、殺菌部13内へ送り込まれて殺菌される。ここでは、容器Aの列が容器B・Cより先にすべて殺菌部13へ送り込まれて容器A用の殺菌条件下で連続して殺菌される。それが終われば、次に、容器Cより容器Bの列が先にすべて殺菌部13へ送り込まれて容器B用の殺菌条件下で連続して殺菌される。それが終われば、次に、容器Cの列が殺菌部13へ送り込まれて容器C用の殺菌条件下で連続して殺菌される。
【0032】
このように、容器の形状が途中で替わることになる場合は、殺菌時の条件を、個々の容器(31、32、33)に応じた最適の条件に適宜調整しなければならない可能性がある。その場合は、図1のように多種の食品をほぼ一定の殺菌条件で同時に並行して殺菌処理することは困難となる。したがって、この場合は、図2のように、同種の食品をある程度連続して殺菌処理し、容器の形状が変わるごとに殺菌時の条件の切り替えを行う必要がある。
【0033】
ただし、容器形状が異なっても、殺菌条件に変化が無ければ、図1のように同時に並行して多種の食品を殺菌処理することは可能である。
【0034】
なお、上記の例では、異なる品種の食品を1個ずつ殺菌しているが、他の例として、図3に示すように、同じ容器31に充填した複数個の同じまたは異なる品種の食品を、同時に殺菌部13に送り込み、次いで、これらの複数個の食品を1回の加熱で同時に複数個ずつ加熱殺菌するように構成することもできる。
【0035】
また、殺菌部13を複数個用意し、同じまたは異なる品種の食品をその複数個の殺菌部13で並行して加熱殺菌するように構成することもできる。
【0036】
本発明において殺菌に使用する電磁波の周波数は、誘電加熱として有効な1MHzから数GHzである。これより小さい周波数では、あらかじめ容器に充填された食品は誘電加熱による加熱はされない。また、これより大きい周波数では、実用上困難である。
【0037】
殺菌温度は、対象物の内容、組成に応じて最適の温度を設定すればよいが、120℃から180℃の温度が食品の殺菌には効果的であり好ましい。あまり低い温度では食品を殺菌するためには長時間を要し、またあまり高い温度では食品が焦げる等加熱による悪影響が生じる。
【0038】
殺菌温度まで到達するのに要する時間は、食品に対する加熱の影響を少なくするためには短いほど良く、10〜90秒の範囲が好ましい。あまり短くすると殺菌温度の制御が困難となる。また、あまり長いと食品に加熱による悪影響が生じる。
【0039】
上記殺菌温度に到達した後、必要に応じ、食品を殺菌するための保持時間(殺菌時間)だけ食品をこの温度に維持する。この保持時間は、殺菌温度および加熱対象物の内容組成、大きさ等に応じて適宜設定するが、0〜180秒の保持時間が好ましい。あまり長いと食品に加熱による悪影響が生じ、また殺菌処理効率が低下する。
【0040】
一般的には、任意の温度Ti における殺菌時間Mは以下の式により算出される。
M=F×10(Tr-Ti)/z
この式において、Fは必要とするF値、Tr は基準温度、Ti は任意の温度、zは微生物の耐熱性を示すパラメーターである。基準温度Tr 、zの値およびF値は個々の食品の性質に応じて設定するが、例えばpHが中性域の食品においては、基準温度を121.1℃、z=10℃、F値は最低限4分とするのが通例である。この殺菌時間Mの間だけ、上記殺菌温度を保持する。
【0041】
冷却については、食品に対する加熱による影響をできるだけ少なくするためには、殺菌処理終了後、直ちに迅速に行う必要があるが、個々の食品の熱に対する影響度に応じて時間、冷却温度を設定すればよい。冷却方法は特に限定するものではないが、一般的には、冷却された液体または気体を食品の周囲に接触させその熱伝導により冷却させる。殺菌装置内に冷却させる機構を付随させても良いし、殺菌装置から食品を取り出した後冷却する方法でも良い。
【0042】
冷却された食品は、必要に応じてさらに包装され、そのまま常温で保管、流通される。ただし、食品の特性上、必要であれば冷蔵温度等に冷却保管される。
【0043】
【実施例】
以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
本実施例に使用した装置の概略は以下の通りである。
図4に示すように、殺菌装置1は、周波数13.56MHz、出力7kWの真空管式の高周波発振器2を有し、静電容量が可変のコンデンサーとインピーダンスが可変のコイルからなる同調回路3を経て、加熱部4へ接続されている。
【0044】
加熱部4は、上下2枚の電極板すなわち上側電極板5a・下側電極板5bと、絶縁体で形成されたシェル6とを備えている。上側電極板5aには上記同調回路3を経て上記高周波発振器2が接続されており、下側電極板5bは接地されている。上側電極板5aにはプレスシリンダー7が連結しており、下側電極板5bに向かってプレスすることができる。上記シェル6は、上記上側電極板5aと下側電極板5bとの間に位置しており、その中央部には、加熱対象の試料を配置するための空間がある。
【0045】
加熱は以下の方法により行う。以下の実施例ではすべて同様の方法で実施した。すなわち、試料は、200gの食品原料を用い、CPとナイロンとの2層で形成されたピロー状容器にこの食品原料を充填し、ヒートシールにより密封包装して作製した。この試料をシェル6の中央部に配置し、上側電極板5aをプレスシリンダー7により下降させ、シェル6の中央部の空間を密閉状態とした後、高周波発振器2により高周波を発振させて試料を加熱した。このとき、上側電極板5aからの高周波出力を1.82kWとなるように調整し、以下の実施例においてはすべて同設定にて加熱処理を行った。試料はすべて加熱開始後所定温度まで昇温され、その時点で高周波の発振を停止してその温度を約1分保った。続いて冷却に移り、試料温度が30℃以下になるようにした。
【0046】
〔実施例1〕
砂糖10重量部、水飴16重量部、ヤシ油6重量部、脱脂粉乳4重量部、グリセリン脂肪酸エステル0.5重量部、カラギーナン0.05重量部を、加熱、撹拌しながら水に順次加え、全体を100とした。70℃まで加熱し、完全に溶解させた後、ホモゲナイザーで均質化し、アイスクリームミックスを得た。これを上記要領で容器に充填、包装して試料とし、上記装置、条件にて加熱殺菌処理を行った。
【0047】
〔実施例2〕
砂糖8重量部、水飴9重量部、ヤシ油4重量部、脱脂粉乳8重量部、グリセリン脂肪酸エステル0.5重量部、カラギーナン0.05重量部を、加熱、撹拌しながら水に順次加え、全体を100とした。70℃まで加熱し、完全に溶解させた後、ホモゲナイザーで均質化し、シェークミックスを得た。これを上記要領で容器に充填、包装して試料とし、上記装置、条件にて加熱殺菌処理を行った。
【0048】
〔実施例3〕
ヤシ油23重量部、脱脂粉乳6重量部、カゼインナトリウム3重量部、グリセリン脂肪酸エステル0.7重量部、シュガーエステル0.5重量部、カラギーナン0.05重量部を、加熱、撹拌しながら水に順次加え、全体を100とした。70℃まで加熱し、完全に溶解させた後、ホモゲナイザーで均質化し、コーヒー用クリームを得た。これを上記要領で容器に充填、包装して試料とし、上記装置、条件にて加熱殺菌処理を行った。
【0049】
〔実施例4〕
砂糖18重量部、ヤシ油25重量部、脱脂粉乳7重量部、カゼインナトリウム2重量部、グリセリン脂肪酸エステル0.5重量部を、加熱、撹拌しながら水に順次加え、全体を100とした。70℃まで加熱し、完全に溶解させた後、ホモゲナイザーで均質化し、ホイップクリーム用ミックスを得た。これを上記要領で容器に充填、包装して試料とし、上記装置、条件にて加熱殺菌処理を行った。
【0050】
〔実施例5〕
2個の容器を用意し、一方の容器には、実施例1にて得られたアイスクリームミックス100gを、もう一方の容器には、実施例3にて得られたコーヒー用クリーム100gを、上記要領で充填、包装して試料とした。そして、上記装置、条件にて、これら2個の容器を同時に加熱殺菌した。
【0051】
実施例1〜5において、各試料はほぼ同様の昇温傾向を示し、1分30秒で130℃まで達した。各試料において菌検査を実施したところ、すべて菌は検出されなかった。また、色調、風味においても何ら問題の無いものであった。
【0052】
この結果、これらの実施例で挙げた食品原料のように、異なる品種の食品を、同一の容器に充填し、これを任意の順序で上記装置に送り込み、すべて同一の加熱条件にて連続してあるいは同時に並行して加熱殺菌することにより、風味等の品質の良好な大量の殺菌済食品を短時間かつ容易に製造できることがわかる。
【0053】
【発明の効果】
以上のように、請求項1記載の殺菌済食品の製造方法は、複数の充填系列をもつ非無菌的充填工程により食品を容器に充填し、1MHz〜数GHzの周波数の電界中での誘電加熱により上記容器中の食品を殺菌する方法である。
【0054】
それゆえ、多品種の食品を連続してあるいは同時に殺菌処理し、多品種の殺菌済食品を短時間かつ容易に製造することができるという効果を奏する。
【0055】
殺菌済食品の製造方法は、上記の構成に加えて、複数種の上記食品を略同形状の上記容器に充填し、上記食品に対して連続してあるいは同時に上記誘電加熱を行うように構成することもできる
【0056】
それゆえ、請求項1の構成による効果に加えて、多品種の殺菌済食品をさらに短時間かつ容易に製造することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る殺菌装置の一構成例における殺菌工程を示す説明図である。
【図2】本発明に係る殺菌装置の他の構成例における殺菌工程を示す説明図である。
【図3】本発明に係る殺菌装置のさらに他の構成例における殺菌工程を示す説明図である。
【図4】本発明に係る殺菌装置の一構成例を示す説明図である。
【符号の説明】
1 殺菌装置
2 高周波発振器
3 同調回路
4 加熱部
5a 上側電極板
5b 下側電極板
6 シェル
7 プレスシリンダー
11 非無菌的充填工程
12 殺菌工程
13 殺菌部
14 非無菌的充填工程
15 殺菌工程
21、22、23 充填系列
24、25、26 充填器
31、32、33 容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a variety of sterilized foods.
[0002]
[Prior art]
Today, food preferences are required to be diverse, and the content of the same food type is varied.
[0003]
In such foods, countermeasures against microorganisms, particularly microorganisms that cause harm to humans, such as food poisoning bacteria and spoilage bacteria, are very important, but in recent years, with the development of food processing technology, technology to sterilize foods in a sterile state has been developed. Many such sterilized foods have been established. These sterilized foods are convenient because they can be stored for a long time as they are, and because they can be eaten immediately by simple processing such as opening or immediately warming slightly. A very useful food form.
[0004]
As a form having the same effect, there is a food that can be stored for a long period of time by suppressing the growth of microorganisms by processing the food and then storing it at a frozen or refrigerated temperature. However, in order to store and distribute these foods in a low temperature range, large-scale equipment and a great deal of energy are required to cool or maintain the foods to that temperature. On the other hand, the sterilized food can be stored in a normal temperature range, and the sterilized food is very useful in terms of equipment and energy consumption.
[0005]
Such sterilization treatment is currently performed mainly by heating food. However, excessive heat treatment in sterilization has various effects on foods, and in some cases changes its original properties, causing a significant decrease in palatability. That is, flavor deterioration such as heating odor, change in color tone such as browning, change in viscosity and texture, and the like. Therefore, various sterilization methods have been developed in order to perform the heat treatment required for sterilization in as short a time as possible and to minimize the deterioration of food due to heating.
[0006]
For example, there are a steam injection method (steam infusion method) as a direct heating method, a plate type sterilization, a tubular type sterilization, a surface scraping type sterilization as an indirect heating method, and an electric heating sterilization as other methods.
[0007]
[Problems to be solved by the invention]
However, each of these sterilization methods is suitable for continuously producing a large variety of foods as described below, but is suitable for continuously producing many kinds of foods. Absent.
[0008]
That is, all of these methods are methods of filling and packaging after sterilization, and sterilization to filling must be performed aseptically in a continuous sealed in-line. In order to maintain such a sterile condition, it is necessary to prevent contamination of microorganisms from the outside, such as by providing a steam blocking part at the boundary between the outside and the inline. There is a drawback of large scale and large financial burden. In addition, there is a risk in terms of work due to the presence of high temperature parts in the process.
[0009]
In addition, in-line sterilization work is always required when starting production or once restarting after interruption by washing or the like, and there is a disadvantage that efficiency is deteriorated due to energy consumption and time loss. In order to increase the operation efficiency, it is necessary to maintain aseptic conditions as much as possible and continuously manufacture the products. However, when foods of different varieties are continuously produced by these methods, a portion where both types of foods are mixed is produced while the varieties are changed, and most of them are lost. For this reason, it is difficult to switch frequently. In addition, when continuously producing foods with different shades in color and flavor, it is necessary to manufacture from a thin one in order to reduce the loss as much as possible, and there is no flexibility in manufacturing.
[0010]
Thus, when manufactured using the above conventional sterilization treatment method, it is suitable for mass production of small varieties of sterilized foods, but various diverse varieties of sterilized foods can be produced on the same line. However, it is not suitable for continuous or simultaneous production, and is very difficult.
[0011]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for sterilizing foods in a short time and easily and continuously producing a variety of sterilized foods. is there.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method for producing a sterilized food according to claim 1 is characterized in that a food is filled in a container by a non-aseptic filling process having a plurality of filling series, and in an electric field having a frequency of 1 MHz to several GHz. The food in the container is sterilized by dielectric heating.
[0013]
According to the method described above, the food is subjected to a processing step such as preparation as necessary, and then filled into a container by a non-aseptic filling step having a plurality of filling series. The food filled in the container is heat sterilized by dielectric heating using an electromagnetic wave having a frequency of 1 MHz to several GHz for each container.
[0014]
Therefore, the food is filled in the container by a non-aseptic filling process and sterilized after filling and packaging. Since the filling process is non-aseptic, it is much simpler than the aseptic filling equipment, and there is no need to maintain sterility or re-sterilization when switching to other varieties. The loss of energy and time is reduced. In addition, since sterilization is performed after filling and packaging, even if foods of different varieties are manufactured continuously or simultaneously, there is no fear that both types of foods are mixed in the sterilization process. Therefore, a variety of foods can be sterilized continuously or simultaneously to produce a variety of sterilized foods in a short time and easily.
[0015]
In addition, unlike the above-described conventional method of heating and sterilizing from the outside, heat is generated from the inside of the food, so there is less danger due to the high temperature part during the sterilization process.
[0016]
In addition to the above-described configuration, the present invention fills a sterilized portion with foods having different compositions for each filling series, which are filled in containers of approximately the same shape and have substantially the same dielectric constant , and then, A plurality of foods obtained from a plurality of filling lines are sterilized by heating at a time by one heating.
In addition to the above-described configuration, the sterilized food manufacturing method is configured to fill a plurality of types of the above-mentioned foods into the substantially same shape of the container and to perform the dielectric heating continuously or simultaneously on the food. You can also
[0017]
By the above method, a plurality of kinds of foods are filled in a container having substantially the same shape, and sterilized continuously or simultaneously by dielectric heating.
[0018]
Since the shape of the container is almost constant, when the foods that are the contents in the container are compared with each other, if there is no extreme difference in the composition or amount of the ingredients, the container and the food are included. There is no significant difference in the dielectric constant of the object to be heated.
[0019]
The sterilization process is sterilized by dielectric heating using electromagnetic waves having a frequency of 1 MHz to several GHz. In such sterilization by dielectric heating, the magnitude of the sterilization effect is affected by the dielectric constant of the object to be heated. However, as described above, there is no significant difference in the dielectric constant of the object to be heated even if the food in the container is changed, so that dissimilar foods can be sufficiently sterilized continuously or simultaneously with the dielectric heating conditions kept almost constant. can do.
[0020]
Therefore, the labor and time for changing the heating conditions each time the product type is changed are greatly reduced. Therefore, a wide variety of sterilized foods can be easily produced in a short time.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the present invention will be described with reference to FIGS. 1 to 3 as follows.
[0022]
The food in the present invention includes all widely general foods, and does not particularly limit the properties and composition thereof. That is, the food may be in any form such as liquid, semi-fluid, solid, powder, etc., and there is no restriction on physical properties such as viscoelasticity, and in the composition, the water content is high or low, sugar content, salt concentration Also, there is no particular limitation on the shape such as the presence of a discontinuous phase or solid-liquid mixing. However, foods that are sterilized consecutively or simultaneously must not change significantly in content. This is because if the dielectric constant changes greatly, the sterilization process must be adjusted to the optimum setting according to the individual food.
[0023]
The filling process is performed by a non-sterile filling apparatus having a plurality of filling lines. The plurality of filling series may be a single device having a plurality of filling portions or a plurality of devices having a single filling portion.
[0024]
In order to sterilize after filling, the filling device may be a non-sterile device and does not particularly limit the filling method.
[0025]
About the material of the container with which it fills, what is necessary is just to have heat resistance which has electromagnetic wave permeability and can endure a sterilization process. Generally, CP (cellulose propionate), PP (polypropylene), nylon, PET (polyethylene terephthalate), or a composite material thereof is suitable.
[0026]
There is no particular limitation on the shape of the container. It may be an irregular shape such as a pillow-type package (pillow-like container) or a shaped fixed container. However, it is desirable that a plurality of types of foods to be sterilized continuously or simultaneously are filled in containers of the same shape.
[0027]
That is, as shown in FIG. 1, when various kinds of foods are filled in the same shape container, if there is no extreme change in the contents, these various kinds of foods are sterilized continuously or simultaneously in parallel. It is possible.
[0028]
As shown in the figure, in the non-aseptic filling step 11, there are a filling line 21, a filling line 22, and a filling line 23. In the filling line 21, the food A is filled in the container 31 by the filling device 24. In the filling line 22, the container B is similarly filled with the food B by the filling device 25. In the filling line 23, the container C is similarly filled with the food C by the filling device 26.
[0029]
Each container 31 filled with each food is transferred to the sterilization step 12 by a belt conveyor or the like, and sequentially fed into the sterilization unit 13 to be sterilized. In this sterilization process 12, as shown in the figure, the food contained in each container 31 is not uniform, when food A is contained, when food B is contained, when food C is contained There is. However, since one type of container 31 is used in common, it is possible to increase substantially the same sterilization effect under a certain heating condition regardless of the order in which the containers 31 are sent to the sterilization unit 13. For this reason, as shown in the figure, it is possible to send these foods to the sterilization unit 13 in an arbitrary order regardless of the type of food, and to sterilize various foods simultaneously in parallel. Moreover, it is also possible to send to the sterilization part 13 in order of the kind of food, and to sterilize various foods continuously including the time of change of a kind.
[0030]
On the other hand, as shown in FIG. 2, a case where various kinds of foods are filled in containers having different shapes will be considered. In the non-aseptic filling step 14, there are a filling line 21, a filling line 22, and a filling line 23. In the filling line 21, the food A is filled in the container 31, but in the filling line 22, the food B is filled in a container 32 having a shape different from that of the container 31. In the filling line 23, the food C is filled in a container 33 having a shape different from that of the container 31 and the container 32.
[0031]
Each container 31, 32, 33 filled with each food is transferred to the sterilization step 15 by a belt conveyor or the like, and sequentially fed into the sterilization unit 13 to be sterilized. Here, all the rows of containers A are sent to the sterilizing unit 13 before the containers B and C, and are continuously sterilized under the sterilizing conditions for the containers A. After that, all the rows of the containers B are sent to the sterilizing unit 13 before the containers C, and are continuously sterilized under the sterilizing conditions for the containers B. After that, the row of containers C is fed into the sterilizing unit 13 and continuously sterilized under the sterilizing conditions for the containers C.
[0032]
In this way, when the shape of the container is changed in the middle, there is a possibility that the conditions at the time of sterilization may be appropriately adjusted to optimum conditions according to the individual containers (31, 32, 33). . In that case, it becomes difficult to sterilize various foods simultaneously in parallel under substantially constant sterilization conditions as shown in FIG. Therefore, in this case, as shown in FIG. 2, it is necessary to sterilize the same kind of food continuously to some extent, and to change the sterilization conditions each time the shape of the container changes.
[0033]
However, if the sterilization conditions are not changed even if the container shapes are different, it is possible to sterilize various foods in parallel as shown in FIG.
[0034]
In the above example, foods of different varieties are sterilized one by one, but as another example, as shown in FIG. 3, a plurality of foods of the same or different varieties filled in the same container 31 are It can also be configured such that it is simultaneously fed to the sterilizing unit 13 and then these foods are heat sterilized one by one at a time by one heating.
[0035]
It is also possible to prepare a plurality of sterilization units 13 and heat and sterilize foods of the same or different varieties in parallel with the plurality of sterilization units 13.
[0036]
In the present invention, the frequency of the electromagnetic wave used for sterilization is 1 MHz to several GHz effective as dielectric heating. At a frequency lower than this, the food previously filled in the container is not heated by dielectric heating. Moreover, it is practically difficult at a frequency larger than this.
[0037]
The sterilization temperature may be set to an optimum temperature according to the content and composition of the object, but a temperature of 120 ° C. to 180 ° C. is effective and preferable for sterilization of food. When the temperature is too low, it takes a long time to sterilize the food, and when the temperature is too high, the food is burnt, which causes adverse effects due to heating.
[0038]
The time required to reach the sterilization temperature is preferably as short as possible in order to reduce the influence of heating on the food, and is preferably in the range of 10 to 90 seconds. If it is too short, it becomes difficult to control the sterilization temperature. On the other hand, if the length is too long, the food is adversely affected by heating.
[0039]
After reaching the sterilization temperature, the food is maintained at this temperature for a holding time (sterilization time) for sterilizing the food as necessary. The holding time is appropriately set according to the sterilization temperature, the content composition of the heating object, the size, and the like, but a holding time of 0 to 180 seconds is preferable. If it is too long, the food will be adversely affected by heating, and the sterilization efficiency will be reduced.
[0040]
Generally, the sterilization time M at an arbitrary temperature T i is calculated by the following equation.
M = F × 10 (Tr-Ti) / z
In this equation, F is a required F value, T r is a reference temperature, T i is an arbitrary temperature, and z is a parameter indicating the heat resistance of the microorganism. The reference temperature T r , z value and F value are set according to the properties of the individual food. For example, in a food having a neutral pH, the reference temperature is 121.1 ° C., z = 10 ° C., F value Is usually at least 4 minutes. The sterilization temperature is maintained only during the sterilization time M.
[0041]
As for cooling, in order to minimize the effects of heating on food, it is necessary to perform immediately after the sterilization treatment, but if the time and cooling temperature are set according to the degree of influence on the heat of each food Good. The cooling method is not particularly limited, but in general, the cooled liquid or gas is brought into contact with the periphery of the food and cooled by its heat conduction. A mechanism for cooling the inside of the sterilizing apparatus may be attached, or a method of cooling after taking out food from the sterilizing apparatus may be used.
[0042]
The cooled food is further packaged as necessary, and stored and distributed as it is at room temperature. However, due to the characteristics of the food, if necessary, it is refrigerated at a refrigerated temperature.
[0043]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
The outline of the apparatus used in this example is as follows.
As shown in FIG. 4, the sterilizer 1 includes a vacuum tube type high frequency oscillator 2 having a frequency of 13.56 MHz and an output of 7 kW, and passes through a tuning circuit 3 including a capacitor having a variable capacitance and a coil having a variable impedance. , Connected to the heating unit 4.
[0044]
The heating unit 4 includes two upper and lower electrode plates, that is, an upper electrode plate 5a and a lower electrode plate 5b, and a shell 6 formed of an insulator. The high frequency oscillator 2 is connected to the upper electrode plate 5a through the tuning circuit 3, and the lower electrode plate 5b is grounded. A press cylinder 7 is connected to the upper electrode plate 5a and can be pressed toward the lower electrode plate 5b. The shell 6 is located between the upper electrode plate 5a and the lower electrode plate 5b, and there is a space for arranging a sample to be heated at the center.
[0045]
Heating is performed by the following method. In all the following examples, the same method was used. That is, a sample was prepared by using 200 g of food material, filling the pillow-shaped container formed of two layers of CP and nylon with the food material, and hermetically packaging by heat sealing. This sample is placed at the center of the shell 6, the upper electrode plate 5 a is lowered by the press cylinder 7, the space at the center of the shell 6 is sealed, and then the high frequency is oscillated by the high frequency oscillator 2 to heat the sample. did. At this time, the high-frequency output from the upper electrode plate 5a was adjusted to 1.82 kW, and the heat treatment was performed with the same settings in the following examples. All the samples were heated to a predetermined temperature after heating was started, and at that time, high-frequency oscillation was stopped and the temperature was maintained for about 1 minute. Subsequently, the process was shifted to cooling so that the sample temperature was 30 ° C. or lower.
[0046]
[Example 1]
10 parts by weight of sugar, 16 parts by weight of starch syrup, 6 parts by weight of coconut oil, 4 parts by weight of skim milk powder, 0.5 parts by weight of glycerin fatty acid ester and 0.05 parts by weight of carrageenan are sequentially added to water while heating and stirring. Was 100. The mixture was heated to 70 ° C. and completely dissolved, and then homogenized with a homogenizer to obtain an ice cream mix. This was filled and packaged in a container as described above to prepare a sample, which was heat sterilized using the above apparatus and conditions.
[0047]
[Example 2]
8 parts by weight of sugar, 9 parts by weight of starch syrup, 4 parts by weight of coconut oil, 8 parts by weight of skim milk powder, 0.5 parts by weight of glycerin fatty acid ester and 0.05 parts by weight of carrageenan are sequentially added to water while heating and stirring. Was 100. The mixture was heated to 70 ° C. and completely dissolved, and then homogenized with a homogenizer to obtain a shake mix. This was filled and packaged in a container as described above to prepare a sample, which was heat sterilized using the above apparatus and conditions.
[0048]
Example 3
Coconut oil 23 parts by weight, skim milk powder 6 parts by weight, casein sodium 3 parts by weight, glycerin fatty acid ester 0.7 parts by weight, sugar ester 0.5 parts by weight, carrageenan 0.05 parts by weight in water while heating and stirring Sequentially added, the total was 100. The mixture was heated to 70 ° C. and completely dissolved, and then homogenized with a homogenizer to obtain a coffee cream. This was filled and packaged in a container as described above to prepare a sample, which was heat sterilized using the above apparatus and conditions.
[0049]
Example 4
18 parts by weight of sugar, 25 parts by weight of coconut oil, 7 parts by weight of skim milk powder, 2 parts by weight of sodium caseinate, and 0.5 parts by weight of glycerin fatty acid ester were sequentially added to water while heating and stirring to make 100 as a whole. The mixture was heated to 70 ° C. and completely dissolved, and then homogenized with a homogenizer to obtain a whipped cream mix. This was filled and packaged in a container as described above to prepare a sample, which was heat sterilized using the above apparatus and conditions.
[0050]
Example 5
Two containers are prepared, one container containing 100 g of the ice cream mix obtained in Example 1, and the other container containing 100 g of the coffee cream obtained in Example 3 above. Samples were filled and packaged as described above. And these two containers were heat-sterilized simultaneously with the said apparatus and conditions.
[0051]
In Examples 1-5, each sample showed the same temperature rising tendency, and reached 130 degreeC in 1 minute 30 seconds. When the fungus test was performed on each sample, no bacteria were detected. Further, there was no problem in color tone and flavor.
[0052]
As a result, like the food materials mentioned in these examples, different varieties of foods are filled in the same container, and this is sent to the above apparatus in an arbitrary order, all continuously under the same heating conditions. Alternatively, it can be seen that a large amount of sterilized food products with good quality such as flavor can be easily produced in a short time by heat sterilization in parallel.
[0053]
【The invention's effect】
As described above, the method for producing a sterilized food according to claim 1 fills a container with a food by a non-aseptic filling process having a plurality of filling series, and performs dielectric heating in an electric field having a frequency of 1 MHz to several GHz. To sterilize the food in the container.
[0054]
Therefore, there is an effect that a variety of foods can be sterilized continuously or simultaneously to produce a variety of sterilized foods in a short time and easily.
[0055]
Production method of the present sterilized food, in addition to the arrangement as described above, constituting the plural kinds of the food substantially charged to the container having the same shape, so as to perform successively or simultaneously the dielectric heating with respect to the food You can also
[0056]
Therefore, in addition to the effect by the structure of Claim 1, there exists an effect that many types of sterilized foodstuffs can be manufactured further in a short time and easily.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a sterilization process in one configuration example of a sterilizer according to the present invention.
FIG. 2 is an explanatory view showing a sterilization process in another configuration example of the sterilization apparatus according to the present invention.
FIG. 3 is an explanatory view showing a sterilization process in still another configuration example of the sterilization apparatus according to the present invention.
FIG. 4 is an explanatory view showing a configuration example of a sterilizer according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sterilization apparatus 2 High frequency oscillator 3 Tuning circuit 4 Heating part 5a Upper electrode plate 5b Lower electrode plate 6 Shell 7 Press cylinder 11 Non-aseptic filling process 12 Sterilization process 13 Sterilization part 14 Non-aseptic filling process 15 Sterilization process 21, 22 , 23 Filling series 24, 25, 26 Fillers 31, 32, 33 Containers

Claims (1)

複数の充填系列をもつ非無菌的充填工程により充填系列ごとに異なる組成の食品を略同形状の容器に充填して誘電率をほぼ同じとし、同時に殺菌部に送り込み、
1MHz〜数GHzの周波数の電界中での誘電加熱により、これらの複数の充填系列から得られる食品を1回の加熱で同時に複数個ずつ加熱殺菌することを特徴とする殺菌済食品の製造方法。
A non-aseptic filling process with a plurality of filling lines fills containers of approximately the same shape with foods of different compositions for each filling line to make the dielectric constant substantially the same , and simultaneously feeds it to the sterilization unit,
A method for producing a sterilized food, characterized in that a plurality of foods obtained from a plurality of filling series are heat-sterilized simultaneously by one heating by dielectric heating in an electric field having a frequency of 1 MHz to several GHz.
JP07614297A 1997-03-27 1997-03-27 Method for producing sterilized food Expired - Fee Related JP3670104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07614297A JP3670104B2 (en) 1997-03-27 1997-03-27 Method for producing sterilized food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07614297A JP3670104B2 (en) 1997-03-27 1997-03-27 Method for producing sterilized food

Publications (2)

Publication Number Publication Date
JPH10262624A JPH10262624A (en) 1998-10-06
JP3670104B2 true JP3670104B2 (en) 2005-07-13

Family

ID=13596755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07614297A Expired - Fee Related JP3670104B2 (en) 1997-03-27 1997-03-27 Method for producing sterilized food

Country Status (1)

Country Link
JP (1) JP3670104B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826949B2 (en) * 1975-12-22 1983-06-06 協和醗酵工業株式会社 How to read the book
DE3830867C1 (en) * 1988-09-10 1990-01-18 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
JPH06296478A (en) * 1993-02-17 1994-10-25 Otsuka Chem Co Ltd Production of hermetically sealed packaged food and microwave heating and pressurizing sterilizer
JP2875157B2 (en) * 1994-05-24 1999-03-24 山本ビニター株式会社 Heat sterilizer
JPH08242782A (en) * 1995-03-14 1996-09-24 Asahi Denka Kogyo Kk Heating of hermetically packaged material and apparatus therefor
JP2875198B2 (en) * 1995-12-18 1999-03-24 山本ビニター株式会社 High frequency heat sterilization apparatus and method
JPH10304855A (en) * 1997-03-04 1998-11-17 Yamamoto Vinita Co Ltd High frequency heating sterilizer and sterilization

Also Published As

Publication number Publication date
JPH10262624A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
US5063073A (en) C-Gel composite food products
US5320856A (en) Method of making complex food articles having prolonged shelf-life
JP2017532029A (en) Microwave retort system, method of heating food using microwave retort system, and food prepared for microwave retort
US6090425A (en) Egg processing system and method of using same to extend the refrigerated shelf life of liquid egg product
US4244982A (en) Process for preparing a food mousse
US3314798A (en) Dairy product and method of producing same
JP3670104B2 (en) Method for producing sterilized food
US6066354A (en) Preparing foodstuffs based on fish flesh, and foodstuffs obtained thereby
GB2278992A (en) Methods and apparatus for pasteurizing liquid egg
RU2301002C1 (en) Method for preparing of food products
JPH0249552A (en) Method of producing pasta product sterilization cooked or partially sterilization cooked continuously
JP3601570B2 (en) Food sterilization method
JP3604109B2 (en) Manufacturing method of sterilized solid food ingredients
JPH022323A (en) Starchy food contained cooked package
JP3181249B2 (en) Method for producing pasteurized food in containers
JP2001025381A (en) Preparation of sesame product
JPH08242783A (en) Heating of hermetically packaged material and apparatus therefor
JP3447199B2 (en) Manufacturing method of sealed packaged food
EP0592710B1 (en) A method of producing complex food articles ready for consumption and having prolonged shelf-life
RU2246879C2 (en) Method for producing of canned food from fish liver
JP4576353B2 (en) Low viscosity custard cream and method for producing the same
RU2249969C2 (en) Method for producing of canned sterilized sour cream
US20210022356A1 (en) Process for Aseptically Preparing Fruits and Vegetables
JPH08294376A (en) Preparation of canned sauce
EP1248526B1 (en) Egg processing system and method of using same to extend the refrigerated shelf life of liquid egg products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees