JP3669562B2 - Differential signal transmission cable with excellent terminal processability - Google Patents

Differential signal transmission cable with excellent terminal processability Download PDF

Info

Publication number
JP3669562B2
JP3669562B2 JP26824799A JP26824799A JP3669562B2 JP 3669562 B2 JP3669562 B2 JP 3669562B2 JP 26824799 A JP26824799 A JP 26824799A JP 26824799 A JP26824799 A JP 26824799A JP 3669562 B2 JP3669562 B2 JP 3669562B2
Authority
JP
Japan
Prior art keywords
transmission cable
signal transmission
tape
differential signal
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26824799A
Other languages
Japanese (ja)
Other versions
JP2001093357A (en
Inventor
重広 笹井
直希 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP26824799A priority Critical patent/JP3669562B2/en
Publication of JP2001093357A publication Critical patent/JP2001093357A/en
Application granted granted Critical
Publication of JP3669562B2 publication Critical patent/JP3669562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は各種通信機器やコンピュータ等の大型機器の内部配線等に使用される差動信号伝送ケーブルに関し、特には、高速LVDS(Low Voltage Differential Signaling;低電圧差動信号)伝送に代表されるような高速データ伝送用の差動信号伝送ケーブルに関する。なお、差動伝送ケーブルとは、中心導体が1対あり各々+V、−Vの電位となって動作し、外来ノイズに強く、長距離伝送可能なデジタル伝送用ケーブルをいう。
【0002】
【従来の技術】
昨今成長が著しいハイエンド・プロセッサ・システム、マルチメディア、或いはネットワーキングなどの分野においては、以前よりも高速のデータ伝送レートが求められてきている。例えば、伝送距離は10m程度ながら大量のデータをリアルタイムでしかも同期伝送が必要とされ、これに適した差動信号伝送ケーブル(以下、差動伝送ケーブルと略記する)が求められている。
従来の差動伝送ケーブルについて、図5の断面構造図を用いて説明する。なお、同図(a)は従来1型の差動信号伝送ケーブル、同図(b)は従来2型の差動信号伝送ケーブル、また同図(c)は従来3型の差動信号伝送ケーブルである。
先ず従来の第1例としては、図5(a)に示すように、例えば導体素線7本の撚り線からなる中心導体(1)の外周に、例えばポリエチレン発泡体からなる低密度絶縁体(2)を設け、この外周にスキン層(3)を設けて信号線(4)とし、この信号線(4)の2本(芯)と、この横の、例えば導体素線7本の撚り線からなるドレイン線(6)1本の計3本を平行に並べ、その外側にアルミポリエステルテープ(以下、アルペットと略記する)を金属面内側で螺旋巻き若しくは縦添えして外部導体(5)を設け、この外周にジャケット層(8)を被覆した差動伝送ケーブル(30)(以下、従来1型という)がある。
また従来の第2例としては,図5(b)に示すように、前記第1例と同様の信号線(4)の2本(芯)を平行に並べ、この2芯の中央の谷間部にドレイン線(6)1本を縦添えし、その外側にアルペットを金属面内側で螺旋巻き若しくは縦添えして外部導体(5)を設け、この外周にジャケット層(8)を被覆した差動伝送ケーブル(40)(以下、従来2型という)がある。
更に従来の第3例としては、図5(c)に示すように、前記第1例と同様の信号線(4)の2本(芯)とドレイン線(6)1本を3本撚りし、その外側にアルペットを金属面内側で螺旋巻き若しくは縦添えして外部導体(5)を設け、この外周にジャケット層(8)を被覆した差動伝送ケーブル(50)(以下、従来3型という)がある。
上記従来1〜3型の差動伝送ケーブルは、TIA/EIA-422-B,同-485規格の信号を、例えば1kmの長距離伝送が可能であるが、この場合のデータ伝送レートは10Mbps程度となる(但しケーブル長12m時)。なお、現行品で最も優れたものは、従来3型構成であり、1.0Gbpsの差動信号を10m伝送可能である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来1型の差動伝送ケーブル(30)は、ドレイン線(6)と外部導体(5)のアルペット金属面とを強固に接触させると、接触部(s)の低密度絶縁体(2)にドレイン線(6)が食い込んで低密度絶縁体を潰してしまい、差動伝送ケーブルの信号線2芯(以下、差動ペアともいう)(4,4)内の特性インピーダンスのバランスが崩れたり、対内(差動ペア内)伝播遅延時間 (以下、対内スキューと略記する)が発生する原因となってしまうという問題があった。なお、低密度絶縁体(2)への食い込みをなくすために、ドレイン線(6)とアルペット金属面との接触を弱くすると、各信号線−グランド間(ドレイン線間)の電位が変化してしまう。また、低密度絶縁体(2)の潰れを防ぐため絶縁体表面のスキン層(3)を厚く堅固にすると、誘電率及び誘電正接が悪化し、信号の伝送品質を低下させるという問題があった。
また従来2型の差動伝送ケーブル(40)は、ドレイン線(6)と外部導体(5)のアルペット金属面とを強固に接触させためにアルペットを高抗張力で巻回すると、ドレイン線(6)は巻方向に押されて接触部(s)の低密度絶縁体(2)を潰し、差動ペア(4,4)内のバランスが崩れたり、スキュー(伝播遅延時間差)が発生する原因となってしまうという問題があった。また、前記従来1型と同様、低密度絶縁体(2)の潰れを防ぐため絶縁体表面のスキン層(3)を厚く堅固にすると、誘電率及び誘電正接が悪化し、信号の伝送品質を低下させるという問題があった。
また従来3型の差動伝送ケーブル(50)は、対撚り機にて3本撚りする際にサプライテンションをコントロールすることが難しかった。テンションのバラツキは信号線2芯(4、4)間の物理長のバラツキとなり、スキューを大きくする原因になっていた。また、仕上がり断面形状は円形に近くなるので、平行タイプに比べ仕上がり外径(厚さ方向)が大きくなるという欠点があった。
本発明は、上記従来技術が有する各種問題点を解決するためになされたものであり、差動ペア内の特性インピーダンスのバランスや対地バランスが保たれ、対内,対間スキューが小さく、またクロストーク(漏話)が少なく、特に500Mbps以上のハイビットレート伝送が可能で、また作業性及び端末加工性にも優れた差動伝送ケーブルを提供することを目的とする。
【0004】
【課題を解決するための手段】
第1の観点として本発明は、中心導体(1)の外周に、低密度絶縁層(2)及びスキン層(3)を順次設けた信号線(4)の2本を平行に接して並べた信号線2芯(4、4)の外周に、導電テープの金属面の一部に接着層が設けられた導電テープを囲包して外部導体(5)を設け、該外部導体(5)の外側にドレイン線(6)を縦添えし、該ドレイン線(6)と前記外部導体(5)の外周に、樹脂テープの片面に接着層が設けられた合成樹脂テープを巻回して押さえ巻合成樹脂テープ層(7)を設け、更にこの外周にジャケット層(8)を被覆してなる差動信号伝送ケーブル(9)であって、前記導電テープは、金属ラミネートテープ、金属蒸着テープ若しくは金属テープからなり、金属面の接着層を外側にして螺旋巻または縦添えされて外部導体(5)が形成され、また前記ドレイン線(6)は、外部導体(5)の外側で、信号線2芯(4、4)の中央外側部或いは横外側部の一方または両方に縦添えされ、前記合成樹脂テープにより外部導体(5)に密着させるように、接着層を外側にして押さえ巻されていることを特徴とする端末加工性に優れた差動信号伝送ケーブル(9)にある。
上記第1の観点の差動信号伝送ケーブル(9)では、外部導体(5)として巻回した導電テープの金属テープ層の上にドレイン線(6)を縦添えする事により、前記従来1型及び2型のケーブルのように、ドレイン線(6)が信号線(4)の低密度絶縁層(2)に食い込み、不均一に潰れることがなく、差動ペア(4,4)内の不平衡系特性インピーダンスのバランスが崩れるのを防止することができる。また、前記ドレイン線(6)と外部導体(5)の外周に合成樹脂テープを巻回して押さえ巻テープ層(7)を設けたことにより、縦添えしたドレイン線(6)と外部導体(5)の金属面とは確実に密着されるため、グランドが安定確保され、差動ペア(4,4)内−ドレイン線(6)間の電位は同等となり、良好な信号伝送特性が得られる。更に、信号線2芯(4、4)は、従来3型のケーブルのようにツイストせず平行であるため、信号線2芯の(4、4)の物理長は常に等しく、スキューが生じない。また、従来3型のツイストタイプと仕上がり外径(短径)を比較しても、パラレルタイプは小さく有利と言える。また、従来1型のケーブルに比べ、ドレイン線(6)の位置決めがし易く、また安定するため、ケーブルの製造が比較的容易である。
また上記第1の観点の差動信号伝送ケーブル (9) では、前記導電テープの金属面の一部に接着層が設けられ、接着層を外側にして螺旋巻または縦添えされているので、外部導体 (5) と合成樹脂テープ層 (7) を接着させることが出来る。又前記合成樹脂テープの片面に接着層が設けられ、接着層を外側にして押さえ巻されているので、合成樹脂テープ層 (7) とジャケット層 (8) を接着させることが出来る。従って、端末加工時、ドレイン線 (6) のみ残し、外部導体 (5) まで一括剥離が可能になる。
【0005】
第2の観点として本発明は、前記導電テープの厚さ(t)が、0.010mm≦t≦0.050mmである端末加工性に優れた差動信号伝送ケーブル(9)にある。なお、導電テープの厚さ(t)を上記範囲に限定した理由は、テープの機械的強度、低テンション巻回し加工、ケーブルの可撓性を考慮してのことであり、実際には作業性、伝送特性と端末加工性を良くする意味で薄手のものを選択するのが望ましい。
上記第2の観点の差動信号伝送ケーブル(9)では、導電テープの厚さ(t)を上記の範囲とし、比較的薄手としたため、ケーブルの可撓性を損なうことが無く、テープ巻回しの作業性が良くなる。即ち低テンション、例えば200〜300gの巻回し加工が可能であるため、信号線(4)の低密度絶縁層(2)が潰れにくくなる。
【0006】
第3の観点として本発明は、前記合成樹脂テープの厚さ(u)が、0.004mm≦u≦0.030mmである端末加工性に優れた差動信号伝送ケーブル(9)にある。なお、合成樹脂テープの厚さ(u)を上記範囲に限定した理由は、テープの機械的強度、低テンション巻回し加工、ケーブルの可撓性を考慮してのことであり、実際には作業性、伝送特性と端末加工性を良くする意味で薄手のものを選択するのが望ましい。
上記第3の観点の差動信号伝送ケーブル(9)では、合成樹脂テープの厚さ(u)を上記の範囲とし、比較的薄手としたため、ケーブルの可撓性を損なうことが無く、テープ巻回しの作業性が良くなる。即ち低テンション、例えば150〜250g巻回し加工が可能であるため、信号線(4)の低密度絶縁層(2)が潰れにくくなる。
【0007】
第4の観点として本発明は、前記観点1、2または3いずれか1観点の端末加工性に優れた差動信号伝送ケーブル (9) を整列・融着したことを特徴とする端末加工性に優れた差動信号伝送ケーブル (10) にある。
上記第4の観点の差動信号伝送ケーブル (10) は、前記差動信号伝送ケーブル (9) を整列 ・融着することにより容易に得られる。
【0008】
【発明の実施の形態】
以下、本発明の内容を、図に示す実施の形態により更に詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は本発明の実施形態(実施例)1の差動信号伝送ケーブルの断面構造図である。図2は本発明の差動信号伝送ケーブルの他の実施形態を示す断面構造図であり、同図(a)は実施例2の差動信号伝送ケーブル、また同図(b)、(c)はそれぞれ実施例3、4のデュアルドレインタイプの差動信号伝送ケーブルである。図3は本発明の実施例5の差動信号伝送ケーブルの断面構造図である。また図4は差動信号伝送ケーブルのアイパターン測定結果を示すチャート図である。
これらの図において、1は中心導体、2は低密度絶縁層、3はスキン層、4は信号線、5は外部導体(導電テープ)、6はドレイン線、7は押さえ巻合成樹脂テープ層、8はジャケット層、9、9a、9b、9cは端末加工性に優れた差動信号伝送ケーブル、また10は端末加工性に優れた差動信号伝送ケーブルである。
【0009】
−実施形態(実施例)1−
実施例1の端末加工性に優れた差動信号伝送ケーブルについて図1を用いて説明する。
中心導体 (1) として外径0.38mm(7 / 0.127mm)の銀めっき軟銅撚線を用い、この外周に、低密度絶縁層 (2) として多孔質テトラフルオロエチレン共重合体樹脂(PTFE)テープを0.23mmの厚さに巻回し、次にこの外周にスキン層 (3) としてテトラフルオロエチレン−パーフロロアルキルビニルエーテル樹脂(PFA)樹脂を0.060mmの厚さに設けて信号線 (4) とした。次に前記信号線 (4) の2本を平行に接して並べた信号線2芯 (4 4) の外周に、該信号線2芯 (4 4) を囲包するように、金属面を外側にした0.015mm厚さのアルペット(アルミ面ゼブラ接着層付)を螺旋巻きして外部導体 (5) を形成した。なお、このときの巻きテンションは約250gとした。次に、ドレイン線 (6) として前記中心導体 (1) に用いたものと同じ外径0.38mmの銀めっき軟銅撚線を用い、前記外部導体 (5) の外側で信号線2芯 (4 4) の中央外側部に縦添えしてから、該ドレイン線 (6) を外部導体 (5) の金属面に密着させる目的で、厚さ0.010mmの接着層付きポリエチレンテレフタレート樹脂(PET)テープを接着面を外側として、ドレイン線 (6) 及び外部導体 (5) の外周に巻回して、押さえ巻合成樹脂テープ層 (7) を設けた。なお、このときの巻きテンションは約200gとした。更にその外周にジャケット層 (8) として、熱可塑性樹脂のポリ塩化ビニル樹脂(PVC)を約0.30mm厚さ(平均厚さ)に押し出し、断面形状が略四角形(短径約1.8mm×長径約2.6mm)の差動信号伝送ケーブル (9) を製造した。
なお、前記実施例1の外部導体 (5) としては、ゼブラ接着層付アルペットを用いているが、他の金属ラミネートテープ、金属蒸着テープ若しくは金属テープ等の導電テープを、金属面を外側にして螺旋巻または縦添えしても何ら差し支えない。また導電テープの厚さも、0.010mm〜0.050mm迄可変出来る。また、押さえ巻テープ層 (7) としては、接着層付PETテープを使用したが、他の材質の合成樹脂テープでもよい。また樹脂テープの厚さも、0.004mm〜0.030mm迄可変出来るまた、ゼブラ接着層の替わりにスポット状の接着層等でも良い。なお、スキン層 (3) の厚さは特に限定しなかったが、実施例1では0.060mm厚程度で良い。一方従来1、2型ではPFAスキン層厚0.10mmでも潰れが確認されている。
【0010】
−実施形態(実施例)2−
実施例2の端末加工性に優れた差動伝送ケーブルについて図2(a)を用いて説明する。
この差動伝送ケーブル(9a)は、実施例1と同様の構造である。但し、中心導体 (1) 及びドレイン線 (6) の番手をAWG30番線に変更し、またスキン層 (3) を接着層付PET スキン層に変更している。
【0011】
−実施形態(実施例)3−
実施例3の端末加工性に優れた差動伝送ケーブルについて図2(b)を用いて説明する。
この差動伝送ケーブル(9b)はデュアルドレインタイプの差動信号伝送ケーブルであり、ドレイン線 (6) が外部導体 (5) の外側で、信号線2芯 (4 4) の横外側部の両方に各1本縦添えされているものである。なお、この差動伝送ケーブル(9b)の基本的な構成材は、前記実施例1の差動伝送ケーブル (9) と同じである。
【0012】
−実施形態(実施例)4−
実施例4の端末加工性に優れた差動伝送ケーブルについて図2(c)を用いて説明する。
なお、この差動伝送ケーブル(9c)は前記実施例3と同様、デュアルドレインタイプの差動信号伝送ケーブルであるが、ドレイン線 (6) は、外部導体 (5) の外側で、信号線2芯 (4 4) の中央外側部の両方に各1本縦添えされているものである。なお、この差動伝送ケーブル(9b)の基本的な構成材は、前記実施例1の差動伝送ケーブル (9) と同じである。
【0013】
−実施形態(実施例)5−
実施例5の端末加工性に優れた差動伝送ケーブルについて図3を用いて説明する。
前記実施例1により得られた差動信号伝送ケーブル (9) を1ユニットとし、5ユニットを整列・熱融着して差動信号伝送ケーブル (10) を製造した。なお、ユニットの数は、例えば2〜40ユニットが適当である。また、融着の方法としては、前記熱融着の他に接着剤、紙粘着テープ等を用いることができる。
【0014】
比較例
−比較例1−
比較例1の差動伝送ケーブルについて図5(a)を用いて説明する。なおこの差動伝送ケーブルは従来1型のものである。
先ず、信号線2芯 (4 4) 迄の製造は前記実施例1と同様にして製造した。次に、前記信号線2芯 (4 4) 、この横のドレイン線 (6) (前記実施例1と同じ外径0.38mmの銀めっき軟銅撚線)1本の計3本を平行に並べ、その外側に0.015mm厚さのアルペットを金属面内側で螺旋巻きして外部導体 (5) を設け、その外周にジャケット層 (8) として、熱可塑性樹脂のPVCを約0.30mm厚さに押し出し、差動信号伝送ケーブル (30) を製造した。
【0015】
−比較例2−
比較例2の差動伝送ケーブルについて図5(b)を用いて説明する。なおこの差動伝送ケーブルは従来2型のものである。
先ず、信号線2芯 (4 4) 迄の製造は前記実施例1と同様にして製造した。次に、前記信号線2芯 (4 4) の中央の谷間部にドレイン線 (6) (前記実施例1と同じ外径0.38mmの銀めっき軟銅撚線)1本を縦添えし、以降は、前記比較例1と同様にして外部導体 (5) およびジャケット層 (8) を設け、差動信号伝送ケーブル (40) を製造した。
【0016】
−比較例3−
比較例3の差動伝送ケーブルについて図5(c)を用いて説明する。なおこの差動伝送ケーブルは従来3型のものである。
先ず、信号線2芯 (4 4) 迄の製造は前記実施例1と同様にして製造した。次に、前記信号線2芯 (4 4) の中央の谷間部にドレイン線 (6) (前記実施例1と同じ外径0.38mm の銀めっき軟銅撚線)1本を縦添えしながら3本撚りし、以降は、前記比較例1と同様にして外部導体 (5) およびジャケット層 (8) を設け、差動信号伝送ケーブル (50) を製造した。
【0017】
特性試験
前記実施例1及び比較例1〜3 ( 従来1〜3型 ) の差動伝送ケーブルについて、差動特性インピーダンス、差動伝播遅延時間、及びアイパターンの試験を行った。なお、差動特性インピーダンス、差動伝播遅延時間の測定はTDR測定器を用い、ケーブル長1mの試料で当社製専用治具に接続して行った。またアイパターンの測定はパルスジェネレータとオシロスコープを用い、ケーブル長5mの試料で当社製専用治具に接続し、 1Gbps 0.5Vp-p の差動信号を伝送して行った。その結果を下記表1と図4のアイパターン測定チャートに示す。
【0018】
【表1】
【0019】
上記表1の結果から明らかなように、本発明の差動伝送ケーブルは差動ペア内の特性インピーダンスのバランスが良く、差動伝播遅延時間差が少なく、対内スキューは小さかった。一方、従来1型及び2型は差動ペア内の特性インピーダンスのバランスが崩れ、差動伝播遅延時間差が大きくなり、対内スキューが生じている。また従来3型は差動ペア内の特性インピーダンスのバランスは良いが、信号線2芯の物理長が等しくない為に対内スキューが大きくなっている。
【0020】
また、図4のアイパターンの測定結果から明らかなように、本発明の差動伝送ケーブルのアイパターンはスキューが無く、波形の「なまり」が少なく(波形の立上り/立下りが急峻)、開口率が十分得られた良好な波形であった。
一方従来1型及び3型のアイパターンはスキューが生じ、結果的にアイが閉じてしまっている。更に従来1型、2型、及び3型のアイパターンは波形の「なまり」も大きい(開口率を減らす原因)ので良好な波形ではない。
【0021】
【発明の効果】
本発明の差動信号伝送ケーブルは、外部導体として巻回した導電テープの金属テープ層上の所定部位にドレイン線を縦添えする事により、ドレイン線が信号線の柔らかい低密度絶縁層に食い込み、不均一に潰れることがなく、差動ペア内の特性インピーダンスのバランスが良くなった。また、縦添えしたドレイン線を合成樹脂テープで押さえ巻し、外部導体 (5) の金属面に確実に密着させたことにより、グランドが安定確保され、且つ差動ペア内−ドレイン線間の電位は同等となり、良好な信号伝送特性が得られるようになった。また、信号線2芯の物理長は常に等しいので対内スキューが生じなくなった。また、仕上り外径(短径)が従来3型のツイストタイプよりも小さくできるようになった。また、作業性、端末加工性が良好になった。更に、ケーブルの製造が比較的容易であるので、従来設備でも対応が可能になった。従って、本発明は産業に寄与する効果が極めて大である。
【図面の簡単な説明】
【図1】 本発明の実施形態(実施例)1の差動信号伝送ケーブルの断面構造図である。
【図2】 本発明の差動信号伝送ケーブルの他の実施形態を示す断面構造図であり、同図(a)は実施例2の差動信号伝送ケーブル、また同図(b)、(c)はそれぞれ実施例3、4のデュアルドレインタイプの差動信号伝送ケーブルである。
【図3】 本発明の実施例5の差動信号伝送ケーブルの断面構造図である。
【図4】 差動信号伝送ケーブルのアイパターン測定結果を示すチャート図である。
【図5】 従来の差動信号伝送ケーブルの実施形態を示す断面構造図であり、同図(a)は従来1型(比較例1)の差動信号伝送ケーブル、同図(b)は従来2型(比較例2)の差動信号伝送ケーブル、また同図(c)は従来3型(比較例3)の差動信号伝送ケーブルである。
【符号の説明】
1 中心導体
2 低密度絶縁層
3 スキン層
4 信号線
5 外部導体(導電テープ)
6 ドレイン線
7 押さえ巻合成樹脂テープ層
8 ジャケット層
9、9a、9b、9c 端末加工性に優れた差動信号伝送ケーブル
10 端末加工性に優れた差動信号伝送ケーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential signal transmission cable used for internal wiring of large-sized devices such as various communication devices and computers, and in particular, as represented by high-speed LVDS (Low Voltage Differential Signaling) transmission. The present invention relates to a differential signal transmission cable for high-speed data transmission. The differential transmission cable is a digital transmission cable that has a pair of central conductors and operates at a potential of + V and −V, is resistant to external noise, and can be transmitted over a long distance.
[0002]
[Prior art]
In fields such as high-end processor systems, multimedia, and networking, which have been growing rapidly in recent years, higher data transmission rates have been demanded than before. For example, in spite of a transmission distance of about 10 m, a large amount of data must be transmitted in real time and synchronously, and a differential signal transmission cable (hereinafter abbreviated as a differential transmission cable) suitable for this is required.
A conventional differential transmission cable will be described with reference to the cross-sectional structure diagram of FIG. 2A is a conventional type 1 differential signal transmission cable, FIG. 2B is a conventional type 2 differential signal transmission cable, and FIG. 3C is a conventional type 3 differential signal transmission cable. It is.
First, as a first conventional example, as shown in FIG. 5A, a low-density insulator (for example, made of polyethylene foam) is formed on the outer periphery of a central conductor (1) composed of, for example, seven conductor wires. 2), and a skin layer (3) is provided on the outer periphery to form a signal line (4). Two of the signal lines (4) (core) and a strand of, for example, seven conductor strands next to the signal line (4) 3 drain wires (6) consisting of a total of 3 parallel wires, and an outer side with aluminum polyester tape (hereinafter abbreviated as “alpet”) spirally or vertically attached inside the metal surface. And a differential transmission cable (30) (hereinafter referred to as a conventional type 1) having a jacket layer (8) coated on the outer periphery.
As a second conventional example, as shown in FIG. 5B, two signal wires (4) (core) similar to those in the first example are arranged in parallel, and a central valley portion of the two wires is arranged. A drain wire (6) is vertically attached to the outside, and an outer conductor (5) is provided on the outside by spirally winding or vertically attaching an alpet inside the metal surface, and the jacket layer (8) is covered on the outer periphery. There is a dynamic transmission cable (40) (hereinafter referred to as conventional type 2).
Furthermore, as a third conventional example, as shown in FIG. 5 (c), two signal wires (4) (core) and one drain wire (6) are twisted as in the first example. A differential transmission cable (50) with an outer conductor (5) provided on the outside and spirally wound or vertically attached on the inner side of the metal surface and covered with a jacket layer (8) on the outer periphery (hereinafter referred to as conventional type 3) Called).
The conventional differential transmission cables 1 to 3 can transmit signals of TIA / EIA-422-B and 485 standards for a long distance of 1 km, for example, but the data transmission rate in this case is about 10 Mbps. (However, when the cable length is 12m). The most excellent current product is the conventional 3-type configuration, which can transmit a differential signal of 1.0 Gbps for 10 m.
[0003]
[Problems to be solved by the invention]
However, the conventional type 1 differential transmission cable (30), when the drain wire (6) and the Alpet metal surface of the outer conductor (5) are brought into firm contact, the low density insulator ( 2) The drain wire (6) bites into the low-density insulator, and the differential impedance of the differential transmission cable signal core (hereinafter also referred to as differential pair) (4, 4) is balanced. or collapse, inward (in the differential pair) propagation delay time difference (hereinafter, abbreviated as inward skew) there has been a problem that caused to occur. If the contact between the drain wire (6) and the Alpet metal surface is weakened to eliminate the bite into the low density insulator (2), the potential between each signal line and ground (between the drain lines) changes. End up. In addition, when the skin layer (3) on the insulator surface is made thick and firm in order to prevent the low-density insulator (2) from being crushed, there is a problem that the dielectric constant and the dielectric loss tangent deteriorate and the signal transmission quality decreases. .
In addition, the conventional type 2 differential transmission cable (40) can be used when the alpet is wound with high tensile strength so that the drain wire (6) and the Alpet metal surface of the outer conductor (5) are firmly contacted. (6) is pushed in the winding direction and crushes the low-density insulator (2) in the contact part (s), causing the balance in the differential pair (4, 4) to be lost or causing skew (propagation delay time difference). There was a problem of causing it. In addition, as in the case of the conventional type 1, if the skin layer (3) on the insulator surface is made thick and firm to prevent the low-density insulator (2) from being crushed, the dielectric constant and dielectric loss tangent deteriorate and the signal transmission quality is reduced. There was a problem of lowering.
In addition, it has been difficult to control the supply tension of the conventional three-type differential transmission cable (50) when twisting three pieces with a twister. The variation in tension caused the variation in physical length between the two signal wires (4, 4), which caused an increase in skew. Further, since the finished cross-sectional shape is close to a circle, there is a drawback that the finished outer diameter (thickness direction) is larger than that of the parallel type.
The present invention has been made in order to solve the various problems of the prior art described above, and maintains the balance of characteristic impedance and ground balance in the differential pair, reduces the inward and inter-pair skew, and crosstalk. An object of the present invention is to provide a differential transmission cable with little (crosstalk), particularly capable of high bit rate transmission of 500 Mbps or more, and excellent workability and terminal workability.
[0004]
[Means for Solving the Problems]
As a first aspect, the present invention arranges two signal lines (4) in which a low-density insulating layer (2) and a skin layer (3) are sequentially provided on the outer periphery of the central conductor (1) in parallel. An outer conductor (5) is provided on the outer periphery of the two signal wires (4, 4) so as to surround the conductive tape having an adhesive layer on a part of the metal surface of the conductive tape. A drain wire (6) is vertically attached to the outside, and a synthetic resin tape provided with an adhesive layer on one side of the resin tape is wound around the outer periphery of the drain wire (6) and the outer conductor (5) to hold and synthesize A differential signal transmission cable (9) provided with a resin tape layer (7) and further coated with a jacket layer (8) on the outer periphery thereof, wherein the conductive tape is a metal laminate tape, a metal vapor-deposited tape or a metal tape The outer conductor (5) is formed by being spirally wound or vertically attached with the adhesive layer of the metal surface on the outside, and the drain wire (6) is the outer conductor (5) Outside , the adhesive layer is placed on the outside so that it is vertically attached to one or both of the central outer side and / or the lateral outer side of the two signal wires (4, 4) and is made to adhere to the outer conductor (5) with the synthetic resin tape. The differential signal transmission cable (9) is excellent in terminal processability and is characterized by being pressed and wound.
In the differential signal transmission cable (9) according to the first aspect, the drain wire (6) is vertically attached on the metal tape layer of the conductive tape wound as the outer conductor (5), whereby the conventional type 1 And the drain line (6) does not bite into the low-density insulating layer (2) of the signal line (4) and is not crushed unevenly as in the case of type 2 and type 2 cables. It is possible to prevent the balance of the balanced system characteristic impedance from being lost. In addition, the drain wire (6) and the outer conductor (5) are provided with a holding tape layer (7) by winding a synthetic resin tape around the outer periphery of the drain wire (6) and the outer conductor (5). ) Is securely adhered to the metal surface, so that the ground is stably secured, and the potentials between the differential pair (4, 4) and the drain line (6) are equal, and good signal transmission characteristics can be obtained. In addition, since the two signal wires (4, 4) are parallel without twisting like the conventional type 3 cable, the physical lengths of the signal wires (4, 4) are always equal and no skew occurs. . Further, even if the conventional type 3 twist type and the finished outer diameter (short diameter) are compared, the parallel type is small and advantageous. Also, compared to the conventional type 1 cable, the drain wire (6) is easily positioned and stable, so that the cable can be manufactured relatively easily.
In the differential signal transmission cable (9) according to the first aspect, an adhesive layer is provided on a part of the metal surface of the conductive tape and is spirally wound or vertically attached with the adhesive layer facing outside. The conductor (5) and the synthetic resin tape layer (7) can be adhered. Further, since the adhesive layer is provided on one surface of the synthetic resin tape and is wound with the adhesive layer facing outward, the synthetic resin tape layer (7) and the jacket layer (8) can be adhered. Accordingly, at the time of terminal processing, only the drain wire (6) is left, and the external conductor (5) can be peeled off at once.
[0005]
As a second aspect, the present invention resides in a differential signal transmission cable (9) excellent in terminal processability , wherein the thickness (t) of the conductive tape is 0.010 mm ≦ t ≦ 0.050 mm. The reason why the thickness (t) of the conductive tape is limited to the above range is that the mechanical strength of the tape, the low tension winding process, and the flexibility of the cable are taken into consideration. It is desirable to select a thin one in the sense of improving transmission characteristics and terminal processability.
In the differential signal transmission cable (9) of the second aspect, since the thickness (t) of the conductive tape is within the above range and is relatively thin, the flexibility of the cable is not impaired and the tape is wound. Workability is improved. That is, since low tension, for example, 200 to 300 g can be wound, the low-density insulating layer (2) of the signal line (4) is not easily crushed.
[0006]
As a third aspect, the present invention resides in a differential signal transmission cable (9) excellent in terminal processability in which the thickness (u) of the synthetic resin tape is 0.004 mm ≦ u ≦ 0.030 mm. The reason why the thickness (u) of the synthetic resin tape is limited to the above range is in consideration of the mechanical strength of the tape, the low tension winding process, and the flexibility of the cable. It is desirable to select a thin one in order to improve the performance, transmission characteristics and terminal processability.
In the differential signal transmission cable (9) according to the third aspect, since the thickness (u) of the synthetic resin tape is within the above range and is relatively thin, the flexibility of the cable is not impaired, and the tape winding is not performed. The workability of turning is improved. That is, since low tension, for example, 150 to 250 g winding processing is possible, the low-density insulating layer (2) of the signal line (4) is not easily crushed.
[0007]
The fourth of the present invention as aspect, terminal workability characterized by pre SL aspect 1, 2 or 3 that are aligned and fused to any one aspect of the terminal workability excellent differential signal transmission cable (9) Excellent differential signal transmission cable (10) .
The differential signal transmission cable (10) according to the fourth aspect can be easily obtained by aligning and fusing the differential signal transmission cable (9) .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the contents of the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
FIG. 1 is a sectional structural view of a differential signal transmission cable according to an embodiment (Example) 1 of the present invention. FIG. 2 is a cross-sectional structural view showing another embodiment of the differential signal transmission cable of the present invention. FIG. 2 (a) shows the differential signal transmission cable of Example 2, and FIGS. 2 (b) and 2 (c). Are the dual drain type differential signal transmission cables of Examples 3 and 4, respectively. FIG. 3 is a sectional structural view of a differential signal transmission cable according to a fifth embodiment of the present invention. FIG. 4 is a chart showing eye pattern measurement results of the differential signal transmission cable.
In these drawings, 1 is a central conductor, 2 is a low density insulating layer, 3 is a skin layer, 4 is a signal line, 5 is an external conductor (conductive tape), 6 is a drain line, 7 is a press-wrapping synthetic resin tape layer, 8 is a jacket layer, 9, 9a, 9b and 9c are differential signal transmission cables excellent in terminal processability, and 10 is a differential signal transmission cable excellent in terminal processability.
[0009]
-Embodiment (Example) 1-
A differential signal transmission cable excellent in terminal processability according to the first embodiment will be described with reference to FIG.
A silver-plated annealed copper stranded wire having an outer diameter of 0.38 mm (7 / 0.127 mm) is used as the center conductor (1) , and a porous tetrafluoroethylene copolymer resin (PTFE ) is used as a low-density insulating layer (2) on the outer periphery. ) tape wound in a thickness of 0.23 mm, then the skin layer on the outer periphery (3) as a tetrafluoroethylene - provided perfluoroalkylvinylether resin (PFA) resin to a thickness of 0.060mm signal lines ( 4) . Then the outer periphery of the signal line (4) of the two parallel to contact the aligned signal line 2 cores (4, 4), the signal line 2 core (4, 4) so as to encloses the metal surface An outer conductor (5) was formed by spirally winding an alpet (with an aluminum surface zebra adhesive layer) having a thickness of 0.015 mm with the outer side facing outside . The winding tension at this time was about 250 g. Next, a silver plated annealed copper stranded wire having an outer diameter of 0.38 mm which is the same as that used for the central conductor (1) is used as the drain wire (6) , and two signal wires (4 ) are provided outside the outer conductor (5). , from the longitudinal served to the central outer portion of 4), the drain line (6) the outer conductor (5 for the purpose of close contact with the metal surface), thickness 0.010mm adhesive layer with the polyethylene terephthalate resin (PET) The tape was wound around the outer periphery of the drain wire (6) and the outer conductor (5) with the adhesive surface outside, and a press-wrapping synthetic resin tape layer (7) was provided. The winding tension at this time was about 200 g. Further, a polyvinyl chloride resin (PVC ) as a thermoplastic resin is extruded to a thickness (average thickness) of about 0.30 mm as a jacket layer (8) on the outer periphery thereof , and the cross-sectional shape is substantially square (short axis about 1.8 mm × A differential signal transmission cable (9) having a major axis of about 2.6 mm was manufactured.
As the outer conductor (5) of Example 1, an alpet with a zebra adhesive layer is used, but other metal laminate tape, metal vapor-deposited tape, metal tape or other conductive tape is used with the metal surface facing outward. Can be spirally wound or vertically attached. The thickness of the conductive tape can also be varied from 0.010 mm to 0.050 mm. Moreover, as the presser tape layer (7) , a PET tape with an adhesive layer is used, but synthetic resin tapes of other materials may be used. The thickness of the resin tape can also be varied from 0.004 mm to 0.030 mm. A spot-like adhesive layer or the like may be used instead of the zebra adhesive layer. Although the thickness of the skin layer (3) is not particularly limited, it may be about 0.060 mm in Example 1. On the other hand, in the conventional types 1 and 2, crushing has been confirmed even with a PFA skin layer thickness of 0.10 mm.
[0010]
-Embodiment (Example) 2-
A differential transmission cable excellent in terminal processability of Example 2 will be described with reference to FIG.
The differential transmission cable (9a) has the same structure as that of the first embodiment. However, the counts of the central conductor (1) and the drain line (6) are changed to AWG No. 30, and the skin layer (3) is changed to a PET skin layer with an adhesive layer .
[0011]
-Embodiment (Example) 3-
A differential transmission cable excellent in terminal processability of Example 3 will be described with reference to FIG.
This differential transmission cable (9b) is a dual drain type differential signal transmission cable, the drain wire (6) is outside the outer conductor (5) , and the signal wire 2 core (4 , 4) is laterally outside. Each one is attached vertically. The basic constituent material of the differential transmission cable (9b ) is the same as that of the differential transmission cable (9) of the first embodiment .
[0012]
-Embodiment (Example) 4-
A differential transmission cable excellent in terminal processability of Example 4 will be described with reference to FIG.
The differential transmission cable (9c) is a dual drain type differential signal transmission cable as in the third embodiment, but the drain line (6) is outside the outer conductor (5) and the signal line 2 One core is vertically attached to both of the central outer portions of the cores (4 , 4) . The basic constituent material of the differential transmission cable (9b ) is the same as that of the differential transmission cable (9) of the first embodiment .
[0013]
-Embodiment (Example) 5-
A differential transmission cable excellent in terminal processability of Example 5 will be described with reference to FIG.
The differential signal transmission cable (9) obtained in Example 1 was used as one unit, and 5 units were aligned and heat-sealed to produce a differential signal transmission cable (10) . The number of units is suitably 2 to 40 units, for example. As a method for fusing, an adhesive, a paper adhesive tape, or the like can be used in addition to the heat fusing.
[0014]
Comparative example
-Comparative Example 1-
The differential transmission cable of Comparative Example 1 will be described with reference to FIG. This differential transmission cable is a conventional type 1 cable.
First, the signal lines up to two cores (4 , 4) were manufactured in the same manner as in Example 1. Next, the signal wire 2 cores (4 , 4) and the horizontal drain wire (6) (silver plated annealed copper stranded wire having the same outer diameter of 0.38 mm as in Example 1) are connected in parallel. The outer conductor (5) is provided by spirally winding an alpet with a thickness of 0.015mm on the outside of the metal surface on the outside , and a PVC layer of thermoplastic resin is about 0.30mm as a jacket layer (8) on the outer periphery. The differential signal transmission cable (30) was manufactured by extruding to a thickness .
[0015]
-Comparative Example 2-
The differential transmission cable of the comparative example 2 is demonstrated using FIG.5 (b). This differential transmission cable is of the conventional type 2.
First, the signal lines up to two cores (4 , 4) were manufactured in the same manner as in Example 1. Next, one drain wire (6) (silver plated annealed copper stranded wire having the same outer diameter of 0.38 mm as in Example 1) is vertically attached to the central valley portion of the two signal wires (4 , 4) , Thereafter, in the same manner as in Comparative Example 1, the outer conductor (5) and the jacket layer (8) were provided, and the differential signal transmission cable (40) was manufactured.
[0016]
-Comparative Example 3-
A differential transmission cable of Comparative Example 3 will be described with reference to FIG. This differential transmission cable is a conventional type 3 cable.
First, the signal lines up to two cores (4 , 4) were manufactured in the same manner as in Example 1. Next, one drain wire (6) ( silver plated annealed copper stranded wire having the same outer diameter of 0.38 mm as in Example 1 ) is vertically attached to the central valley portion of the two signal wires (4 , 4). Three wires were twisted, and thereafter, the outer conductor (5) and the jacket layer (8) were provided in the same manner as in Comparative Example 1 to manufacture the differential signal transmission cable (50) .
[0017]
Characteristic test
The differential transmission cables of Example 1 and Comparative Examples 1 to 3 ( conventional 1 to 3 ) were tested for differential characteristic impedance, differential propagation delay time, and eye pattern. The differential characteristic impedance and the differential propagation delay time were measured using a TDR measuring instrument connected to a dedicated jig made by us using a sample with a cable length of 1 m. The eye pattern was measured using a pulse generator and an oscilloscope, connected to a dedicated jig made by our company with a cable length of 5 m, and transmitting a differential signal of 1 Gbps and 0.5 Vp-p . The results are shown in the following Table 1 and the eye pattern measurement chart of FIG.
[0018]
[Table 1]
[0019]
As is clear from the results of Table 1 above, the differential transmission cable of the present invention has a good balance of characteristic impedance in the differential pair, a small differential propagation delay time difference, and a small inward skew. On the other hand, in the conventional type 1 and type 2, the balance of characteristic impedance in the differential pair is lost, the differential propagation delay time difference is increased, and inward skew is generated. The conventional type 3 has a good balance of characteristic impedance in the differential pair, but the inward skew is large because the physical lengths of the two signal lines are not equal.
[0020]
Further, as is apparent from the eye pattern measurement results of FIG. 4, the eye pattern of the differential transmission cable of the present invention has no skew, has less “rounding” of the waveform (the rise / fall of the waveform is steep), and the opening. It was a good waveform with a sufficient rate.
On the other hand, the conventional 1 type and 3 type eye patterns are skewed, and as a result, the eyes are closed. Furthermore, the conventional 1 type, 2 type, and 3 type eye patterns have a large waveform “round” (cause of reducing the aperture ratio), and are not good waveforms.
[0021]
【The invention's effect】
In the differential signal transmission cable of the present invention, the drain line bites into the soft low-density insulating layer of the signal line by vertically attaching the drain line to a predetermined portion on the metal tape layer of the conductive tape wound as the outer conductor, The balance of characteristic impedance in the differential pair is improved without being crushed unevenly. In addition, by holding the vertically attached drain wire with a synthetic resin tape and making sure that it adheres firmly to the metal surface of the outer conductor (5) , stable grounding is ensured, and the potential between the drain wire in the differential pair Are equivalent, and good signal transmission characteristics can be obtained. Further, since the physical lengths of the two signal lines are always equal, inward skew does not occur. Further, the finished outer diameter (short diameter) can be made smaller than the conventional type 3 twist type. In addition, workability and terminal processability were improved. Furthermore, since the manufacture of the cable is relatively easy, it is possible to cope with the conventional equipment. Therefore, the present invention has a great effect of contributing to the industry.
[Brief description of the drawings]
FIG. 1 is a cross-sectional structure diagram of a differential signal transmission cable according to an embodiment (Example) of the present invention.
FIG. 2 is a cross-sectional structural view showing another embodiment of the differential signal transmission cable of the present invention. FIG. 2 (a) shows the differential signal transmission cable of Example 2, and FIGS. ) Are dual drain type differential signal transmission cables of Examples 3 and 4, respectively.
3 is a sectional view of a differential signal transmission cable according to a fifth embodiment of the present invention.
FIG. 4 is a chart showing eye pattern measurement results of a differential signal transmission cable.
5A and 5B are cross-sectional structural views showing an embodiment of a conventional differential signal transmission cable. FIG. 5A is a conventional differential signal transmission cable of type 1 (Comparative Example 1), and FIG. A differential signal transmission cable of type 2 (Comparative Example 2), and FIG. 5C shows a differential signal transmission cable of conventional type 3 (Comparative Example 3).
[Explanation of symbols]
1 Central conductor 2 Low density insulating layer 3 Skin layer 4 Signal line 5 External conductor (conductive tape)
6 the drain line 7 tape wrapping plastic tape layer 8 jacket layer 9, 9a, 9b, 9c terminal excellent formability differential signal transmission cable 10 terminal excellent formability differential signal transmission cable

Claims (4)

中心導体(1)の外周に、低密度絶縁層(2)及びスキン層(3)を順次設けた信号線(4)の2本を平行に接して並べた信号線2芯(4、4)の外周に、導電テープの金属面の一部に接着層が設けられた導電テープを囲包して外部導体(5)を設け、該外部導体(5)の外側にドレイン線(6)を縦添えし、該ドレイン線(6)と前記外部導体(5)の外周に、樹脂テープの片面に接着層が設けられた合成樹脂テープを巻回して押さえ巻合成樹脂テープ層(7)を設け、更にこの外周にジャケット層(8)を被覆してなる差動信号伝送ケーブル(9)であって、
前記導電テープは、金属ラミネートテープ、金属蒸着テープ若しくは金属テープからなり、金属面の接着層を外側にして螺旋巻または縦添えされて外部導体(5)が形成され、また前記ドレイン線(6)は、外部導体(5)の外側で、信号線2芯(4、4)の中央外側部或いは横外側部の一方または両方に縦添えされ、前記合成樹脂テープにより外部導体(5)に密着させるように、接着層を外側にして押さえ巻されていることを特徴とする端末加工性に優れた差動信号伝送ケーブル(9)。
Two signal wires (4, 4) in which the signal conductor (4), which is provided with a low-density insulating layer (2) and a skin layer (3) in sequence on the outer periphery of the center conductor (1), is placed in parallel. An outer conductor (5) is provided on the outer periphery of the outer periphery of the outer conductor (5) so as to surround the conductive tape having an adhesive layer provided on a part of the metal surface of the conductive tape. Attached to the outer periphery of the drain wire (6) and the outer conductor (5), a synthetic resin tape provided with an adhesive layer on one side of the resin tape is wound to provide a press-wound synthetic resin tape layer (7), Furthermore, a differential signal transmission cable (9) formed by covering the outer periphery with a jacket layer (8),
The conductive tape is made of a metal laminate tape, a metal vapor-deposited tape or a metal tape, and the outer conductor (5) is formed by being spirally wound or vertically attached with the adhesive layer on the metal surface facing outside, and the drain wire (6) Is vertically attached to one or both of the central outer portion and the lateral outer portion of the two signal wires (4, 4) outside the outer conductor (5), and is in close contact with the outer conductor (5) by the synthetic resin tape. Thus, the differential signal transmission cable (9) excellent in terminal processability , characterized by being wound with the adhesive layer facing outward .
前記導電テープの厚さ(t)が、0.010mm≦t≦0.050mmであることを特徴とする請求項1記載の端末加工性に優れた差動信号伝送ケーブル(9)。The differential signal transmission cable (9) excellent in terminal workability according to claim 1, wherein the thickness (t) of the conductive tape is 0.010 mm ≤ t ≤ 0.050 mm. 前記合成樹脂テープの厚さ(u)が、0.004mm≦u≦0.030mmであることを特徴とする請求項1または2記載の端末加工性に優れた差動信号伝送ケーブル(9)。The differential signal transmission cable (9) excellent in terminal processability according to claim 1 or 2, wherein the thickness (u) of the synthetic resin tape is 0.004 mm ≤ u ≤ 0.030 mm. 前記請求項1、2または3いずれか1項記載の端末加工性に優れた差動信号伝送ケーブルThe differential signal transmission cable excellent in terminal processability according to any one of claims 1, 2, and 3. (9)(9) を整列・融着したことを特徴とする端末加工性に優れた差動信号伝送ケーブルDifferential signal transmission cable with excellent terminal processability, characterized by aligning and fusing (10)(Ten) .
JP26824799A 1999-09-22 1999-09-22 Differential signal transmission cable with excellent terminal processability Expired - Fee Related JP3669562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26824799A JP3669562B2 (en) 1999-09-22 1999-09-22 Differential signal transmission cable with excellent terminal processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26824799A JP3669562B2 (en) 1999-09-22 1999-09-22 Differential signal transmission cable with excellent terminal processability

Publications (2)

Publication Number Publication Date
JP2001093357A JP2001093357A (en) 2001-04-06
JP3669562B2 true JP3669562B2 (en) 2005-07-06

Family

ID=17455944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26824799A Expired - Fee Related JP3669562B2 (en) 1999-09-22 1999-09-22 Differential signal transmission cable with excellent terminal processability

Country Status (1)

Country Link
JP (1) JP3669562B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347166A (en) * 2013-07-26 2015-02-11 昆山联滔电子有限公司 Cable
CN109599215A (en) * 2017-09-25 2019-04-09 矢崎总业株式会社 Differential transfer cable and harness

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092213B2 (en) * 2005-07-19 2012-12-05 住友電気工業株式会社 2-core balanced cable
JP5137346B2 (en) * 2006-07-10 2013-02-06 東京特殊電線株式会社 Central interposition with ribs with signal line assembly and round multi-pair cable using the interposition
JP2010073463A (en) * 2008-09-18 2010-04-02 Junkosha Co Ltd High-speed differential cable
JP5330888B2 (en) * 2009-04-08 2013-10-30 株式会社潤工社 High-speed differential cable
JP5383325B2 (en) * 2009-06-01 2014-01-08 東京特殊電線株式会社 Differential signal transmission cable
JP2012138187A (en) * 2010-12-24 2012-07-19 Sumitomo Wiring Syst Ltd Shield wire and method of manufacturing the same
JP2015022807A (en) 2013-07-16 2015-02-02 日立金属株式会社 Differential transmission cable and multipair differential transmission cable
JP2015130326A (en) * 2013-12-10 2015-07-16 デルファイ・テクノロジーズ・インコーポレーテッド Shielded cable assembly
CN105845262A (en) * 2016-04-15 2016-08-10 宁波卡倍亿电气技术有限公司 LVDS cable for automobile wire
JP6896500B2 (en) * 2017-04-28 2021-06-30 住友電装株式会社 Composite cable
JP2018190523A (en) * 2017-04-28 2018-11-29 住友電装株式会社 Composite cable
US10283238B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10283240B1 (en) 2018-03-19 2019-05-07 Te Connectivity Corporation Electrical cable
US10304592B1 (en) 2018-03-19 2019-05-28 Te Connectivity Corporation Electrical cable
US11069458B2 (en) 2018-04-13 2021-07-20 TE Connectivity Services Gmbh Electrical cable
US10741308B2 (en) 2018-05-10 2020-08-11 Te Connectivity Corporation Electrical cable
US10600537B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10600536B1 (en) 2018-10-12 2020-03-24 Te Connectivity Corporation Electrical cable
US10950367B1 (en) 2019-09-05 2021-03-16 Te Connectivity Corporation Electrical cable
CN114914028A (en) * 2021-02-09 2022-08-16 泰科电子(上海)有限公司 Cable with a flexible connection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347166A (en) * 2013-07-26 2015-02-11 昆山联滔电子有限公司 Cable
CN109599215A (en) * 2017-09-25 2019-04-09 矢崎总业株式会社 Differential transfer cable and harness

Also Published As

Publication number Publication date
JP2001093357A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3669562B2 (en) Differential signal transmission cable with excellent terminal processability
US6010788A (en) High speed data transmission cable and method of forming same
US6403887B1 (en) High speed data transmission cable and method of forming same
US7291786B2 (en) Differential signal transmission cable
US6323427B1 (en) Low delay skew multi-pair cable and method of manufacture
JPH09511359A (en) Improved composite differential pair cable
JPH09501796A (en) Twinaxial cable
CA2545161A1 (en) Data cable with cross-twist cabled core profile
US20050029006A1 (en) Signal transmission cable terminal device and data transmission method using signal transmission cable
JP2006286480A (en) Transmission cable for differential signal
JP2018181591A (en) Two-core parallel cable
US5510578A (en) Audio loudspeaker cable assembly
TWM497332U (en) Multi-core cable
JP4044805B2 (en) Flat shielded cable
JP4232942B2 (en) High-speed differential cable
JP2001035270A (en) Parallel coaxial cable with low skew and manufacture thereof
JP2002304921A (en) High speed differential cable, high speed differential roller-screen cable, high speed differential round shape multi-twin cable
JP2021073657A (en) Two-core parallel cable
US20050087360A1 (en) Cable having a filler
CN212516681U (en) High-reliability monitoring signal line
WO2014035927A1 (en) S-shield twisted pair cable design for multi-ghz performance
CN205751561U (en) A kind of coilshaped conductor heart yearn and use its high speed data transmission line cable
CN209388727U (en) A kind of Sound cable
JP2003141944A (en) Low-skew high-speed differential cable
JPH1125765A (en) Pairs of cables

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Ref document number: 3669562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees