JP3669638B2 - Concentration blow control method for boiler - Google Patents
Concentration blow control method for boiler Download PDFInfo
- Publication number
- JP3669638B2 JP3669638B2 JP29266793A JP29266793A JP3669638B2 JP 3669638 B2 JP3669638 B2 JP 3669638B2 JP 29266793 A JP29266793 A JP 29266793A JP 29266793 A JP29266793 A JP 29266793A JP 3669638 B2 JP3669638 B2 JP 3669638B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrical conductivity
- boiler
- concentration
- concentration blow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Description
【0001】
【産業上の利用分野】
この発明は、ボイラの濃縮ブロー制御方法に関するものである。
【0002】
【従来の技術】
一般に、ボイラにおいては、このボイラ内の缶水を長時間に亘り高温で加熱し続けると、発生する蒸気量に比例して缶水の濃縮が進行し、結果的には発生蒸気の高乾き度の維持が困難となる。
【0003】
この状態を回避するために、従来、前記ボイラには、自動濃縮ブロー装置が設けられている。この自動濃縮ブロー装置は、前記ボイラのセパレータの降水管に濃縮ブロー弁がストレーナを介して設けられており、この濃縮ブロー弁は、常時は弁を閉じ、開弁されると缶水をブロー配管から外方へ排出するようになっている。そして、この濃縮ブロー弁と前記降水管の下流側に設置した電気伝導率測定センサとを結ぶ回路に制御部を設けた構成となっている。この自動濃縮ブロー装置によると、前記電気伝導率測定センサにより前記降水管の下流側での缶水の濃縮度に比例する電気伝導率の変化を測定し、電気伝導率が規定値を超えたとき、前記濃縮ブロー弁を開弁させて高濃縮缶水を外部へ排出し、同時に高濃縮缶水の排出に伴い、給水装置を介して缶内へ自動的に補給される新規の給水により缶水が希釈され、缶水全体の濃縮度が低下して、缶水の電気伝導率が規定値以下に低下すると、前記濃縮ブロー弁が閉じる。このようにして、前記自動濃縮ブロー装置によって、前記ボイラにおける発生蒸気の高乾き度の維持を図っている。
【0004】
しかしながら、前記自動濃縮ブロー装置では、給水の電気伝導率が、その温度によって大きく変化するので、前記ボイラの使用状況やその圧力等によっては、基準値をはずれたところで作動しているケースがある。また、前記ボイラのメンテナンスを行うときには、給水量に対するブロー量の比率を実測して、現在の電気伝導率の設定が正しいか否かを確認しているため、電気伝導率の設定に際しては、何回にもわたって設定をし直して適正値を求めているのが現状である。
【0005】
【発明が解決しようとする課題】
この発明が解決しようとする課題は、給水の電気伝導率の変化に対応し、予め設定した濃縮ブロー率を修正して缶水の濃縮度を自動制御するボイラの濃縮ブロー制御方法を提供することである。
【0006】
【課題を解決するための手段】
この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、予め設定した濃縮ブロー率に基づいて、濃縮ブロー弁7を開閉し、缶水の濃縮度を自動制御
するボイラ1において、缶水の電気伝導率がほぼ一定になるまでの運転時間を予め設定し、この運転時間経過後の缶水の電気伝導率を電気伝導率測定センサ6により測定し、この測定した電気伝導率と予め設定した缶水の電気伝導率とを比較し、両者が異なる場合は、測定した電気伝導率と予め設定した濃縮ブロー率とから下記式[1]を用いて給水の電気伝導率を演算し、この給水の電気伝導率と予め設定した缶水の電気伝導率とから下記式[1]を用いて、適正な濃縮ブロー率を演算し、この演算した値に濃縮ブロー率を修正することを特徴とするボイラの濃縮ブロー制御方法。
E=E0/α……[1]
E:缶水の電気伝導率
E0:給水の電気伝導率
α:濃縮ブロー率
【0007】
さらに、請求項2に記載の発明は、予め設定した濃縮ブロー率に基づいて、濃縮ブロー弁7を開閉し、缶水の濃縮度を自動制御するボイラ1において、このボイラ1への給水の電気伝導率をセンサ17により測定し、測定した給水の電気伝導率と予め設定した給水の電気伝導率とを比較し、両者が異なる場合は、測定した給水の電気伝導率と予め設定した缶水の電気伝導率を下記式[1]に代入して適正な濃縮ブロー率を演算し、この演算した値に濃縮ブロー率を修正することを特徴とするボイラの濃縮ブロー制御方法。
E=E0/α……[1]
E:缶水の電気伝導率
E0:給水の電気伝導率
α:濃縮ブロー率
【0008】
【実施例】
以下、この発明の具体的実施例を図面に基づいて詳細に説明する。図面に示す実施例は、一例として多管式貫流ボイラにこの発明に係る濃縮ブロー制御方法を適用したものである。
【0009】
まず、図1に基づいて、この発明の請求項1の実施例について説明する。図1に示すように、ボイラ1の下部には、逆止弁,瀘過器,薬注装置等を備えた給水装置(図示省略)の給水管2が連通接続されている。この給水管2の他端は、水道,井戸等の水源(図示省略)に連通接続され、給水ポンプ(符号省略)の作動により、水源の水が瀘過され薬液を注入された薬注給水となって、前記ボイラ1の缶内へ供給される。また、前記ボイラ1の一側には、発生した蒸気の気水分離を行うセパレータ3が、蒸気連絡管4および降水管5を介して前記ボイラ1の缶内上下部に連通して接続されており、また前記降水管5の下部には、電気伝導率測定センサ6および電磁開閉式の濃縮ブロー弁7を備えたブロー配管8が連通接続されている。
【0010】
前記ボイラ1の稼動,停止は、通常、負荷の状況に基づき、前記ボイラ1の缶内圧を検出する圧力検出器9の信号に基づいて、燃焼制御器(図示省略)により制御する。すなわち、缶内圧が予め設定しておいた圧力値以上になれば燃焼を停止させ、それ以下になれば燃焼を開始する。また、前記ボイラ1のバーナ16には、前記ボイラ1内での燃焼を検出する燃焼検出センサ10が設けられていて、前記ボイラ1内の燃焼状況と燃焼時間が計測されるようになっている。すなわち、これらの圧力検出器9および燃焼検出センサ10は、前記ボイラ1の運転状況を制御する検出手段を構成している。
【0011】
前記濃縮ブロー弁7の開閉を制御する制御器11は、たとえばマイコン内蔵の演算機能を有し、前記圧力検出器9,前記燃焼検出センサ10等の検出手段からの検出信号と、予め設定している濃縮ブロー率により、前記濃縮ブロー弁7の開閉タイミングを演算し、前記濃縮ブロー弁7の開閉を間歇的に行う時間を決定し、前記濃縮ブロー弁7へその信号を出力するようになっている。したがって、この制御器11は、前記圧力検出器9および前記燃焼検出センサ10と通信線12,13を介してそれぞれ接続され、かつ前記濃縮ブロー弁7と通信線14を介して接続され、前記電気伝導率測定センサ6と通信線15を介して接続されている。
【0012】
一般的に、濃縮ブロー率(ブロー量と給水量との比率)の設定は、事前に、供給する原水(井戸水、水道水)の水質(pHほか)を分析し、必要な清缶剤の投入量等から勘案して決定するが、概ね10%から15%程度となる。ここにおいて、給水量は、給水時間により算出することも可能であるが、前記給水ポンプの能力変化や前記ボイラ1の圧力変動等により単位時間当たりの給水量が変動することがあるので、給水量を蒸発量×燃焼時間により算出し、濃縮ブロー率をブロー量と蒸発量×燃焼時間との比率とした。すなわち、前記圧力検出器9および前記燃焼検出センサ10からの検出信号でブロー量を算出する方がより正確である。これは、前記ボイラ1の蒸発量は、定格で決まっているからである。
【0013】
前記構成によれば、前記ボイラ1が稼動中は、缶内圧力,前記バーナ16の燃焼状態,燃焼時間等は、前記圧力検出器9,前記燃焼検出センサ10および前記電気伝導率測定センサ6等の検出手段が常時検出しており、その検出信号を前記制御器11へ出力する。出力信号を受けた前記制御器11は、予め設定してある濃縮ブロー率と前記検出信号とにより、前記濃縮ブロー弁7の開閉タイミングを計算し、前記濃縮ブロー弁7の開閉を間歇的に行う時間を決定して、前記濃縮ブロー弁7を自動的に開閉するようにしている。
【0014】
この発明の濃縮ブロー制御方法は、前記構成において、前記ボイラ1の運転開始時から缶水の電気伝導率がほぼ一定になるまでの時間を予め設定し、この運転時間経過後の缶水の電気伝導率を前記電気伝導率測定センサ6により測定し、この測定した電気伝導率,すなわち実測電気伝導率により修正濃縮ブロー率を演算する。
【0015】
ここで、缶水の濃縮度は、溶媒(水)中の溶質(全蒸発残留物)の量であるが、水中の全蒸発残留物と電気伝導率との間には、ほぼつぎの関係が成り立つ。
【0016】
全蒸発残留物〔mg/リットル〕=0.7×電気伝導率〔μs/cm〕
【0017】
したがって、全蒸発残留物の代わりに電気伝導率にて缶水の濃縮度を計算することができる。たとえば、缶水の電気伝導率をE〔μs/cm〕,燃焼時間をT〔h〕,実際蒸発量をG〔kg/h〕,保有水量をL〔リットル〕,給水の電気伝導率をE0〔μs/cm〕,濃縮ブロー量をB〔kg/h〕および濃縮ブロー率をαとすると、次式が成り立つ。
【0018】
E={E0×L+E0×(G+B)×T−E×B×T}/L
【0019】
この式を変形すると、E×{1+(B×T)/L}=E0×{1+(G+B)/L×T}となる。
【0020】
ここにおいて、濃縮倍数は、E/E0であるから、E/E0={1+(G+B)/L×T)}/{1+(B×T)/L}となる。
【0021】
また、α=B/(G+B)であるから、E/E0={1+(B×T)/(α×L)}/{1+(B×T)/L}となる。
【0022】
したがって、この式において、Tが大きくなると、E=E0/α(以下、「式[1]」と云う。)となる。
【0023】
前記電気伝導率測定センサ6は、前記ボイラ1の稼動中の缶水の電気伝導率を常時測定し、所定運転時間経過後の缶水の電気伝導率E2と、予め設定した所定の缶水の電気伝導率E1とを比較し、両者が異なっている場合は、前記制御器11の演算部で、測定した缶水の電気伝導率E2と予め設定していた濃縮ブロー率α1を前記式[1]に代入して、給水の電気伝導率E3を演算し(E3=E2×α1)、つぎに、この給水の電気伝導率E3と前記所定の缶水の電気伝導率E1とを前記式[1]に代入して、適正な濃縮ブロー率α2を演算し(α2=E3/E1=E2/E1×α1)、この値に前記濃縮ブロー率を修正して缶水の濃縮度を自動制御する。したがって、給水の電気伝導率の変化にも自動的に対応し、常に適正な濃縮ブロー率で前記ボイラ1の缶水の濃縮度を制御することができる。
【0024】
つぎに、この発明の請求項2の実施例を図2に基づいて説明する。ここにおいて、請求項1の実施例と同一部材には同一番号を付し、重複する説明は省略する。さて、図2に示す実施例は、前記給水管2の途中に、給水の電気伝導率を測定するセンサ17を設け、このセンサ17を通信線18を介して前記制御器11に接続したものである。この実施例では、缶水の電気伝導率を測定するセンサは不要となる。
【0025】
前記センサ17は、給水の電気伝導率を常時測定し、予め設定した所定の給水の電気伝導率E4と測定した給水の電気伝導率E5とを比較し、両者が異なっている場合は、前記制御器11の演算部で、測定した給水の電気伝導率E5と予め設定してある所定の缶水の電気伝導率E1を前記式[1]に代入して、適正な濃縮ブロー率α2を演算し(α2=E5/E1)、この値に前記濃縮ブロー率を修正して缶水の濃縮度を自動制御する。したがって、給水の電気伝導率の変化に自動的に対応し、常に適正な濃縮ブロー率で前記ボイラ1の缶水の濃縮度を制御することができる。
【0026】
【発明の効果】
この発明によれば、予め設定した濃縮ブロー率に基づいて缶水の濃縮度を自動制御するシステムにおいて、所定の缶水の電気伝導率と所定運転時間経過後に測定した缶水の電気伝導率が異なっているとき、あるいは予め設定した所定の給水の電気伝導率と測定した給水の電気伝導率が異なっているときは、制御器で関係数値を演算し適正な濃縮ブロー率を算出して自動制御するようにしたので、給水の電気伝導率の変化に対応して濃縮ブロー率を修正し、適正な濃縮ブローを行うことができる。
【図面の簡単な説明】
【図1】この発明の請求項1の濃縮ブロー制御方法を実施した多管式貫流ボイラの各機器の配置を示す説明図である。
【図2】この発明の請求項2の濃縮ブロー制御方法を実施した多管式貫流ボイラの各機器の配置を示す説明図である。
【符号の説明】
1 ボイラ
7 濃縮ブロー弁
6 電気伝導率測定センサ
17 センサ [0001]
[Industrial application fields]
The present invention relates to a method for controlling the concentration blow of a boiler.
[0002]
[Prior art]
In general, in a boiler, if the can water in the boiler is continuously heated at a high temperature for a long time, the concentration of the can water proceeds in proportion to the amount of steam generated, resulting in a high dryness of the generated steam. Is difficult to maintain.
[0003]
In order to avoid this state, the boiler is conventionally provided with an automatic concentration blow device. In this automatic concentrating blow device, a concentrating blow valve is provided via a strainer in the downcomer pipe of the separator of the boiler, and this concentrating blow valve is normally closed and when it is opened, can water is blown into the piping. It is designed to discharge from the outside . And it is the structure which provided the control part in the circuit which connects this concentration blow valve and the electrical conductivity measurement sensor installed in the downstream of the said downcomer. According to the automatic blowdown apparatus, a change in electrical conductivity which is proportional to the concentration of the boiler water on the downstream side of the downcomer by the electric conductivity measuring sensor measures, when the electrical conductivity exceeds a predetermined value The concentrated blow valve is opened to discharge the highly concentrated canned water to the outside. At the same time, the canned water is automatically supplied into the can through the water supply device when the highly concentrated canned water is discharged. Is diluted, the concentration of the entire can water is lowered, and when the electrical conductivity of the can water falls below a specified value, the concentration blow valve is closed. In this way, the automatic concentration blow device maintains the high dryness of the generated steam in the boiler.
[0004]
However, in the automatic concentrating blow device, the electric conductivity of the feed water varies greatly depending on the temperature thereof, so that there are cases where it operates at a position deviating from the reference value depending on the use status of the boiler, its pressure, or the like. Further, when performing maintenance of the boiler, by measuring the ratio of the blow amount to the water supply amount, since the setting of the current electrical conductivity is to check whether correct or not, in setting the electrical conductivity, what The current situation is that an appropriate value is obtained by setting again and again.
[0005]
[Problems to be solved by the invention]
Problems which the present invention is to provide, in response to changes in the water supply of the electrical conductivity, to provide a blowdown control method of a boiler for automatically controlling the enrichment of the boiler water by modifying the blowdown rate set in advance It is.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the invention according to
E = E 0 / α …… [1]
E: Electric conductivity of can water E 0 : Electric conductivity of feed water α: Concentration blow rate
Further, according to the second aspect of the present invention, in the
E = E 0 / α …… [1]
E: Electric conductivity of can water E 0 : Electric conductivity of water supply α: Concentration blow rate
【Example】
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. The embodiment shown in the drawings is an example in which the concentrated blow control method according to the present invention is applied to a multitubular once-through boiler.
[0009]
First, an embodiment of
[0010]
The operation and stop of the
[0011]
The controller 11 for controlling the opening / closing of the
[0012]
Generally, the concentration blow rate (ratio between the blow amount and the water supply amount) is set in advance by analyzing the quality (pH, etc.) of the raw water (well water, tap water) to be supplied and supplying the necessary cleanser. Although it is determined in consideration of the amount, etc., it is about 10% to 15%. Here, the water supply amount can also be calculated by the water supply time, but the water supply amount per unit time may fluctuate due to a change in the capacity of the water supply pump, a pressure fluctuation of the
[0013]
According to the above configuration, when the
[0014]
In the above-described configuration, the concentration blow control method according to the present invention sets in advance the time from the start of operation of the
[0015]
Here, the concentration of can water is the amount of solute (total evaporation residue) in the solvent (water), but the following relationship is approximately between the total evaporation residue in water and the electrical conductivity. It holds.
[0016]
Total evaporation residue [mg / liter] = 0.7 × electric conductivity [μs / cm]
[0017]
Therefore, the concentration of the can water can be calculated by electric conductivity instead of the total evaporation residue. For example, the electrical conductivity of can water is E [μs / cm], the combustion time is T [h], the actual evaporation is G [kg / h], the retained water is L [liter], and the electrical conductivity of the feed water is E Assuming that 0 [μs / cm], the concentration blow rate is B [kg / h], and the concentration blow rate is α , the following equation holds.
[0018]
E = {E 0 × L + E 0 × (G + B) × T−E × B × T} / L
[0019]
When this equation is transformed, E × {1+ (B × T) / L} = E 0 × {1+ (G + B) / L × T} .
[0020]
Here, since the multiplication factor is E / E 0 , E / E 0 = {1+ (G + B) / L × T)} / {1+ (B × T) / L} .
[0021]
Since α = B / (G + B), E / E 0 = {1+ (B × T) / (α × L)} / {1+ (B × T) / L} .
[0022]
Accordingly, in this equation, when T increases, E = E 0 / α (hereinafter referred to as “expression [1] ”).
[0023]
The electrical conductivity measuring sensor 6 constantly measures the electrical conductivity of the can water while the
[0024]
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the embodiment of
[0025]
The
[0026]
【The invention's effect】
According to the present invention, in a system that automatically controls the concentration of can water based on a preset concentration blow rate, the electrical conductivity of the predetermined can water and the electrical conductivity of the can water measured after elapse of a predetermined operation time are If it is different, or if the measured electrical conductivity of the specified feed water is different from that of the preset preset water supply, the controller calculates the appropriate concentration blow rate and calculates the appropriate concentration blow rate automatically. Thus, the concentration blow rate can be corrected in accordance with the change in the electrical conductivity of the water supply, and appropriate concentration blow can be performed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view showing the arrangement of devices of a multi-tube type once-through boiler in which a concentration blow control method according to
FIG. 2 is an explanatory view showing the arrangement of each device of a multi-tube type once-through boiler in which the concentration blow control method according to
[Explanation of symbols]
1
6 Electrical conductivity measurement sensor
17 Sensor
Claims (2)
E=E0/α……[1]
E:缶水の電気伝導率
E0:給水の電気伝導率
α:濃縮ブロー率Based on a preset concentration blow rate, in the boiler 1 that opens and closes the concentration blow valve 7 and automatically controls the concentration of the can water, the operation time until the electric conductivity of the can water becomes substantially constant is set in advance. The electrical conductivity of the can water after the operating time is measured by the electrical conductivity measuring sensor 6, and the measured electrical conductivity is compared with the preset electrical conductivity of the can water. The electrical conductivity of the feed water is calculated from the measured electrical conductivity and the preset concentration blow rate using the following formula [1], and the electrical conductivity of the feed water and the preset electrical conductivity of the can water are calculated. A boiler concentration blow control method, wherein an appropriate concentration blow rate is calculated using the following formula [1], and the concentration blow rate is corrected to the calculated value.
E = E 0 / α …… [1]
E: Electric conductivity of can water E 0 : Electric conductivity of water supply α: Concentration blow rate
E=E0/α……[1]
E:缶水の電気伝導率
E0:給水の電気伝導率
α:濃縮ブロー率Based on a preset concentration blow rate, in the boiler 1 that opens and closes the concentration blow valve 7 and automatically controls the concentration of the can water, the electric conductivity of the water supplied to the boiler 1 is measured by the sensor 17 and measured. When the electrical conductivity of the feed water is compared with the electrical conductivity of the preset feed water , if both are different, the following formula [1] is calculated from the measured electrical conductivity of the feed water and the preset electrical conductivity of the can water. A method for controlling the concentration blow of a boiler, which calculates an appropriate concentration blow rate by using the correction and corrects the concentration blow rate to the calculated value.
E = E 0 / α …… [1]
E: Electric conductivity of can water E 0 : Electric conductivity of water supply α: Concentration blow rate
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29266793A JP3669638B2 (en) | 1993-10-27 | 1993-10-27 | Concentration blow control method for boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29266793A JP3669638B2 (en) | 1993-10-27 | 1993-10-27 | Concentration blow control method for boiler |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000328052A Division JP3669687B2 (en) | 2000-10-27 | 2000-10-27 | Boiler concentration blow control device |
JP2003204212A Division JP2004045023A (en) | 2003-07-31 | 2003-07-31 | Concentrated blow control device of boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07167405A JPH07167405A (en) | 1995-07-04 |
JP3669638B2 true JP3669638B2 (en) | 2005-07-13 |
Family
ID=17784746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29266793A Expired - Lifetime JP3669638B2 (en) | 1993-10-27 | 1993-10-27 | Concentration blow control method for boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3669638B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6958449B2 (en) * | 2018-03-19 | 2021-11-02 | 栗田工業株式会社 | Boiler water concentration multiple measuring device |
-
1993
- 1993-10-27 JP JP29266793A patent/JP3669638B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07167405A (en) | 1995-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008506087A (en) | Method for operation of once-through boiler | |
JP3669638B2 (en) | Concentration blow control method for boiler | |
JP3669687B2 (en) | Boiler concentration blow control device | |
JP5668393B2 (en) | boiler | |
JP2004045023A (en) | Concentrated blow control device of boiler | |
JPH05126305A (en) | Control mechanism for concentration blow valve in boiler | |
JP2000171002A (en) | Concentration blow control method for boiler | |
JPS6354438B2 (en) | ||
JP2853097B2 (en) | Concentration blower for boiler using electric conductivity in feed water | |
JP4059573B2 (en) | Water supply control device with two water level detection cylinders | |
JPH0960806A (en) | Method of monitoring concentration of boiler tube water | |
JPH11287404A (en) | Control method for feed water of boiler | |
JPH086898B2 (en) | Concentration blow valve control mechanism monitoring method and monitoring device | |
JPH0960808A (en) | Method of controlling concentration blower of boiler | |
JPH07233907A (en) | Method and apparatus for controlling water level of steam boiler | |
JPH109507A (en) | Intermittent blow control method of boiler | |
JPS6326801B2 (en) | ||
JP3077789B2 (en) | Boiler operation concentration blow control method | |
JPH0518507A (en) | Method of controlling chemical feeding for boiler | |
JP2589233Y2 (en) | Main steam temperature controller for black liquor recovery boiler | |
JPH0134055Y2 (en) | ||
JP6642157B2 (en) | Boiler equipment | |
JP3463354B2 (en) | Failure determination method for canned water concentration sensor in boiler | |
JPS5937401B2 (en) | Can water control device for multi-tube once-through boiler | |
JPH05149504A (en) | Method and device for controlling waterlevel in boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050411 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090422 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090422 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100422 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100422 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110422 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120422 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130422 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |