JP3667733B2 - Brush charging device - Google Patents

Brush charging device Download PDF

Info

Publication number
JP3667733B2
JP3667733B2 JP2003002436A JP2003002436A JP3667733B2 JP 3667733 B2 JP3667733 B2 JP 3667733B2 JP 2003002436 A JP2003002436 A JP 2003002436A JP 2003002436 A JP2003002436 A JP 2003002436A JP 3667733 B2 JP3667733 B2 JP 3667733B2
Authority
JP
Japan
Prior art keywords
brush
charged
charging
white
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003002436A
Other languages
Japanese (ja)
Other versions
JP2003223040A (en
Inventor
猛 渡辺
稔 吉田
茂 藤原
雅司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba TEC Corp filed Critical Toshiba Corp
Priority to JP2003002436A priority Critical patent/JP3667733B2/en
Publication of JP2003223040A publication Critical patent/JP2003223040A/en
Application granted granted Critical
Publication of JP3667733B2 publication Critical patent/JP3667733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電子写真装置等に係るブラシ帯電装置に関する。
【0002】
【従来の技術】
従来、電子写真の帯電装置としては、スコロトロンを用いたコロナ放電器が主流であった。しかしコロナ帯電は放電現象を利用するため、特にマイナス帯電では人体に有害なオゾンを多量に発生する。また、印加電圧が−4〜−5kvと比較的高く、電流もほとんどがケースに流れてしまうため、エネルギーロスが大きいという欠点があった。近年ではコロナ帯電にかわり、オゾンがほとんど発生しない接触帯電技術が進歩している。その代表的なものが導電性ローラを用いたローラ帯電方式とブラシ帯電方式である。両者とも、オゾン発生量はコロナ帯電器の100分の1以下であると言われ、また印加電圧も−1kv程度と比較的低く、電流もケースに流れることがないのでロスも少ない。
【0003】
【発明が解決しようとする課題】
しかし、ロ−ラ帯電方式は、トナーや紙粉などのゴミに弱く、それがすぐに帯電むらとなって画像に現れてしまう。また導電性ローラ自体の値段を考えてもコスト的に不利である。一方ブラシ帯電器は、ローラよりはトナーや紙粉などの汚れに強く、また値段も安いことから小型で安価な装置において有効な帯電手段である。しかし、ブラシ帯電器はその形状故、複写械、プリンタなど、特に反転現像方式を用いた電子写真プロセスにおいてハーフトーンを印字すると、被帯電体の面移動方向にそって、白筋が多数発生してしまう。マイナス帯電の反転現像方式において白筋になるのは、被帯電体の表面電位が局部的にマイナス側に高くなっていることを意味している。これはブラシ特有の帯電むらで、固定型の導電性ブラシでは特に顕著である。固定型のブラシは、基盤に導電性の接触子を植毛したもので、金属細線や導電性繊維が知られているが、後者の方が一般的で、柔軟なレーヨンやナイロンにカーボンを分散させた繊維が主流である。そしてそのブラシ表面は、一般に平面状のものが多い。一方それに接触する被帯電体面は、ドラムを使用する場合は曲率をもった面となる。すなわち平面状のブラシを曲率を持った被帯電体面に当接させることで、ブラシ毛が均一に被帯電体面に当接せず、それが異常な帯電状態をつくりだし、電位が局部的にマイナス側に高くなって筋を増やす要因になっているのである。そして、その問題を解決するためには、ブラシ自体に被帯電体とほぼ同じ曲率を与えて、毛先が被帯電体表面に均一に当接するようにすればよいが、製造上難しく生産コストを考慮すると量産に適した方法が知られていない。
【0004】
本発明は、このような課題を解決するためのもので、簡単にブラシ帯電器特有のハーフトーンの白筋の発生を減少させることのできるブラシ帯電装置の提供を目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のブラシ帯電装置は、導電性ブラシを被帯電体に当接させて帯電させるブラシ帯電装置において、前記導電性ブラシの毛先と前記被帯電体の表面とが接触している領域のうち、被帯電体移動方向上流側の部分に光を照射して、前記被帯電体の帯電と除電を同時に行うようにしたことを特徴とする。ここで、被帯電体が光導電体であれば、除電手段として例えば除電光を用いる。
【0008】
【作用】
したがって、本発明によれば、画像形成装置特有の帯電むらによる白筋の発生を減少させることが可能となる。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
図1(a)は、ブラシの製造過程において、ブラシの毛先をカットする方法である。ブラシの毛の材質はレーヨンにカーボンを分散させたものやナイロンなどがあげられ、それら繊維は導電性の基布に縫い付けられた状態になったところで、仕上げ工程として、ブラシ表面のカットを行う。そこで、導電性の繊維1を植毛された基布2は、基布側の面から、ブラシ帯電器が被帯電体表面に当接する部分での被帯電体表面とほぼ同じ曲率を持った部材3にセットされる。そして図1(b)のように、カッター4で水平に毛先をカットすることにより、導電性繊維1はそれぞれ所定の長さにカットされる。その後、ブラシを曲率部材3から取り外し、基布をもとの水平な状態に戻すと、図1(c)のようにブラシ毛は取り付けてあった曲率部材とは反対方向の曲率にカットされる。すなわち、きわめて簡単な方法で、被帯電体とほぼ同曲率のブラシ面のカットがおこなえるわけである。また、このときに得られる導電性繊維の先端面の曲率は、支持部材3の曲率よりも繊維の長さ分だけ大きくなるので、支持部材の曲率を、被帯電体曲率よりも若干小さく設定してやることで、さらに被帯電体に近い曲率の導電性繊維面をつくることができる。
【0010】
また、ブラシ製造方法におけるブラシ毛のカット工程では、多くの場合、図2(a)のように金属などでできたドラム5に、支持部材3を設けその上に繊維1を植毛済みの基布2を取付け、ドラム5を回転させることで、ドラム5の外側に設置されたカッター4により導電性繊維をカットし、ほぼ平坦なブラシ面を得ていた。しかし、この方法では、ブラシカット面は、厳密には凸型になってしまい、これではブラシの毛先が被帯電体表面に対して均一に当接することは望めない。そこで、毛先のカット工程において、図2(b)に示すように、繊維1を植毛済みの基布2を支持部材3を両側に設けたドラム5の内側に取付け、ドラム5を回転させ、ドラム5の内側に設置したカッター4により毛先をカットすることにより、導電性繊維面を凹型にする。またさらにここで、繊維1を植毛済みの基布2を取り付ける支持部材3をドラム5とは反対の曲率にすることで、導電性繊維面の曲率を大きくすることができ、被帯電体表面とほぼ同曲率のブラシ面を得ることが可能となる。同様に図2(a)においても、支持部材3の曲率を大きくすることで同じ効果が得られる。また円筒形ドラムではなくガターを回転させることでも同様な効果が得られることは言うまでもない。
【0011】
続いて、導電性繊維面を凹型にカットすることなく、同じような効果を得る方法について説明する。ブラシ帯電におけるハーフトーン画像での白筋の原因のひとつに、被帯電体表面に対する繊維の毛先の当接状態が大きく影響していることは既に述べた。これまでの帯電ブラシは、図3(a)に示すように、導電性繊維の表面が平面状になっていて、それを曲率を持った被帯電体表面に所定の食い込み量をもって当接させると、図3(b)に示すように、導電性繊維1と被帯電体7との接触域で、被帯電体の面移動方向の上流側の毛先が被帯電体の回転に対して逆毛立った状態になってしまう。この状態で、反転現像方式の電子写真プロセスを用いてハーフトーンの画出しをおこなうと、白筋が多数発生し、特にブラシ帯電器を被帯電体に当接したまま放置した後に印字を行うと白筋が顕著である。白筋が発生するのはおもに多湿環境(RH85%)と、低湿環境(RH20%)で、多湿では連続的な白筋になり、低湿では短い鋭い白筋となる。低温環境における白筋の発生を防ぐには被帯電体へのブラシ繊維の食い込み量をできるだけ小さくすると効果がある。被帯電体表面と同じ曲率を持ったブラシ帯電器は、食い込み量を接触幅全域において小さく安定させることができ、さらに見かけの繊維密度も上昇するため、筋の減少に効果が得られる。またこの白筋は、ブラシ帯電器を被帯電体表面に当接した後の最初の数十枚の印字で特に顕著である。これは逆毛立った繊維が被帯電体の回転により面移動方向の下流側になびこうとするために生じると思われ、数百枚印字した後では目立たなくなる。そこで、初期状態における逆毛立った状態の繊維をなくすため、固定型導電性ブラシの繊維を、毛先が被帯電体7の面移動方向に対して順方向に一様になびくように、予め斜毛処理した。斜毛角度は、図4(a)に示すように、被帯電体7の面移動方向に対して一番上流側の繊維が、被帯電体表面と当接するときに、被帯電体7の面移動方向の下流側になびけばよい。すなわち図4(a)において、基布とブラシ繊維とのなす角をθ1、被帯電体の半径をa、ブラシの毛の長さをb、被帯電体の中心からブラシ面に引いた垂線とブラシ基布との交点からブラシの被帯電体上流側の端部との距離、いわゆる上流側のブラシの植毛幅をcのしたとき、cosθ1>c/(a+b)のような関係を満たせばよい。これによって図4(b)に示すように、ブラシ毛は被帯電体7の面移動方向の下流側に揃ってなびくことになり、逆毛立つ繊維は存在しなくなる。実験では、斜毛処理をおこなわないブラシに比べ、放置後の低湿での白筋が著しく減少することが確認できた。この斜毛処理の方法であるが、図5(a)のように、円筒形の容器8と、それよりも小さい径の円柱状の部材9の間に導電性繊維1を植毛した基布2を挟み込み、両部材のうちのどちらか、または両方を回転させることで可能である。また図5(b)に示すように、固定型導電性ブラシに斜毛する上流側から徐々に板状の部材10を押し当てることによっても可能である。
【0012】
また、ブラシ繊維自体を斜毛処理や曲率カットせずにすむ方法としては、次のようなものがあげられる。これは図6(a)に示すように、導電性繊維1の植毛された基布2を、被帯電体表面の湾曲に沿うような方向に1箇所以上に角度を持たせた支持部材6に取り付けるということで、この方法によれば、製造上問題となる曲率にカットや、斜毛処理などを必要しない。
【0013】
図6(a)において、被帯電体7の半径をaとして、ブラシの繊維の長さをb、ブラシ支持部材の角度θ2の頂点から、ブラシの被帯電体7の面移動方向の上流側への幅をdとしたとき、その一番端の毛先が、被帯電体の面移動方向の下流側になびくように角度θ2を設定する。すなわち、tanθ2<(a+b)/dを満たすようにθ2の値を規定することによって、ブラシの毛先が被帯電体表面に対して、逆毛立って当接することがない。これによってブラシの上流側で逆毛立って被帯電体に当接する毛先がなくなり、低湿の初期状態における白筋が減少する。また、この方法によると、図6(b)に示したように、導電性繊維1と被帯電体との接触域の上流側の部分の繊維の被帯電体に対する食い込み量が密度が大きくなるため、少ない帯電幅で安定した帯電が可能になる。そしてまた、このようなブラシ帯電器は、電子写真装置において使用する場合には、図7に示すようにプロセスカートリッジの一部分にあらかじめ角度を設けておき、そこにブラシ帯電器を基布ごと取り付けることで簡単につくることも可能である。このような方法においても、放置後に印字したハーフトーンの白筋は著しく減少した。
【0014】
また、これまでのブラシと、ブラシ支持部材を用いても、白筋を減少させることが可能である。これはまず、前記したような従来のブラシ帯電装置において、導電性ブラシが被帯電体表面と最初に当接するブラシ上流側においてのみ、帯電と同時に除電をおこなうことによって可能となる。白筋の原因にブラシ上流側での、はみ出し毛が影響していることは既に説明した。そこで特に電子写真方式を用いた装置においては図8に示すように、帯電部の前段に存在する除電ランプ12による除電光を故意にブラシ前半部分にも照射し、ブラシ上流部分の帯電を除電してしまう。図8はそのように加工した電子写真方式のプロセスカートリッジの例である。ここでブラシ繊維1は基布2に高密度に植毛され、また通常は黒色であるため、除電ランプ12による除電光は、ブラシ帯電器の内側に入ってくることなく、ブラシ上流側を除いた部分で良好な帯電が行われる。それによってブラシ上流側での帯電ムラは減少する。
【0015】
次に、同じように従来のブラシ帯電器を用いて白筋を減少させる別方法について説明する。それは、固定型のブラシを帯電器として使用した画像形成装置で、ブラシ帯電器をあらかじめ被帯電体表面に当接しておいて、装置の電源投入後、装置使用前に被帯電体を数分間ブラシに対して面移動させ、ブラシ繊維に予め一定方向の癖をつけてから使用するというものである。また、そのときにブラシに所定のバイアスを印加するとさらに効果がある。
【0016】
実験では、解像度300dpi 、印心速度8枚/分の反転現像方式のレーザプリンタを使用した。被帯電体はマイナス帯電の有機感光体ドラムを使用している。ブラシ帯電器は、レーヨンにカーボンを分散させた繊維を使用し、ブラシ全体の抵抗値は105 Ω程度である。低湿環境において、新しい固定ブラシ帯電器で初期から印字したもの、また12分間(約100枚分)通紙せずに、通電もしないで感光体を回転させた後に網点面積率50%のハーフトーン画像を印字したもの、そして、ブラシに−0.5〜−1.3kvの定電圧バイアスを印加しながら12分間、通紙せずに感光体を回転させたもののハーフトーン画像における白筋の状態を示す。また、これまでの説明で紹介した、被帯電体に曲率を合わせたブラシ帯電器や、斜毛処理をおこなったブラシ、除電光をブラシ上流側に故意に照射したブラシについての結果も同時に比較すると次表のようになる。
【0017】
【表1】

Figure 0003667733
ブラシの幅は全て9mm、繊維の長さは4mmである。感光体に対する食い込み量は、食毛したブラシ繊維全面が感光体に当接する範囲で、できるだけ浅く設定した。感光体径は30mmφである。これによると、感光体と同曲率の部材に取り付けたブラシを使用すると白筋が少ないが、普通のブラシに通電しながら約100枚分通紙せずに感光体を回転させた後に印字をおこなうだけでも、ほぼ同じように白筋が減少することがわかる。また、ブラシに通電処理をおこなわなくても、ある程度白筋が減少することがわかる。すなわち、固定ブラシに対して感光体表面を当接して、予め数分間回転させてやることで、ブラシ毛に一定方向に癖がつき、斜毛処理した場合と同じような効果が得られるわけである。通電するバイアスについては、0.5kv以下では通電処理しない場合と大差は見られなかったが、0.8kv以上では、白筋がさらに減少した。通常使用するバイアスは−1.0kv程度なので、通常のおよそ8割以上の電圧を通電すると、白筋減少に効果が見られる。
【0018】
斜毛処理をおこなったブラシについては、斜毛角度の条件内に入っていると筋が少なく、範囲外の条件では前者と比較すると白筋が多い。また角度をつけた部材に取り付けたブラシについても同様で、条件の範囲に入っているものは、筋が減少するが、範囲外のものは範囲内のものに比べると筋が多く発生する。しかし、いずれも、なにも対策を施さなかったブラシの初期状態に比べると明らかに白筋が少なくなった。また除電光をブラシ上流側に照射したブラシ帯電器においても、無対策のものに比べて白筋が少なく、効果が見られた。
【0019】
次に、ブラシ繊維を被帯電体に均一に当接させる以外にも、白筋を減少させる方法がある。これはブラシ帯電器に、直流に加えて、被帯電体が一様に収束帯電を開始する電圧未満の交流バイアスを重畳するというものである。これについても前記した反転現像方式のレーザプリンタを例にあげて説明する。被帯電体はマイナス帯電の感光体ドラムであり、帯電はマイナス側に行われ、感光体の表面電位がマイナス側に高ければ画像上では白くなり、プラス側に近ければ画像上では黒くなる。ここではマイナス側の電圧が高いほど、電位が高い、大きい、という表現を用いて説明する。
【0020】
ブラシ帯電器に直流バイアスを印加していくと、図9のようになる。これによると、感光体の表面電位はブラシ印加電圧が−500v程度になったところで突然上昇し初め、ほぼ直線的に上昇し、ブラシ帯電器に−1000v印加したときには感光体はおよそ−500vに帯電する。すなわち、感光体の帯電が開始するときのブラシ印加電圧は−500v程度で、感光体はブラシ帯電器とこの程度の電位差があって、はじめて帯電し、その電位差はブラシ印加電圧が変化してもほぼ一定に保たれる。そしてこれは放電現像に特有な性質である。さらにブラシ帯電においても、帯電器の極近傍からは微量のオゾンが発生(コロナ法電気の約10-3)しており、ブラシ帯電においても放電による帯電が支配的であると考えられる。ここで白筋というのは、ブラシ帯電器のなかの不良な繊維やムダ毛などによる通常の放電によらない帯電現像により、表面電位が他の部分に比べて局所的に高くなってしまった部分であることは既に説明した。そして直流バイアスのみでは一度高くなってしまった表面電位はもう下げることができない。
【0021】
次に、直流バイアスを−500vに固定して、そこに交流バイアスを徐々に重畳していくと感光体の表面電位は図10のように変化する。図10によると、交流電圧が400v程度までは、表面電位は一定の傾きで上昇する。そしてこのときの表面電位は、直流のみで、直流に交流を重畳したときの電圧の極大値をブラシ帯電器に印加したときの値にほぼ等しくなっている。直流のみで帯電させたときの感光体の表面電位を点線で示す。しかし交流電圧が400vを越えるとその傾きは非常に小さくなり、徐々には上昇していくものの、いわゆる収束域にはいる。ここで、収束帯電域の領域内である交流電圧が600vの場合のブラシ印加バイアスと感光体の表面電位の概念図を第11図に示す。第11図によれば、ブラシバイアスの極大値はおよそ−1340v(−500−600×1.4)であり、感光体はそのとき、印加バイアスとおよそ500vの差を持って−800v程度に帯電する。一方、ブラシバイアスの極小値はおよそ+340v(−500+600×1.4)となり同様な理論から感光体は−150v程度に帯電する。すなわち、プラス方向とマイナス方向の放電による帯電が、ブラシ帯電器と感光体とが接触している全域に渡って繰り返して行われることになる。そして最終的な感光体の表面電位は、結局のところブラシ帯電器が感光体と最後に当接していた部分におけるブラシバイアスによって決定される。ブラシ帯電器が感光体と離れる最下流側では、ブラシ繊維は感光体の軸方向に沿って完全な直線状態にはなっておらず、場所によってはみ出した繊維が存在している。すなわち表面電位はそれら繊維の影響を受け、−150〜−800vの範囲に散らばってしまい均一になることはない。そのような条件でハーフトーン画像を印字しても、表面電位の高い部分は白くなり、低い部分は黒くなり良好な画像が得られない。
【0022】
一方、図10において傾きが大きい直線部分、つまり収束域未満の領域である交流電圧が350vの場合は第12図のようになる。第12図は直流電圧−550vに交流電圧350vを重畳させた場合で、これによれば、ブラシバイアスの極大値は−1040v(−550−350×1.4)であり、このとき感光体はおよそ−550に帯電する。そこにブラシバイアスの極小値である−60vが印加されても感光体との電位差が既におよそ500v程度で、ほとんどプラス側への放電が発生しない。すなわち、ブラシバイアスが極大値のときに帯電された感光体の表面電位が、ブラシと被帯電体が当接している間にほとんど変化せずそのまま保存され、最終的な電位は−550v程度に収束する。つまり直流のみをブラシ帯電器に印加した場合と同じように、適当な表面電位に帯電した部分の電位は下げられることない。図10で示した交流電圧が400v未満の領域というのは、プラス側の放電による帯電が発生しない、いわゆる交流電圧が、感光体が収束帯電を開始する未満の領域なのである。ここで白筋部分について考えると、白筋というのは、表面電位が局所的に高くなっている部分なので、白筋部分のみがブラシバイアスの極小値のときに電位差が500v、ここでいう放電開始電圧を越えることになる。そしてプラス側に放電され電位が下がり、電位差500vになるところで落ちつくことになる。すなわち白筋部分だけが電位が下がり筋が減少する。また、もしもこのとき通常の放電によらない帯電がプラス側に発生し、表面電位が低い部分が発生したとしても、その後に極大値である−1040vが印加されたときに正常な電位に復活する。つまりブラシ最下流側で、そのような異常な帯電が発生しさえしなければ帯電ムラになることはなく、白筋は勿論のこと、黒筋が増加するようなこともほとんどない。
【0023】
実際にレーザプリンタを用いてハーフトーン画像を印字して評価した結果を次に示す。環境は高温多湿で、ブラシ帯電器は従来タイプの新品を使用し、バイアスを各種かえて実験をおこなった。プリンタは上述した方式のものを使用し、ブラシ帯電器を取り付けてから5枚目の画像を評価した。
【0024】
【表2】
Figure 0003667733
直流に対して重畳する交流バイアスは実験に使用したブラシ帯電器の場合、300v〜400vが適正であった。つまり感光体が収束帯電を開始する直前の条件がよい。これは図7における帯電開始電圧の−500vとは少しばかり食い違っている。これは白筋部分の帯電開始電圧も、表面電位に含まれて測定されてしまうためで、実際のところ白筋部分は通常の放電以外の帯電によって、帯電開始電圧がプラス方向に200v程度シフトしている。収束帯電が開始する直前の領域というのは、すなわち図10において、直線の傾きが変化する直前部分であり、この領域において白筋減少に大きな効果が見られるのである。これはつまり、筋部分以外の領域を、放電によって電位が下げられるほぼ境界の電位にすることで、わずかに電位が上昇している微妙な白筋部分さえもプラス側の放電により減少することができるためである。
【0025】
また周波数に関しては、ブラシの周波数の追従性に関係してくるが、実験をおこなったブラシでは100Hz〜800Hzが適正値であった。ブラシの周波数を200Hzにまで低くすると、ブラシ中にわずかに混在する不良な繊維やムダ毛などの影響により電位が高くなる部分が、筋状にはらずに網点状になる。そして電位の高い網点部分どうしの間の領域は正常な表面電位になり、結果的に電位の高い白筋部分の面積は減少することになる。また、網点状になるため筋などの帯電ムラが肉眼ではとらえにくくなる。そして結果的には筋自体が目立たなくなる。しかし、周波数が高くても効果がないわけではなく、白筋は直流バイアスのみを印加したときと比べてかなり減少しいている。
【0026】
このように、適正な交流バイアスを直流バイアスに重畳することによって、感光体表面上に局所的に電位が高い部分がなくなる。すなわち、低湿環境における白筋に加えて、多湿環境で発生した連続的な白筋をも大幅に減少させることができる。
【0027】
【発明の効果】
本発明により、固定型の導電性ブラシ帯電器に特有の帯電むらによる、ハーフトーン画像上の白筋を減少させることができる。
【図面の簡単な説明】
【図1】(a)、(b)、(c)はそれぞれ本発明のー実施例のブラシカットの順序を示す模式図。
【図2】(a)は比較のため示した従来のブラシカットの一例を示す模式図、(b)は本発明のー実施例のブラシカット法の模式図。
【図3】(a)、(b)は比較のため従来の固定ブラシの当接状態を示す模式図。
【図4】(a)、(b)は前記実施例において施される斜毛処理条件を示す模式図。
【図5】(a)、(b)は前記斜毛処理の方法のー例の模式図。
【図6】(a)、(b)はブラシを角度をなす部材にとりつけた場合の状態を示す模式図。
【図7】角度をなす部材がプロセスカートリッジの一部である実施例の正面図。
【図8】プロセスカートリッジの他の実施例の正面図。
【図9】直流バイアス印加時の固定ブラシの帯電特性を示す線図。
【図10】直流バイアスに交流バイアス重畳印加時の固定ブラシの帯電特性を示す線図。
【図11】直流500Vに交流600Vを重畳印加した場合の概念図。
【図12】直流550Vに交流350Vを重畳印加した場合の概念図。
【符号の説明】
1…ブラシ、2…ブラシ基布、3…支持部材、4…カッター、5…ドラム、 6…ブラシ支持部材、7…被帯電体、8…円筒ドラム、9…円筒ドラム、10…押さえ板、11…プロセスカートリッジ、12…除電ランプ。[0001]
BACKGROUND OF THE INVENTION
The invention, for example, relates to a brush band electrical location of the electrophotographic apparatus.
[0002]
[Prior art]
Conventionally, a corona discharger using a scorotron has been the mainstream as an electrophotographic charging device. However, since corona charging uses a discharge phenomenon, a large amount of ozone that is harmful to the human body is generated particularly in negative charging. In addition, since the applied voltage is relatively high at −4 to −5 kv and most of the current flows through the case, there is a disadvantage that energy loss is large. In recent years, contact charging technology that hardly generates ozone has been advanced in place of corona charging. Typical examples are a roller charging system using a conductive roller and a brush charging system. In both cases, the amount of ozone generated is said to be 1/100 or less of that of the corona charger, the applied voltage is relatively low at about -1 kv, and no current flows through the case, so there is little loss.
[0003]
[Problems to be solved by the invention]
However, the roller charging method is vulnerable to dust such as toner and paper dust, and it immediately appears as uneven charging and appears in the image. Also, considering the price of the conductive roller itself, it is disadvantageous in terms of cost. On the other hand, the brush charger is an effective charging means in a small and inexpensive apparatus because it is more resistant to dirt such as toner and paper dust than a roller and is cheaper. However, because of the shape of the brush charger, when printing halftones in electrophotographic processes using reversal development methods, such as copying machines and printers, many white streaks occur along the surface movement direction of the charged object. End up. In the negatively charged reversal development method, white streaks mean that the surface potential of the object to be charged is locally higher on the negative side. This is a charging unevenness peculiar to the brush, and is particularly remarkable in the case of a fixed conductive brush. Fixed brushes are made by implanting conductive contacts on the base, and fine metal wires and conductive fibers are known. The latter is more common, with carbon dispersed in flexible rayon or nylon. Fiber is the mainstream. The brush surface is generally flat. On the other hand, the surface of the member to be charged is a surface having a curvature when a drum is used. In other words, by bringing a flat brush into contact with the surface of the charged object having a curvature, the brush bristles do not uniformly contact the surface of the charged body, which creates an abnormal charging state, and the potential is locally negative. It is a factor that increases and increases muscles. In order to solve the problem, it is only necessary to give the brush itself the same curvature as that of the member to be charged so that the bristles are in contact with the surface of the member to be charged uniformly. Considering this, there is no known method suitable for mass production.
[0004]
The present invention is intended to solve such problems, an object of easily providing a brush band electrical location that can reduce the occurrence of brush charger white muscle specific halftone.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a brush charging device of the present invention is a brush charging device in which a conductive brush is brought into contact with a member to be charged and charged, and a hair tip of the conductive brush , a surface of the member to be charged, In the region in contact with each other, the portion to be charged in the moving direction upstream is irradiated with light so that the charged member is charged and discharged at the same time. Here, if the member to be charged is a photoconductor, for example, static elimination light is used as the static elimination means.
[0008]
[Action]
Therefore, according to the present invention, it is possible to reduce the occurrence of white streak due to charging unevenness unique to the image forming apparatus.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A shows a method of cutting the brush tips in the manufacturing process of the brush. The material of the brush bristles is a material in which carbon is dispersed in rayon or nylon, and when the fibers are sewed on a conductive base fabric, the brush surface is cut as a finishing process. . Therefore, the base fabric 2 in which the conductive fibers 1 are planted is a member 3 having substantially the same curvature as the surface of the body to be charged at the portion where the brush charger contacts the surface of the body to be charged from the surface on the base fabric side. Set to And as shown in FIG.1 (b), the conductive fiber 1 is cut by predetermined length by cutting a hair tip horizontally with the cutter 4, respectively. After that, when the brush is removed from the curvature member 3 and the base fabric is returned to the original horizontal state, the brush hair is cut to a curvature in the opposite direction to the curvature member to which it was attached as shown in FIG. . That is, it is possible to cut the brush surface having substantially the same curvature as that of the member to be charged by a very simple method. Further, since the curvature of the front end surface of the conductive fiber obtained at this time is larger than the curvature of the support member 3 by the length of the fiber, the curvature of the support member is set slightly smaller than the curvature of the charged body. Thus, a conductive fiber surface having a curvature close to that of the member to be charged can be formed.
[0010]
Further, in the brush hair cutting process in the brush manufacturing method, in many cases, the support member 3 is provided on the drum 5 made of metal or the like as shown in FIG. By attaching 2 and rotating the drum 5, the conductive fiber was cut by the cutter 4 installed outside the drum 5, and a substantially flat brush surface was obtained. However, in this method, the brush cut surface is strictly convex, and it is not possible to expect the brush tips to be in uniform contact with the surface of the object to be charged. Therefore, in the hair cutting process, as shown in FIG. 2 (b), the base fabric 2 with the fibers 1 implanted is attached to the inside of the drum 5 provided with the support members 3 on both sides, and the drum 5 is rotated. By cutting the hair ends with the cutter 4 installed inside the drum 5, the conductive fiber surface is made concave. Furthermore, here, the curvature of the conductive fiber surface can be increased by making the support member 3 for attaching the base fabric 2 onto which the fibers 1 have been flocked opposite to the drum 5, so that the surface of the object to be charged can be increased. It is possible to obtain a brush surface having substantially the same curvature. Similarly, in FIG. 2A, the same effect can be obtained by increasing the curvature of the support member 3. It goes without saying that the same effect can be obtained by rotating the gutter instead of the cylindrical drum.
[0011]
Next, a method for obtaining the same effect without cutting the conductive fiber surface into a concave shape will be described. As described above, one of the causes of white streaks in a halftone image in brush charging is greatly influenced by the contact state of the fiber tips with respect to the surface of the object to be charged. In the conventional charging brush, as shown in FIG. 3A, the surface of the conductive fiber is flat, and when it is brought into contact with the surface of the charged object having a curvature with a predetermined amount of biting. As shown in FIG. 3 (b), in the contact area between the conductive fiber 1 and the object 7 to be charged, the hair tip on the upstream side in the surface movement direction of the object to be charged is reverse hair against the rotation of the object to be charged. It will stand up. In this state, when a halftone image is produced using a reversal development type electrophotographic process, a large number of white streaks are generated, and printing is performed particularly after the brush charger is left in contact with the member to be charged. And white streaks are prominent. White stripes are mainly generated in a humid environment (RH 85%) and a low humidity environment (RH 20%). The white stripes are continuous white stripes, and the low humidity is short sharp white stripes. In order to prevent the occurrence of white stripes in a low temperature environment, it is effective to reduce the amount of brush fiber biting into the member to be charged as much as possible. A brush charger having the same curvature as the surface of the member to be charged can stabilize the biting amount to be small throughout the contact width and also increase the apparent fiber density, which is effective in reducing streaks. The white streaks are particularly noticeable in the first several tens of prints after the brush charger is brought into contact with the surface of the member to be charged. This seems to be caused by the fact that the reversely raised fibers try to fly downstream in the surface movement direction due to the rotation of the charged body, and become inconspicuous after printing several hundred sheets. Therefore, in order to eliminate the fibers with the inverted hairs in the initial state, the fibers of the fixed conductive brush are previously arranged so that the hair tips uniformly spread in the forward direction with respect to the surface movement direction of the charged body 7. The bevel was treated. As shown in FIG. 4A, the oblique hair angle is determined by the surface of the charged body 7 when the most upstream fiber contacts the surface of the charged body 7 with respect to the surface movement direction of the charged body 7. It suffices to flow downstream in the moving direction. That is, in FIG. 4A, the angle between the base fabric and the brush fiber is θ 1 , the radius of the charged body is a, the length of the brush hair is b, and the perpendicular line drawn from the center of the charged body to the brush surface When the distance between the intersection of the brush and the brush base fabric and the end of the brush to be charged upstream, that is, the so-called upstream brush flocking width, is c, a relationship such as cos θ 1 > c / (a + b) should be satisfied. That's fine. As a result, as shown in FIG. 4 (b), the brush bristles are aligned along the downstream side of the surface movement direction of the body 7 to be charged, and there are no fibers with which the hairs are reversed. In the experiment, it was confirmed that the white streaks at low humidity after standing were remarkably reduced as compared with the brush without the bevel treatment. In this oblique hair treatment method, as shown in FIG. 5A, a base fabric 2 in which conductive fibers 1 are planted between a cylindrical container 8 and a columnar member 9 having a smaller diameter than that of the cylindrical container 8 is used. This is possible by sandwiching and rotating either or both of the members. Moreover, as shown in FIG.5 (b), it is also possible by pressing the plate-shaped member 10 gradually from the upstream side which bevels to a stationary conductive brush.
[0012]
Further, as a method of eliminating the bevel treatment or cutting the curvature of the brush fiber itself, the following can be mentioned. As shown in FIG. 6 (a), the base fabric 2 in which the conductive fibers 1 are planted is formed on a support member 6 having an angle at one or more places in a direction along the curvature of the surface of the member to be charged. By attaching, according to this method, it is not necessary to cut or have a bevel treatment for the curvature that is a manufacturing problem.
[0013]
In FIG. 6A, the radius of the charged body 7 is a, the length of the brush fiber is b, and the upstream side of the brush to-be-charged body 7 in the surface movement direction from the apex of the angle θ 2 of the brush support member. The angle θ 2 is set so that the furthest end of the hair extends to the downstream side of the surface movement direction of the charged body. In other words, by defining the value of θ 2 so as to satisfy tan θ 2 <(a + b) / d, the brush tip does not stand against the surface of the body to be charged. As a result, there is no hair tip that stands in reverse on the upstream side of the brush and comes into contact with the object to be charged, and white streaks in the initial low humidity state are reduced. In addition, according to this method, as shown in FIG. 6B, the density of the biting amount of the fibers in the upstream portion of the contact area between the conductive fiber 1 and the object to be charged increases with respect to the object to be charged. Stable charging is possible with a small charge width. In addition, when such a brush charger is used in an electrophotographic apparatus, an angle is provided in advance in a part of the process cartridge as shown in FIG. 7, and the brush charger is attached together with the base cloth. It is also possible to make it easily. Even in such a method, the halftone white streaks printed after being left standing were remarkably reduced.
[0014]
Moreover, even if it uses the conventional brush and a brush support member, it is possible to reduce a white streak. First, in the conventional brush charging device as described above, it is possible to perform static elimination at the same time as charging only on the upstream side of the brush where the conductive brush first contacts the surface of the member to be charged. It has already been explained that the protruding hair on the upstream side of the brush affects the cause of white stripes. Therefore, particularly in an apparatus using an electrophotographic system, as shown in FIG. 8, the charge removal light from the charge removal lamp 12 existing in the front stage of the charging unit is intentionally irradiated to the first half of the brush, and the charge in the upstream part of the brush is discharged. End up. FIG. 8 shows an example of an electrophotographic process cartridge processed as described above. Here, since the brush fiber 1 is flocked to the base fabric 2 at a high density and is usually black, the static elimination light from the static elimination lamp 12 does not enter the inside of the brush charger and excludes the upstream side of the brush. Good charging is performed at the part. As a result, charging unevenness on the upstream side of the brush is reduced.
[0015]
Next, another method for reducing white streaks using a conventional brush charger will be described. It is an image forming device that uses a fixed brush as a charger. The brush charger is in contact with the surface of the object to be charged in advance, and after the power is turned on, the object to be charged is brushed for several minutes before using the device. The surface is moved with respect to the brush fiber, and the brush fiber is preliminarily provided with a wrinkle in a certain direction. At that time, it is more effective to apply a predetermined bias to the brush.
[0016]
In the experiment, a laser printer using a reversal development method with a resolution of 300 dpi and an indentation speed of 8 sheets / min was used. A negatively charged organic photosensitive drum is used as the member to be charged. The brush charger uses fibers in which carbon is dispersed in rayon, and the resistance value of the entire brush is about 10 5 Ω. Printed from the beginning with a new fixed brush charger in a low-humidity environment, and after half a dot area ratio of 50% after rotating the photoconductor for 12 minutes (about 100 sheets) without passing paper White stripes in a halftone image of a tone image printed and a photoconductor rotated without passing paper for 12 minutes while applying a constant voltage bias of -0.5 to -1.3 kv to the brush Indicates the state. In addition, when comparing the results of the brush charger with the curvature of the object to be charged, the brush with the oblique hair treatment, and the brush deliberately irradiating the neutralizing light on the upstream side of the brush introduced in the previous explanation, The following table.
[0017]
[Table 1]
Figure 0003667733
The brush widths are all 9 mm and the fiber length is 4 mm. The amount of biting into the photoconductor was set as shallow as possible within the range where the entire brushed brush fiber contacted the photoconductor. The diameter of the photoreceptor is 30 mmφ. According to this, when a brush attached to a member having the same curvature as the photoconductor is used, there are few white streaks, but printing is performed after rotating the photoconductor without passing about 100 sheets while energizing an ordinary brush. It can be seen that white streaks decrease almost in the same way. In addition, it can be seen that the white streak is reduced to some extent even if the brush is not energized. In other words, by bringing the surface of the photosensitive member into contact with the fixed brush and rotating it for several minutes in advance, the brush hairs are wrinkled in a certain direction, and the same effect as when oblique hair treatment is performed can be obtained. is there. With respect to the bias to be energized, a large difference was not seen when the energization process was not performed at 0.5 kv or less, but white streaks further decreased at 0.8 kv or more. Since the normally used bias is about -1.0 kv, applying a voltage of about 80% or more of the normal voltage is effective in reducing white streaks.
[0018]
For brushes that have been subjected to bevel hair processing, there are few streaks if they are within the condition of the bevel hair angle, and there are more white streaks compared to the former under conditions outside the range. The same applies to brushes attached to members with an angle, and those that fall within the range of conditions will have fewer streaks, but those outside the range will have more streaks than those within the range. However, in all cases, there were clearly fewer white streaks compared to the initial state of the brush where no measures were taken. In addition, the brush charger in which the neutralizing light was irradiated to the upstream side of the brush had fewer white streaks than the non-measured one, and the effect was seen.
[0019]
Next, there is a method of reducing white stripes in addition to uniformly bringing the brush fibers into contact with the member to be charged. In this case, in addition to the direct current, an AC bias having a voltage lower than a voltage at which the object to be charged uniformly starts converged charging is superimposed on the brush charger. This will also be described by taking the reversal development type laser printer as an example. The member to be charged is a negatively charged photosensitive drum, and charging is performed on the negative side. When the surface potential of the photosensitive member is high on the negative side, the image becomes white, and when close to the positive side, the image becomes black. Here, description will be made using the expression that the higher the negative voltage, the higher or higher the potential.
[0020]
When a DC bias is applied to the brush charger, the result is as shown in FIG. According to this, the surface potential of the photoconductor starts to suddenly increase when the brush applied voltage becomes about -500v, and rises almost linearly. When -1000v is applied to the brush charger, the photoconductor is charged to about -500v. To do. That is, the brush applied voltage when the charging of the photosensitive member starts is about −500 V, and the photosensitive member is charged only when there is such a potential difference from the brush charger, and the potential difference does not change even if the brush applied voltage changes. It is kept almost constant. This is a characteristic unique to discharge development. Further, in brush charging, a very small amount of ozone is generated from the vicinity of the charger (about 10 −3 of corona method electricity), and it is considered that charging by discharge is dominant in brush charging. The white streaks here are the parts of the brush charger where the surface potential is locally higher than other parts due to charge development that does not involve normal discharge due to defective fibers or waste hairs. I have already explained that. And the surface potential that has once become high with the DC bias alone cannot be lowered anymore.
[0021]
Next, when the DC bias is fixed to −500 V and the AC bias is gradually superimposed thereon, the surface potential of the photoconductor changes as shown in FIG. According to FIG. 10, the surface potential rises with a constant slope until the AC voltage is about 400v. The surface potential at this time is only direct current, and is substantially equal to the value when the maximum value of the voltage when alternating current is superimposed on the direct current is applied to the brush charger. The surface potential of the photoreceptor when charged only with a direct current is indicated by a dotted line. However, when the AC voltage exceeds 400 V, the slope becomes very small and gradually increases, but is in the so-called convergence range. Here, FIG. 11 shows a conceptual diagram of the brush application bias and the surface potential of the photoreceptor when the AC voltage in the convergent charging region is 600 V. According to FIG. 11, the maximum value of the brush bias is about −1340v (−500−600 × 1.4), and the photoconductor is then charged to about −800v with a difference of about 500v from the applied bias. To do. On the other hand, the minimum value of the brush bias is about + 340v (−500 + 600 × 1.4), and the photoreceptor is charged to about −150v from the same theory. That is, charging by discharging in the plus direction and minus direction is repeatedly performed over the entire area where the brush charger and the photosensitive member are in contact with each other. The final surface potential of the photoconductor is ultimately determined by the brush bias at the portion where the brush charger is finally in contact with the photoconductor. On the most downstream side where the brush charger is separated from the photoconductor, the brush fibers are not in a completely straight state along the axial direction of the photoconductor, and there are fibers that protrude from some places. That is, the surface potential is affected by the fibers and is scattered in the range of −150 to −800 v and is not uniform. Even when a halftone image is printed under such conditions, a portion with a high surface potential becomes white and a portion with a low surface potential becomes black, and a good image cannot be obtained.
[0022]
On the other hand, when the AC voltage, which is a straight line portion having a large inclination in FIG. FIG. 12 shows the case where the AC voltage 350v is superimposed on the DC voltage −550v. According to this, the maximum value of the brush bias is −1040v (−550−350 × 1.4), and the photoconductor is at this time. Charges to approximately -550. Even if -60v, which is the minimum value of the brush bias, is applied thereto, the potential difference from the photoreceptor is already about 500v, and the discharge to the positive side hardly occurs. That is, the surface potential of the photosensitive member charged when the brush bias is at the maximum value is stored as it is while the brush and the charged object are in contact with each other, and the final potential converges to about -550v. To do. That is, as in the case where only DC is applied to the brush charger, the potential of the portion charged to an appropriate surface potential is not lowered. The region where the AC voltage is less than 400 V shown in FIG. 10 is a region where the so-called AC voltage in which charging due to positive-side discharge does not occur, is less than where the photosensitive member starts converged charging. Considering the white streak portion here, the white streak is a portion where the surface potential is locally high. Therefore, when only the white streak portion is the minimum value of the brush bias, the potential difference is 500 V, and discharge starts here. The voltage will be exceeded. Then, it is discharged to the plus side, the potential is lowered, and settles when the potential difference becomes 500v. That is, only the white streak portion decreases in potential and the streak decreases. Further, even if a charge that does not depend on normal discharge is generated on the plus side and a portion having a low surface potential is generated at this time, it is restored to a normal potential when a maximum value of −1040v is applied thereafter. . In other words, if such abnormal charging does not occur on the most downstream side of the brush, charging unevenness does not occur, and white streaks as well as black streaks hardly increase.
[0023]
The results of evaluation by actually printing a halftone image using a laser printer are shown below. The environment was hot and humid, and the brush charger was tested using a new type of conventional type with various biases. The printer of the type described above was used, and the fifth image was evaluated after the brush charger was attached.
[0024]
[Table 2]
Figure 0003667733
In the case of the brush charger used in the experiment, 300 v to 400 v was appropriate as the AC bias superimposed on the DC. That is, the condition immediately before the photosensitive member starts converged charging is good. This is slightly different from the charge starting voltage of −500 V in FIG. This is because the charging start voltage of the white streak portion is also measured by being included in the surface potential. Actually, the white streak portion is shifted by about 200 V in the positive direction due to charging other than normal discharge. ing. The region immediately before the start of convergent charging is the portion immediately before the slope of the straight line changes in FIG. 10, and a large effect is seen in the reduction of white stripes in this region. In other words, by making the region other than the streak area almost the boundary potential where the potential can be lowered by the discharge, even the delicate white streak part where the potential is slightly increased can be reduced by the discharge on the plus side. This is because it can.
[0025]
Further, regarding the frequency, although it is related to the followability of the frequency of the brush, 100 to 800 Hz was an appropriate value for the brush that was tested. When the frequency of the brush is lowered to 200 Hz, the portion where the potential is increased due to the influence of defective fibers or waste hair slightly mixed in the brush becomes a halftone dot instead of a streak. The region between the halftone dot portions having a high potential becomes a normal surface potential, and as a result, the area of the white stripe portion having a high potential is reduced. Moreover, since it becomes a halftone dot, uneven charging such as streaks is difficult to catch with the naked eye. As a result, the muscle itself becomes inconspicuous. However, even if the frequency is high, the effect is not ineffective, and the white streaks are considerably reduced as compared with the case where only the DC bias is applied.
[0026]
Thus, by superimposing an appropriate AC bias on the DC bias, there is no portion having a locally high potential on the surface of the photoreceptor. That is, in addition to white streaks in a low-humidity environment, continuous white streaks generated in a humid environment can be greatly reduced.
[0027]
【The invention's effect】
According to the present invention, white streaks on a halftone image due to uneven charging unique to a fixed type conductive brush charger can be reduced.
[Brief description of the drawings]
FIGS. 1A, 1B and 1C are schematic views showing the order of brush cutting according to an embodiment of the present invention.
2A is a schematic diagram showing an example of a conventional brush cut shown for comparison, and FIG. 2B is a schematic diagram of a brush cut method according to an embodiment of the present invention.
FIGS. 3A and 3B are schematic views showing a contact state of a conventional fixed brush for comparison. FIGS.
FIGS. 4A and 4B are schematic views showing oblique hair treatment conditions applied in the embodiment. FIGS.
FIGS. 5A and 5B are schematic views of an example of the method of the bevel treatment. FIG.
FIGS. 6A and 6B are schematic views showing a state where a brush is attached to an angled member.
FIG. 7 is a front view of an embodiment in which an angled member is a part of a process cartridge.
FIG. 8 is a front view of another embodiment of a process cartridge.
FIG. 9 is a diagram showing charging characteristics of a fixed brush when a DC bias is applied.
FIG. 10 is a diagram showing charging characteristics of a fixed brush when an AC bias is superimposed on a DC bias.
FIG. 11 is a conceptual diagram in a case where AC 600V is superimposed on DC 500V.
FIG. 12 is a conceptual diagram when an AC 350V is superimposed on a DC 550V.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Brush, 2 ... Brush base cloth, 3 ... Support member, 4 ... Cutter, 5 ... Drum, 6 ... Brush support member, 7 ... To-be-charged body, 8 ... Cylindrical drum, 9 ... Cylindrical drum, 10 ... Holding plate, 11... Process cartridge, 12.

Claims (1)

導電性ブラシを被帯電体に当接させて帯電させるブラシ帯電装置において、
前記導電性ブラシの毛先と前記被帯電体の表面とが接触している領域のうち、被帯電体移動方向上流側の部分に光を照射して、前記被帯電体の帯電と除電を同時に行うようにしたことを特徴とするブラシ帯電装置。
In a brush charging device that charges a conductive brush by contacting the object to be charged,
In the region where the tip of the conductive brush is in contact with the surface of the object to be charged, light is applied to the upstream side in the moving direction of the object to be charged to simultaneously charge and charge the object to be charged. A brush charging device characterized in that the brush charging device is provided.
JP2003002436A 2003-01-08 2003-01-08 Brush charging device Expired - Fee Related JP3667733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002436A JP3667733B2 (en) 2003-01-08 2003-01-08 Brush charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002436A JP3667733B2 (en) 2003-01-08 2003-01-08 Brush charging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002019105A Division JP3399933B2 (en) 2002-01-28 2002-01-28 Brush charging device

Publications (2)

Publication Number Publication Date
JP2003223040A JP2003223040A (en) 2003-08-08
JP3667733B2 true JP3667733B2 (en) 2005-07-06

Family

ID=27751543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002436A Expired - Fee Related JP3667733B2 (en) 2003-01-08 2003-01-08 Brush charging device

Country Status (1)

Country Link
JP (1) JP3667733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147983A (en) * 2005-11-28 2007-06-14 Kyocera Mita Corp Image forming apparatus and method
JP4868834B2 (en) * 2005-11-28 2012-02-01 京セラミタ株式会社 Image forming apparatus and image forming method

Also Published As

Publication number Publication date
JP2003223040A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
EP0594140B1 (en) Charging method for an electrophotographic apparatus
JP4955991B2 (en) Image forming apparatus
US7257362B2 (en) Photoreceptor abrader for LCM
US7224929B2 (en) AC biased conductive brush for eliminating VOC induced LCM
JP3667733B2 (en) Brush charging device
JP3290743B2 (en) Manufacturing method of charged brush
JPH05107875A (en) Recorder
JP3399933B2 (en) Brush charging device
JP2002169358A (en) Contact electrifying device
JP3748764B2 (en) Charging device and image forming apparatus
US7215908B2 (en) Non-contact bias charge roll biased with burst modulation waveform
JPH0611947A (en) Charging device
JPH08272270A (en) Image forming device
JP3579359B2 (en) Method for manufacturing contact charging member
JPH05150564A (en) Contact electrification method and device therefor
JP4868834B2 (en) Image forming apparatus and image forming method
JP4226201B2 (en) Charging device and image forming apparatus having the same
JPS58147757A (en) Electrophotographing method
JPH07281503A (en) Brush type electrostatic charger
JP2002023467A (en) Image forming device
JPH0922162A (en) Electrophotographic device
JPH07301971A (en) Method and device for electrostatically charging photoreceptor
JP3701953B2 (en) Image forming apparatus
JPH07199601A (en) Manufacture of contact electrifying device
JPH0954479A (en) Electrifying device and image forming device provided it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees