JP3668773B2 - Block copolymer for constructing hierarchical regular structures - Google Patents

Block copolymer for constructing hierarchical regular structures Download PDF

Info

Publication number
JP3668773B2
JP3668773B2 JP2002062836A JP2002062836A JP3668773B2 JP 3668773 B2 JP3668773 B2 JP 3668773B2 JP 2002062836 A JP2002062836 A JP 2002062836A JP 2002062836 A JP2002062836 A JP 2002062836A JP 3668773 B2 JP3668773 B2 JP 3668773B2
Authority
JP
Japan
Prior art keywords
group
thin film
block copolymer
carbon atoms
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002062836A
Other languages
Japanese (ja)
Other versions
JP2003261636A (en
Inventor
晃鏡 早川
伸 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002062836A priority Critical patent/JP3668773B2/en
Publication of JP2003261636A publication Critical patent/JP2003261636A/en
Application granted granted Critical
Publication of JP3668773B2 publication Critical patent/JP3668773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、階層的規則構造を構築するブロックコポリマーの開発に関する。
【0002】
【従来の技術】
ブロックコポリマーは、互いに非相溶なポリマー鎖を末端で化学的に結合した構造からなるポリマーであり、従来、熱可塑性エラストマーとして開発されてきた。例えば、ポリマー鎖はポリスチレンなどのハードセグメントとポリイソプレンなどのソフトセグメントから構成されており、柔軟性や反発弾性を有し、ゴムと類似の物理的特性を示す。これらの性質は、固体状態でブロックコポリマーが構築するナノメートルスケールのドメイン、すなわち相分離構造の形態、周期性、均一性などに由来している。そのため、近年では、この各ドメインの規則性や周期性を高度に、かつ広範囲で制御し、熱可塑性エラストマーのみならず、高機能・高付加価値高分子材料として、特にナノテクノロジー分野での基礎、応用研究が積極的に進められている。例えば、各種機械部品、電子・光学材料、光ディスクなど精密情報機器材料、生体適合性材料などへの展開が考えられる。
相分離構造中の各ドメインの恒等周期サイズは、ポリマー鎖の長さ、すなわち分子量を変えることにより、おおよそ10〜100nm間で任意に制御することができる。また、相分離構造パターンにおいても、ブロックコポリマーのブロック組成比により、球状(スフィアー)、棒状(シリンダー)、シート状(ラメラ)と任意に変化させることができる。しかしながら、従来のブロックコポリマーが構築する相分離構造を巨視的に見た場合、長距離的な構造周期、又方向に対する秩序性が乏しく、平方マイクロメートルオーダー範囲で高度に構造制御された相分離構造パターンは得られていない。また、従来のブロックコポリマーによる周期的な規則構造サイズは10nm以上、100nm以下の範囲であり、それ以上、すなわちサブマイクロメートル、もしくはマイクロメートルオーダーの繰り返しドメイン、また10nm以下の規則構造は得られない。
これに対し、近年、ポリ(スチレンーb−フェニレン)(G.Widawski,M.Rawiso and B.Francois,Nature,vol.369,p,387(1994))、あるいはポリ(スチレンーb−フェニルキノリン)(S.Jenekhe and X.L.Chen,Science,vol.283,p,372(1999))などの分子構造からなるブロックコポリマーが開発された。これらのポリマーを用いた溶液キャスト法によって作製された薄膜では、膜表面に3マイクロメートル程度の孔径を有する六方最密構造した多孔質膜が得られることがわかった。これは、このブロックコポリマーの膜形成時に起こる特異的な自己組織化現象、すなわち分子の自己集合と散逸構造によりその構造が形成されている。しかしながら、このような分子構造のブロックコポリマーでは、縮重合により得られるポリフェニレンやポリフェニルキノリン成分の合成上の問題点から、ポリマーの分子量を制御することができない。そのため、ポリマー鎖の長さに依存する100nm以下の相分離構造や、さらに微小領域の10nm以下の規則構造を構築をすることができないという問題点が指摘されており、これらの問題点を解決するためのブロックコポリマーの開発が必要とされている。
【0003】
【発明が解決しょうとする課題】
本発明の課題は、階層的規則構造を構築するブロックコポリマーおよびこのポリマーを用いた階層的規則構造を有する薄膜の製造方法およびその用途を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題について鋭意検討し、特定の分子構造を有するブロックコポリマーを用いて膜形成を行うと、従来知られている相分離構造のみならず、液晶構造、相分離構造、散逸構造に基づくそれぞれの規則構造が高度に組合わさった階層構造が構築されることを見いだし、本発明を完成するに至った。
【0005】
すなわち、
下記一般式(I)
【化5】
(式中、bはブロックコポリマーの意を示し、j、kは、10〜2000の数を表す。R1は、プロトン原子、もしくはヒドロキシル基、ターシャルブチルジメチルシリル基、ターシャルブトキシカルボニルオキシ基、クロロメチル基を示す。pは0,1又は2の数を表す。また、Xは、以下の基のうちいずれかひとつを表す。
【化6】
【化7】
【化8】
ここで、R3は、炭素数1〜18のアルキル基、アルキルエーテル基、フェニレン基、R4は、炭素数1〜18のアルキル基、もしくは炭素数1〜18のアルキルチエニル基、炭素数1〜18のアルキルフェニル基、アルコキシ基、チエニル基、フェニレン基、シアノ基、ニトロ基、ハロゲン原子を示す。R5、R6、R7は、ハロゲン原子、もしくはフェニル基、炭素数1〜18のアルキル基、アルキルフェニル基を示す。R6とR7は、同一であっても、又異なっていても差し支えない。rは2〜8の数を表す。s、t、uは0,1又は2の数を表す。また、Zは、アゾ基、もしくはエステル基を表す。)
で表されるブロックコポリマーが階層的規則構造を構築する性質を有することが分かった。
【0006】
【発明の実施形態】
本発明の階層的規則構造を構築するためには、下記一般式で示されるブロックコポリマーを用いる。
下記一般式(I)
【化9】
(式中、bはブロックコポリマーの意を示し、j、kは、10〜2000の数を表す。R1は、プロトン原子、もしくはヒドロキシル基、ターシャルブチルジメチルシリル基、ターシャルブトキシカルボニルオキシ基、クロロメチル基を示す。pは0,1又は2の数を表す。また、Xは、以下のうちいずれかひとつの基を表す。
【化10】
【化11】
【化12】
ここで、R3は、炭素数1〜18のアルキル基、アルキルエーテル基、フェニレン基、R4は、炭素数1〜18のアルキル基、もしくは炭素数1〜18のアルキルチエニル基、炭素数1〜18のアルキルフェニル基、アルコキシ基、チエニル基、フェニレン基、シアノ基、ニトロ基、ハロゲン原子を示す。R5、R6、R7は、ハロゲン原子、もしくはフェニル基、炭素数1〜18のアルキル基、アルキルフェニル基を示す。R6とR7は、同一であっても、又異なっていても差し支えない。rは2〜8の数を表す。s、t、uは0,1又は2の数を表す。また、Zは、アゾ基、もしくはエステル基を表す。)
で表されるブロックコポリマー。
【0007】
より具体的な本発明のブロックコポリマーには次のものが含まれる。
(1)ポリイソプレンブロックにオリゴチオフェン誘導体を有したポリ(スチレンーb−イソプレン)ブロックコポリマー。
(2)ポリイソプレンブロックにオリゴフェニレン誘導体を有したポリ(スチレンーb−イソプレン)ブロックコポリマー。
(3)ポリイソプレンブロックにアゾ基、もしくはエステル基を含む芳香族系化合物を有したポリ(スチレンーb−イソプレン)ブロックコポリマー。
【0008】
これら本発明のブロックコポリマーを製造するためには、次の方法により製造することができる。
スチレンモノマー、もしくはイソプレンモノマー、アクリル酸エステルモノマー、メタクリル酸エステルモノマーを原料として、アニオン重合、もしくはリビングラジカル重合を行い、目的の分子量を有するポリマーを得る。
イソプレンモノマーを原料としアニオン重合により得られたブロックコポリマーの場合は、さらにハイドロボレーション化反応を行い、側鎖基にヒドロキシル基を有するブロックコポリマーを得る。
アクリル酸エステルモノマー、メタクリル酸エステルモノマーを原料とした場合は、得られたブロックコポリマーのエステル結合の加水分解反応を行い、側鎖基にカルボキシル基を有するブロックコポリマーを得る。
最後に、前記一般式で表される化合物のカルボン酸誘導体と前記のブロックコポリマーを原料として、エステル化反応を行うことにより、目的のブロックコポリマーを得ることができる。
【0009】
ブロックコポリマーの階層的規則構造を構築するための薄膜作製法は、以下のようにして行う。
二硫化炭素を溶剤に用いたブロックコポリマー溶液をガラス、もしくはシリコンウェハー、エポキシ樹脂、ポリイミド膜などの基板上に塗布し、高湿度気流下において、溶媒を揮発させる。
【0010】
前記薄膜作製法により、恒等周期4〜5Å間隔で分子がパッキングし、例えば、ネマティック相、スメクティック相などの液晶構造、又、恒等周期10〜50nmの範囲の相分離構造と恒等周期1〜5μmの範囲の多孔性規則構造を構築した薄膜を得ることができる。恒等周期の値の上限、下限は、必ずしも明確ではないが、恒等周期4.7Å間隔で分子がパッキングしたスメクティック液晶構造、恒等周期30nmのミクロ相分離構造、孔径1.3μmの穴から成る六方細密構造が構築されていることを確認している。ブロックコポリマーの分子量などをさらに検討することにより、さらにそれぞれの恒等周期の長さを任意に制御することができると考えられる。
このブロックコポリマー薄膜について、偏光顕微鏡観察、X線回折、電子顕微鏡観察を行い、構造解析を行った。前記、恒等周期4.7Å間隔で分子がパッキングしたスメクティック液晶構造、恒等周期30nmのミクロ相分離構造、孔径1.3μmの穴から成る六方細密構造が構築した階層的規則構造の薄膜断面構造の検討から、恒等周期30nmの相分離構造はシリンダー型であり、さらに基板に対し、垂直方向に規則正しく長距離秩序的に構築していることがわかった。
従来のブロックコポリマーの薄膜構造では、恒等周期30nm程度のシリンダー型ミクロ相分離構造のみの構築であった。また、シリンダー型相分離構造の周期性や方向性に長距離秩序性は見られなかった。これらの結果から、このような分子構造を有するブロックコポリマーは、従来知られている相分離構造のみならず、液晶構造、相分離構造、散逸構造に基づくそれぞれの規則構造からなる階層構造を構築できることが分かった。
この結果から見ると、分子レベルからマイクロメートルオーダーに至る階層的規則構造を利用した各種精密機械部品、各種電子・光学材料、光ディスクなど情報機器材料、生体適合性材料など、ナノテクノロジー分野での高機能・高付加価値高分子材料としてより一層有効に使用することができるものであることが分かる。
【0011】
【実施例】
次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
目的生成物の確認は、以下の方法により行う。
(1)高分子物の基本単位の構造の確認
得られるブロックコポリマーを構成する基本単位の構造については、赤外線分光分析及びNMR分析のスペクトル解析をすることにより行う。
(2)分子量の測定
得られるブロックコポリマーをテトラハイドロフランに溶解後、ポリスチレンで校正したゲルパーミエーションクロマトグラフィーで分析し、分子量を算出する。
(3)薄膜作製
得られるブロックコポリマーを二硫化炭素に溶解させ、基板上に塗布した後、高湿度気流下、室温において、溶媒を揮発させることにより行う。
(4)高分子薄膜構造の確認
得られるブロックコポリマーの薄膜状態での構造については、偏光顕微鏡観察、及びX線回折、走査型電子顕微鏡観察、透過型電子顕微鏡観察の結果を解析することにより行う。
【0012】
[実施例1]
目的のブロックコポリマーの一例として、オリゴチオフェンユニットをポリイソプレンブロックに有するポリ(スチレンーb−イソプレン)ブロックコポリマーの合成を以下のように行った。ブロックコポリマーの主鎖として、スチレンモノマーとイソプレンモノマーを用いたアニオン重合法により、スチレンの繰り返し数400、イソプレンの繰り返し数25からなるポリ(スチレンーb−イソプレン)ブロックコポリマーを合成した。次に、ポリイソプレンブロック側鎖のビニル基をハイドロボレーション化反応により、ヒドロキシル基に変換し、ポリイソプレンブロックにヒドロキシル基を有するポリ(スチレンーb−イソプレン)ブロックコポリマーを合成した。続いて、窒素気流下、二口フラスコにヒドロキシル基を有するポリ(スチレンーb−イソプレン)ブロックコポリマー0.3gを秤取り、テトラハイドロフラン10mlとピリジン1mlを加え、ポリマーを溶解させた後、オリゴチオフェン、すなわち末端にカルボキシル基を有するターシャルブチルフェニルターチオフェンのカルボン酸クロライドテトラハイドロフラン溶液2mlを滴下させ、室温にて24時間、攪拌した。
反応終了後、反応溶液を200mlのメタノールに投入し、ポリマーを再沈殿させ、得られたポリマーを更にメタノールとアセトンにより十分洗浄した。
次に、50℃で12時間、油回転真空ポンプにより減圧乾燥させた。その結果、蛍光黄色のブロックコポリマー0.353gを得た。
このポリマーの赤外分光分析及び1H−NMR、13C−NMRによるスペクトル測定を行い、ポリスチレン及びオリゴチオフェンを有したポリイソプレンを基本単位とするポリマーであることを確認した。このポリマーをテトラハイドロフランに溶解させ、ポリスチレンで校正したゲルパーミエーションクロマトグラフィーで分析し、数平均分子量と分子量分布を算出した結果、それぞれ55000、1.08であった。
[実施例2]
このブロックコポリマーの0.05wt%二硫化炭素溶液を調製し、ガラス基板上に塗布した。およそ70〜95%程度の高湿度気流下、室温において、溶媒を揮発させ、ガラス基板上に薄膜を得た。
この薄膜の偏光顕微鏡観察では、ポリマーの液晶性に基づく光学組織が見られ、又、X線解析の結果より、この液晶相が分子鎖間4.7Åのスメクティック相であることを確認した。
この薄膜の走査型電子顕微鏡(SEM)観察を行い、膜表面には孔径1.3μmの穴が六方細密に形成された構造を構築していることを確認した。
薄膜切片の透過型電子顕微鏡(TEM)観察を行い、薄膜断面には恒等周期30nmのシリンダー型相分離構造が基板に対し、垂直方向に配列していることを確認した。
【0013】
[比較例1]
数平均分子量50000、分子量分布1.1からなるポリ(スチレンーb−イソプレン)ブロックコポリマーの0.05wt%二硫化炭素溶液を調製し、ガラス基板上に塗布した。室温、高湿度気流下において、溶媒を揮発させ、ガラス基板上に薄膜を得た。
この薄膜の偏光顕微鏡観察では、ポリマーの液晶性に基づく光学組織は見られなかった。
この薄膜の走査型電子顕微鏡(SEM)観察を行ったが、膜表面には多孔性の構造は見られなかった。
薄膜切片の透過型電子顕微鏡(TEM)観察を行い、薄膜断面には恒等周期30nmの相分離構造が構築されていたが、方向性は無秩序であった。
【0014】
【発明の効果】
本発明によれば、新規な階層的規則構造を構築した高分子薄膜を得ることができる。この構造を提供するブロックコポリマーは、従来知られているブロックコポリマーと比較して、分子レベルからマイクロメートルオーダーの広範囲のスケールにおいて、規則構造を高度に構築した高分子薄膜を得ることができるなどの点で一層優れた特性を有するものである。
又、本発明のブロックコポリマー薄膜では、ナノオーダーの相分離構造が、基板に対し、垂直方向に規則的に配列している。したがって、従来には見られない新規な高機能・高付加価値高分子材料としてその構造を利用することができる。
【0015】
【図面の簡単な説明】
【図1】本発明の実施例のブロックコポリマー薄膜の偏光顕微鏡写真
【図2】同薄膜の上方からの走査型電子顕微鏡写真
【図3】同薄膜の断面の走査型電子顕微鏡写真
【図4】同薄膜の断面の透過型電子顕微鏡写真
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the development of block copolymers that build hierarchical regular structures.
[0002]
[Prior art]
A block copolymer is a polymer having a structure in which polymer chains that are incompatible with each other are chemically bonded to each other at the terminal, and has been conventionally developed as a thermoplastic elastomer. For example, the polymer chain is composed of a hard segment such as polystyrene and a soft segment such as polyisoprene, has flexibility and rebound resilience, and exhibits physical properties similar to rubber. These properties are derived from nanometer-scale domains constructed by block copolymers in the solid state, that is, phase separation structure morphology, periodicity, uniformity, and the like. Therefore, in recent years, the regularity and periodicity of each domain has been controlled in a wide range, and not only thermoplastic elastomers, but also high-performance, high-value-added polymer materials, especially in the nanotechnology field, Applied research is being actively promoted. For example, development to various machine parts, electronic / optical materials, precision information equipment materials such as optical disks, biocompatible materials, etc. can be considered.
The identity periodic size of each domain in the phase separation structure can be arbitrarily controlled between approximately 10 to 100 nm by changing the length of the polymer chain, that is, the molecular weight. Also in the phase separation structure pattern, it can be arbitrarily changed from spherical (sphere), rod (cylinder), and sheet (lamellar) depending on the block composition ratio of the block copolymer. However, when the phase separation structure constructed by the conventional block copolymer is viewed macroscopically, the phase separation structure has a long structural distance and poor ordering with respect to the direction and is highly controlled in the order of square micrometers. No pattern has been obtained. In addition, the periodic regular structure size by the conventional block copolymer is in the range of 10 nm or more and 100 nm or less, and more than that, that is, a repeating domain of submicrometer or micrometer order, or a regular structure of 10 nm or less cannot be obtained. .
In contrast, poly (styrene-b-phenylene) (G. Widawski, M. Rawiso and B. Francois, Nature, vol. 369, p, 387 (1994)), or poly (styrene-b-phenylquinoline) ( S. Jenekhe and XL Chen, Science, vol. 283, p, 372 (1999)) have been developed as block copolymers. It was found that a thin film produced by a solution casting method using these polymers can obtain a porous film having a hexagonal close-packed structure having a pore diameter of about 3 micrometers on the film surface. This structure is formed by a specific self-organization phenomenon that occurs at the time of film formation of the block copolymer, that is, a self-assembly of molecules and a dissipative structure. However, in such a block copolymer having a molecular structure, the molecular weight of the polymer cannot be controlled due to problems in the synthesis of polyphenylene and polyphenylquinoline components obtained by condensation polymerization. For this reason, it has been pointed out that it is impossible to construct a phase separation structure of 100 nm or less depending on the length of the polymer chain, or a regular structure of 10 nm or less in a minute region, and solve these problems. There is a need to develop block copolymers for this purpose.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a block copolymer for constructing a hierarchical regular structure, a method for producing a thin film having a hierarchical regular structure using the polymer, and use thereof.
[0004]
[Means for Solving the Problems]
The inventors of the present invention diligently studied the above problems, and when forming a film using a block copolymer having a specific molecular structure, not only the conventionally known phase separation structure, but also a liquid crystal structure, a phase separation structure, a dissipation It has been found that a hierarchical structure in which the respective rule structures based on the structure are highly combined is constructed, and the present invention has been completed.
[0005]
That is,
The following general formula (I)
[Chemical formula 5]
(In the formula, b represents the meaning of a block copolymer, and j and k represent a number of 10 to 2000. R1 represents a proton atom or a hydroxyl group, a tertiary butyldimethylsilyl group, a tertiary butoxycarbonyloxy group, Represents a chloromethyl group, p represents a number of 0, 1, or 2. X represents any one of the following groups.
[Chemical 6]
[Chemical 7]
[Chemical 8]
Here, R3 is an alkyl group having 1 to 18 carbon atoms, an alkyl ether group, or a phenylene group, and R4 is an alkyl group having 1 to 18 carbon atoms, or an alkyl thienyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. An alkylphenyl group, an alkoxy group, a thienyl group, a phenylene group, a cyano group, a nitro group, and a halogen atom. R5, R6, and R7 each represent a halogen atom, a phenyl group, an alkyl group having 1 to 18 carbon atoms, or an alkylphenyl group. R6 and R7 may be the same or different. r represents a number of 2 to 8. s, t, and u represent 0, 1 or 2 numbers. Z represents an azo group or an ester group. )
It was found that the block copolymer represented by the formula has the property of building a hierarchical regular structure.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In order to construct the hierarchical regular structure of the present invention, a block copolymer represented by the following general formula is used.
The following general formula (I)
[Chemical 9]
(In the formula, b represents the meaning of a block copolymer, and j and k represent a number of 10 to 2000. R1 represents a proton atom or a hydroxyl group, a tertiary butyldimethylsilyl group, a tertiary butoxycarbonyloxy group, Represents a chloromethyl group, p represents a number of 0, 1, or 2. X represents any one of the following groups.
[Chemical Formula 10]
Embedded image
Embedded image
Here, R3 is an alkyl group having 1 to 18 carbon atoms, an alkyl ether group, or a phenylene group, and R4 is an alkyl group having 1 to 18 carbon atoms, or an alkyl thienyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. An alkylphenyl group, an alkoxy group, a thienyl group, a phenylene group, a cyano group, a nitro group, and a halogen atom. R5, R6, and R7 each represent a halogen atom, a phenyl group, an alkyl group having 1 to 18 carbon atoms, or an alkylphenyl group. R6 and R7 may be the same or different. r represents a number of 2 to 8. s, t, and u represent 0, 1 or 2 numbers. Z represents an azo group or an ester group. )
A block copolymer represented by
[0007]
More specific block copolymers of the present invention include:
(1) A poly (styrene-b-isoprene) block copolymer having an oligothiophene derivative in a polyisoprene block.
(2) A poly (styrene-b-isoprene) block copolymer having an oligophenylene derivative in a polyisoprene block.
(3) A poly (styrene-b-isoprene) block copolymer having an aromatic compound containing an azo group or an ester group in the polyisoprene block.
[0008]
In order to produce these block copolymers of the present invention, they can be produced by the following method.
Using a styrene monomer, isoprene monomer, acrylic ester monomer, or methacrylic ester monomer as a raw material, anionic polymerization or living radical polymerization is performed to obtain a polymer having a target molecular weight.
In the case of a block copolymer obtained by anionic polymerization using isoprene monomer as a raw material, a hydroboration reaction is further performed to obtain a block copolymer having a hydroxyl group in a side chain group.
When an acrylic ester monomer or a methacrylic ester monomer is used as a raw material, a hydrolysis reaction of an ester bond of the obtained block copolymer is performed to obtain a block copolymer having a carboxyl group in a side chain group.
Finally, the target block copolymer can be obtained by conducting an esterification reaction using the carboxylic acid derivative of the compound represented by the general formula and the block copolymer as raw materials.
[0009]
The thin film preparation method for constructing the hierarchical regular structure of the block copolymer is performed as follows.
A block copolymer solution using carbon disulfide as a solvent is applied onto a substrate such as glass or a silicon wafer, an epoxy resin, or a polyimide film, and the solvent is volatilized under a high-humidity air current.
[0010]
By the thin film preparation method, molecules are packed at an interval of 4 to 5 mm, and, for example, a liquid crystal structure such as a nematic phase and a smectic phase, or a phase separation structure and an identity period 1 in the range of an identity period of 10 to 50 nm A thin film having a porous regular structure in the range of ˜5 μm can be obtained. The upper and lower limits of the value of the identity period are not necessarily clear, but from a smectic liquid crystal structure in which molecules are packed with an identity period of 4.7 cm, a microphase separation structure with an identity period of 30 nm, and a hole with a pore diameter of 1.3 μm It is confirmed that a hexagonal close-packed structure is constructed. By further studying the molecular weight and the like of the block copolymer, it is considered that the length of each identity period can be arbitrarily controlled.
The block copolymer thin film was subjected to polarizing microscope observation, X-ray diffraction and electron microscope observation, and structural analysis was performed. Thin-film cross-sectional structure having a hierarchical regular structure in which the smectic liquid crystal structure in which molecules are packed at regular intervals of 4.7 mm, the microphase-separated structure having an identical period of 30 nm, and the hexagonal close-packed structure consisting of holes having a pore diameter of 1.3 μm is constructed. From the above examination, it was found that the phase separation structure with an equal period of 30 nm is a cylinder type, and is regularly and long-rangely structured in the vertical direction with respect to the substrate.
In the conventional thin film structure of a block copolymer, only a cylindrical microphase separation structure having an identity period of about 30 nm was constructed. In addition, no long-range order was found in the periodicity and directionality of the cylindrical phase separation structure. From these results, the block copolymer having such a molecular structure can construct not only a conventionally known phase separation structure but also a hierarchical structure composed of respective regular structures based on a liquid crystal structure, a phase separation structure, and a dissipative structure. I understood.
From this result, we can see that the high level in the nanotechnology field includes various precision machine parts using hierarchical regular structures ranging from the molecular level to the micrometer order, various electronic and optical materials, information equipment materials such as optical disks, and biocompatible materials. It can be seen that it can be used more effectively as a functional / high-value-added polymer material.
[0011]
【Example】
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to a following example.
The target product is confirmed by the following method.
(1) Confirmation of the structure of the basic unit of the polymer The structure of the basic unit constituting the obtained block copolymer is carried out by performing spectral analysis of infrared spectroscopic analysis and NMR analysis.
(2) Measurement of molecular weight The obtained block copolymer is dissolved in tetrahydrofuran and then analyzed by gel permeation chromatography calibrated with polystyrene to calculate the molecular weight.
(3) Preparation of thin film After the obtained block copolymer is dissolved in carbon disulfide and coated on a substrate, the solvent is volatilized at room temperature under a high-humidity airflow.
(4) Confirmation of polymer thin film structure About the structure in the thin film state of the obtained block copolymer, it carries out by analyzing the result of polarization microscope observation, X-ray diffraction, scanning electron microscope observation, and transmission electron microscope observation. .
[0012]
[Example 1]
As an example of the target block copolymer, a poly (styrene-b-isoprene) block copolymer having an oligothiophene unit in a polyisoprene block was synthesized as follows. A poly (styrene-b-isoprene) block copolymer having a styrene repeating number of 400 and an isoprene repeating number of 25 was synthesized by anionic polymerization using a styrene monomer and an isoprene monomer as the main chain of the block copolymer. Next, the vinyl group of the polyisoprene block side chain was converted into a hydroxyl group by a hydroboration reaction to synthesize a poly (styrene-b-isoprene) block copolymer having a hydroxyl group in the polyisoprene block. Subsequently, 0.3 g of a poly (styrene-b-isoprene) block copolymer having a hydroxyl group was weighed in a two-necked flask under a nitrogen stream, 10 ml of tetrahydrofuran and 1 ml of pyridine were added to dissolve the polymer, and then oligothiophene. That is, 2 ml of a carboxylic acid chloride tetrahydrofuran solution of tertiary butylphenyl terthiophene having a carboxyl group at the terminal was dropped and stirred at room temperature for 24 hours.
After completion of the reaction, the reaction solution was poured into 200 ml of methanol to reprecipitate the polymer, and the resulting polymer was further thoroughly washed with methanol and acetone.
Next, it was dried under reduced pressure with an oil rotary vacuum pump at 50 ° C. for 12 hours. As a result, 0.353 g of a fluorescent yellow block copolymer was obtained.
This polymer was subjected to infrared spectroscopic analysis and spectrum measurement by 1H-NMR and 13C-NMR to confirm that it was a polymer having polyisoprene having polystyrene and oligothiophene as a basic unit. This polymer was dissolved in tetrahydrofuran and analyzed by gel permeation chromatography calibrated with polystyrene, and the number average molecular weight and molecular weight distribution were calculated. As a result, they were 55000 and 1.08, respectively.
[Example 2]
A 0.05 wt% carbon disulfide solution of this block copolymer was prepared and applied on a glass substrate. The solvent was volatilized at room temperature under a high humidity air flow of about 70 to 95% to obtain a thin film on the glass substrate.
When the thin film was observed with a polarizing microscope, an optical structure based on the liquid crystallinity of the polymer was observed, and the result of X-ray analysis confirmed that this liquid crystal phase was a smectic phase having a molecular chain of 4.7 mm.
This thin film was observed with a scanning electron microscope (SEM), and it was confirmed that a structure in which holes having a pore diameter of 1.3 μm were formed on the film surface in a hexagonal and fine manner was constructed.
The thin film slice was observed with a transmission electron microscope (TEM), and it was confirmed that a cylindrical phase separation structure with an equal period of 30 nm was arranged in the thin film cross section in a direction perpendicular to the substrate.
[0013]
[Comparative Example 1]
A 0.05 wt% carbon disulfide solution of a poly (styrene-b-isoprene) block copolymer having a number average molecular weight of 50000 and a molecular weight distribution of 1.1 was prepared and applied on a glass substrate. The solvent was volatilized at room temperature under a high humidity air stream to obtain a thin film on the glass substrate.
When the thin film was observed with a polarizing microscope, no optical structure based on the liquid crystallinity of the polymer was observed.
When this thin film was observed with a scanning electron microscope (SEM), no porous structure was observed on the film surface.
A thin film slice was observed with a transmission electron microscope (TEM), and a phase separation structure with an equal period of 30 nm was constructed on the cross section of the thin film, but the directionality was disordered.
[0014]
【The invention's effect】
According to the present invention, a polymer thin film having a novel hierarchical regular structure can be obtained. The block copolymer providing this structure can obtain a polymer thin film with a highly structured regular structure in a wide range of scales from the molecular level to the micrometer order as compared with the conventionally known block copolymers. It has more excellent characteristics in terms of points.
In the block copolymer thin film of the present invention, nano-order phase separation structures are regularly arranged in a direction perpendicular to the substrate. Therefore, the structure can be used as a novel high-function / high-value-added polymer material that has not been seen in the past.
[0015]
[Brief description of the drawings]
FIG. 1 is a polarization micrograph of a block copolymer thin film of an embodiment of the present invention. FIG. 2 is a scanning electron micrograph from above of the thin film. FIG. 3 is a scanning electron micrograph of a cross section of the thin film. Transmission electron micrograph of the cross section of the thin film

Claims (6)

下記一般式(I)
(式中、bはブロックコポリマーの意を示し、j、kは、10〜2000の数を表す。R1は、プロトン原子、もしくはヒドロキシル基、ターシャルブチルジメチルシリル基、ターシャルブトキシカルボニルオキシ基、クロロメチル基を示す。pは0,1又は2の数を表す。また、Xは、以下の基のうちいずれかひとつを表す。
ここで、R3は、炭素数1〜18のアルキル基、アルキルエーテル基、フェニレン基、R4は、炭素数1〜18のアルキル基、もしくは炭素数1〜18のアルキルチエニル基、炭素数1〜18のアルキルフェニル基、アルコキシ基、チエニル基、フェニレン基、シアノ基、ニトロ基、ハロゲン原子を示す。R5、R6、R7は、ハロゲン原子、もしくはフェニル基、炭素数1〜18のアルキル基、アルキルフェニル基を示す。R6とR7は、同一であっても、又異なっていても差し支えない。rは2〜8の数を表す。s、t、uは0,1又は2の数を表す。また、Zは、アゾ基、もしくはエステル基を表す。)
で表されるブロックコポリマー。
The following general formula (I)
(In the formula, b represents the meaning of a block copolymer, and j and k each represent a number of 10 to 2000. R1 represents a proton atom, or a hydroxyl group, a tertiary butyldimethylsilyl group, a tertiary butoxycarbonyloxy group, Represents a chloromethyl group, p represents a number of 0, 1, or 2. X represents any one of the following groups.
Here, R3 is an alkyl group having 1 to 18 carbon atoms, an alkyl ether group, or a phenylene group, and R4 is an alkyl group having 1 to 18 carbon atoms, or an alkyl thienyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. An alkylphenyl group, an alkoxy group, a thienyl group, a phenylene group, a cyano group, a nitro group, and a halogen atom. R5, R6, and R7 each represent a halogen atom, a phenyl group, an alkyl group having 1 to 18 carbon atoms, or an alkylphenyl group. R6 and R7 may be the same or different. r represents a number of 2 to 8. s, t, and u represent 0, 1 or 2 numbers. Z represents an azo group or an ester group. )
A block copolymer represented by
請求項1に記載されたブロックコポリマーと溶媒からなる組成物を、基板上に塗布し、溶媒を揮発させた後、基板から剥離させる階層的規則構造を有する薄膜の製造方法。  A method for producing a thin film having a hierarchical regular structure in which the composition comprising a block copolymer and a solvent according to claim 1 is applied onto a substrate, the solvent is volatilized, and then peeled off from the substrate. 溶剤が二硫化炭素溶液であり、高湿度気流下において、溶媒を揮発させる請求項2に記載した薄膜の製造方法。  The method for producing a thin film according to claim 2, wherein the solvent is a carbon disulfide solution, and the solvent is volatilized under a high-humidity airflow. 請求項2又は3に記載した方法により得られた階層的規則構造を有する薄膜である液晶用薄膜A thin film for liquid crystal, which is a thin film having a hierarchical regular structure obtained by the method according to claim 2. 請求項2又は3に記載した方法により得られた階層的規則構造を有する薄膜である相分離用薄膜A thin film for phase separation, which is a thin film having a hierarchical regular structure obtained by the method according to claim 2. 請求項2又は3に記載した方法により得られた階層的規則構造を有する薄膜である散逸用薄膜A thin film for dissipation which is a thin film having a hierarchical regular structure obtained by the method according to claim 2.
JP2002062836A 2002-03-08 2002-03-08 Block copolymer for constructing hierarchical regular structures Expired - Lifetime JP3668773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062836A JP3668773B2 (en) 2002-03-08 2002-03-08 Block copolymer for constructing hierarchical regular structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062836A JP3668773B2 (en) 2002-03-08 2002-03-08 Block copolymer for constructing hierarchical regular structures

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004322688A Division JP3864314B2 (en) 2004-11-05 2004-11-05 Block copolymer for building hierarchical regular structures
JP2004322678A Division JP3864313B2 (en) 2004-11-05 2004-11-05 Block copolymer for building hierarchical regular structures

Publications (2)

Publication Number Publication Date
JP2003261636A JP2003261636A (en) 2003-09-19
JP3668773B2 true JP3668773B2 (en) 2005-07-06

Family

ID=29196409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062836A Expired - Lifetime JP3668773B2 (en) 2002-03-08 2002-03-08 Block copolymer for constructing hierarchical regular structures

Country Status (1)

Country Link
JP (1) JP3668773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988594A4 (en) * 2020-06-04 2022-08-24 LG Chem, Ltd. Block copolymer, method for preparing same, and asphalt composition comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203439A (en) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp Block copolymer, block copolymer composition and insulation sheet containing the same
JP5748708B2 (en) * 2012-06-01 2015-07-15 東京エレクトロン株式会社 Pattern forming method and heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988594A4 (en) * 2020-06-04 2022-08-24 LG Chem, Ltd. Block copolymer, method for preparing same, and asphalt composition comprising same

Also Published As

Publication number Publication date
JP2003261636A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
Leu et al. Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites
Müllner et al. Water-soluble organo− silica hybrid nanotubes templated by cylindrical polymer brushes
Wright et al. Chemical modification of fluorinated polyimides: new thermally curing hybrid polymers with POSS
Mya et al. Time-dependent polymerization kinetic study and the properties of hybrid polymers with functional silsesquioxanes
Zeng et al. Rapid deswelling and reswelling response of poly (N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped poly (ethylene oxide) amphiphilic telechelics
Lin et al. Poly [2, 7-(9, 9-dihexylfluorene)]-block-poly (2-vinylpyridine) Rod− Coil and Coil− Rod− Coil Block Copolymers: synthesis, morphology and photophysical properties in methanol/THF mixed solvents
Chiou et al. Hydrogen bond interactions mediate hierarchical self-assembly of POSS-containing block copolymers blended with phenolic resin
Dikshit et al. Thermoreversible gelation of poly (vinylidene fluoride) in diesters: Influence of intermittent length on morphology and thermodynamics of gelation
Qiang et al. Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application
CN107245133B (en) Small-size block polymer material rapidly assembled at low quenching temperature and preparation and application thereof
Hong et al. Synthesis of organic/inorganic polyhedral oligomeric Silsesquioxane-containing block copolymers via reversible addition–fragmentation chain transfer polymerization and their self-assembly in aqueous solution
Wang et al. Synthesis and solution self-assembly of coil− crystalline− coil polyferrocenylphosphine-b-polyferrocenylsilane-b-polysiloxane triblock copolymers
Sudo et al. Role of hyperbranched polystyrene on thermo-responsive cell culture dishes prepared by hyperbranched polystyrene-g-poly (N-isopropylacrylamide)
Guo et al. One-step routes from di-and triblock copolymer precursors to hydrophilic nanoporous poly (acrylic acid)-b-polystyrene
Zheng et al. Synthesis and characterization of heptaphenyl polyhedral oligomeric silsesquioxane-capped poly (N-isopropylacrylamide) s
Peng et al. Organic–inorganic nanocomposites via self-assembly of an amphiphilic triblock copolymer bearing a Poly (butadiene-g-POSS) subchain in epoxy thermosets: morphologies, surface hydrophobicity, and dielectric properties
Zhang et al. Smart organic/inorganic hybrid nanoobjects with controlled shapes by self-assembly of gelable block copolymers
Lanson et al. Poly (styrene) comb-b-Poly (ethylene oxide) comb Copolymers: Synthesis and AFM Investigation of Intra-and Supramolecular Organization as Thin Deposits
Bandyopadhyay et al. Synthesis, characterization and gas transport properties of polyamide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites
JP3668773B2 (en) Block copolymer for constructing hierarchical regular structures
JP3864313B2 (en) Block copolymer for building hierarchical regular structures
JP3864314B2 (en) Block copolymer for building hierarchical regular structures
EP1757631B1 (en) Amphiphilic triblock copolymers comprising poly(2-vinyl pyridine) block and poly(alkyl isocyanate) block, and the preparation method thereof
Deepak et al. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: Synthesis, morphology, and mechanism of pore formation
JP4035449B2 (en) Micelle particle-containing composition, thin film thereof and method for producing thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Ref document number: 3668773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term