JP3666703B2 - Liquid conductivity sensor and adapter for conductivity sensor - Google Patents

Liquid conductivity sensor and adapter for conductivity sensor Download PDF

Info

Publication number
JP3666703B2
JP3666703B2 JP31047796A JP31047796A JP3666703B2 JP 3666703 B2 JP3666703 B2 JP 3666703B2 JP 31047796 A JP31047796 A JP 31047796A JP 31047796 A JP31047796 A JP 31047796A JP 3666703 B2 JP3666703 B2 JP 3666703B2
Authority
JP
Japan
Prior art keywords
liquid
adapter
coil
measured
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31047796A
Other languages
Japanese (ja)
Other versions
JPH10153564A (en
Inventor
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP31047796A priority Critical patent/JP3666703B2/en
Publication of JPH10153564A publication Critical patent/JPH10153564A/en
Application granted granted Critical
Publication of JP3666703B2 publication Critical patent/JP3666703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体を対象とした電磁誘導式導電率計に使用される導電率測定センサ、及び、このセンサに用いられる導電率測定センサ用アダプタに関する。
【0002】
【従来の技術】
液体を対象とする導電率計として、励磁用コイルに交流電圧を印加し、被測定液を抵抗として含む電流経路に流れる電流を検出用コイルにより検出して被測定液の導電率を測定する電磁誘導式導電率計が知られている。
この電磁誘導式導電率計において、純水や超純水のように低導電率を測定するために検出感度を上げるには、印加する交流電圧を大きくする、励磁用コイルまたは検出用コイルの巻数を調整する等の方法が考えられる。
【0003】
【発明が解決しようとする課題】
しかるに、電磁誘導式導電率計では、コアへの機械的衝撃による微少な磁束変化や周囲温度変化に伴う透磁率の変化がノイズとして現れ、導電率の検出精度に限界を与える。
これらの理由によって電磁誘導式導電率計の感度を高くするのは一般に困難であり、低導電率を測定するとしても0〜50〔μS/cm〕程度がその測定範囲の限界であった。
【0004】
一方、複数の電極間に交流電圧を直接、印加して電極間の被測定液を流れる電流を検出する直接印加式導電率計は、電磁誘導式のような磁気回路に起因する問題がないことから、比較的高感度で低導電率の測定が可能である。
しかしながら、この直接印加式導電率計では、電磁誘導式と異なり被検液の分極作用の影響を受けるので、高導電率の測定には適さなかった。
従って、広い範囲の導電率を測定する場合、原理の異なる二つの導電率計が必要であった。
【0005】
そこで本発明は、広い測定範囲であっても一つのセンサによって正確に測定可能な電磁誘導式の液体の導電率測定センサと、このセンサに使用される導電率測定センサ用アダプタを提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載した液体の導電率測定センサは、励磁用コイルに交流電圧を印加して発生させた交流電界により被測定液を抵抗として含む電流経路に流れる誘導電流を、検出用コイルにより検出して被測定液の導電率を測定する液体の導電率計において、
前記励磁用コイル及び検出用コイルを同軸上に内蔵した円筒状のコイル収納部を有するセンサ本体と、
前記センサ本体に装着され、かつ、コイル収納部の外径よりも大きい内径を有するほぼ有底円筒状のアダプタ本体と、
前記コイル収納部を挟み込むように前記アダプタ本体と共に取り付けられる蓋板と、
を備え、
前記アダプタ本体及び前記蓋板を導電性材料により構成し、
前記蓋板の外周面及びコイル収納部の外周面と前記アダプタ本体の周壁の内周面との間にスリットを形成すると共に、
前記アダプタ本体、蓋板、及び前記スリット内の被測定液が、前記交流電界による誘導電流の経路に存在するものである。
【0007】
請求項2記載の導電率測定センサ用アダプタは、前記励磁用コイル及び検出用コイルを同軸上に内蔵した円筒状のコイル収納部を有するセンサ本体に装着され、かつ、コイル収納部の外径よりも大きい内径を有するほぼ有底円筒状のアダプタ本体と、
前記コイル収納部を挟み込むように前記アダプタ本体と共に取り付けられる蓋板と、
を備え、
前記アダプタ本体及び前記蓋板を導電性材料により構成し、
前記蓋板の外周面及びコイル収納部の外周面と前記アダプタ本体の周壁の内周面との間にスリットを形成し、
前記アダプタ本体及び蓋板が、前記スリット内の被測定液と共に前記交流電界による誘導電流の経路に存在するものである。
【0008】
【発明の実施の形態】
以下、図に沿って本発明の実施形態例を説明する。
まず、図1は実施形態例を示す分解斜視図、図2は縦断面図である。これらの図において、50はセンサ本体であり、励磁用コイル54及び検出用コイル55(図2参照)を同軸上に内蔵した円筒状のコイル収納部52と、各コイル54,55の引出線を収納した棒状の支持部51とを備えている。なお、53は通孔である。
【0009】
また、10は上記コイル収納部52の外径よりも大きい内径を有するほぼ有底円筒状のアダプタ本体であり、円形の底板11と、周壁12と、底板11の中心部に立設されたボス14とを備えている。前記周壁12には、複数の水抜き孔13が形成されている。
【0010】
30はコイル収納部52と外径がほぼ等しい円板状の蓋板であり、その中心を貫通する通孔の周囲にはOリング受け31が凹設されている。なお、図示されていないが、蓋板30の内面(コイル収納部52側の表面)、アダプタ本体10の底板11の内面にも同様にOリング受けが凹設されている。
ここで、アダプタ本体10及び蓋板30は、金属やグラッシーカーボン等の導電性材料から構成されている。
【0011】
これらを組み立てるには、Oリング21をアダプタ本体10の底板11のOリング受けに配置すると共にOリング22を蓋板30のOリング受けに配置し、センサ本体50のコイル収納部52を左右から挟み込むようにしてアダプタ本体10及び蓋板30を取り付け、Oリング23を介し止めねじ40をアダプタ本体10のボス14にねじ込んで全体を一体的に形成する。
図2はこうして組み立てた導電率測定センサの全体構造を示しており、蓋板30の外周面及びコイル収納部52の外周面とアダプタ本体10の周壁12の内周面との間には、適宜な間隔を有するスリット60が形成される。
なお、水抜き孔13は、スリット60内に入り込んだ被測定液Wの流通を良くして不純物等の滞留を防ぐためのものである。
【0012】
図3は、図2の主要部を拡大したものであり、上記スリット60の作用を説明するための図である。なお、図では実施形態例の導電率測定センサを被測定液Wに浸漬した状態を示している。
【0013】
いま、励磁用コイル54に交流電圧を印加すると、導電性材料からなる蓋板30、ボス14、底板11、周壁12、及び、スリット60内の被測定液Wを経由する経路D内の、スリット60の両側に交流電界が出現し、上記経路Dに沿って交流電流が流れる。ここで、経路Dは、励磁用コイル54、検出用コイル55の全周にわたって無数に存在するが、便宜上、図3では一つの経路Dを平面的に表示してある。
【0014】
この経路Dは検出用コイル55に鎖交しているので、検出用コイル55の両端からは上記交流電流に比例した電圧が検出される。この電圧は、スリット60内に存在する被測定液Wの導電率に比例した値となるから、検出用コイル55の両端電圧を測定すれば被測定液Wの導電率を求めることができる。
【0015】
仮に、アダプタ本体10(ボス14、底板11、周壁12)及び蓋板30からなる導電率測定センサ用アダプタを使用せず、センサ本体50のみを直接、被測定液Wに浸漬した場合を考えると、上記経路Dはすべて被測定液Wによって構成され、励磁用コイル54によって形成された交流電界が経路Dの全長に作用することになる。
すなわち、図3の実施形態例では、電磁誘導により発生した交流電界がスリット60の間隔dのみに加わり、アダプタを使用せずにセンサ本体50のみを用いる場合には同一の電界が経路Dの全長に加わる。
【0016】
このため、被測定液Wが同一である場合、図2、図3のようにセンサ本体50にアダプタを装着した方が被測定液Wを流れる交流電流が大きくなり、検出用コイル55から取り出される交流電圧も大きくなる。
言い換えれば、被測定液Wの同一の導電率に対して検出用コイル55の出力電圧を大きくして感度を上げることができるため、従来では測定不可能であった低導電率に対しても測定可能となる。
【0017】
アダプタを装着することによる検出用コイル55の出力電圧比は、経路Dと間隔dとの距離の比に従うので、スリット60の間隔dを短くするほど導電率の測定感度は高くなって低導電率の測定が可能になる。
同時に、スリット60の両側の対向面(図3にハッチングで示した面)の面積が大きいほど導電率の測定感度は高くなり、測定範囲がより低導電率側に移動する。
【0018】
一般に、電磁誘導式導電率計では、センサ本体50の通孔53の軸方向長さLと通孔53の断面積Sとの比(L/S)に比例する値をセル定数とし、このセル定数によってセンサの検出感度を表す場合が多い(セル定数が小さいほど検出感度が高い)。
本実施形態例では、前述したスリット60の間隔dとハッチングを付した対向面の面積との比から上記セル定数を求めることができ、例えば、センサ本体50のみからなる従来の導電率測定センサに比べて、セル定数を1/100程度にまで小さくすることができる。
このため、本実施形態例によれば、従来、電磁誘導式では不可能とされてきた1〔μS/cm〕以下の導電率を有する純水、超純水などの導電率も測定可能となる。
【0019】
この実施形態例において、上記スリットの60の間隔dや対向面の面積を変化させればセル定数を変化させることができる。
従って、アダプタ本体10や蓋板30の形状、大きさ等を変えることにより、あるいは、蓋板30を使用せずにアダプタ本体10のみを装着した場合と、蓋板30及びアダプタ本体10の両方を装着した場合とにより、セル定数を段階的に変更して検出感度を変えることができる。
【0020】
【発明の効果】
以上のように請求項1記載の導電率測定センサを用いれば、センサ本体とアダプタとの組み合わせによって広範囲の導電率測定が可能になり、電磁誘導式であっても低導電率の測定を行うことができる。
また、請求項2記載の導電率測定センサ用アダプタによれば、既に市販されているセンサ(センサ本体)に装着することで測定感度の向上、測定範囲の変更が可能になる。
更に、センサ本体及びアダプタともに極めて簡単な構造であるから、安価に提供できる利点もある。
【図面の簡単な説明】
【図1】請求項1,請求項2に記載した発明の実施形態例を示す分解斜視図である。
【図2】請求項1,請求項2に記載した発明の実施形態例を示す縦断面図である。
【図3】図2の主要部を拡大した図である。
【符号の説明】
10 アダプタ本体
11 底板
12 周壁
13 水抜き孔
14 ボス
21,22,23 Oリング
30 蓋板
31 Oリング受け
40 止めねじ
50 センサ本体
51 支持部
52 コイル収納部
53 通孔
54 励磁用コイル
55 検出用コイル
60 スリット
W 被測定液
D 経路
d 間隔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductivity measuring sensor used in an electromagnetic induction type conductivity meter for a liquid and an adapter for a conductivity measuring sensor used in this sensor.
[0002]
[Prior art]
As a conductivity meter for liquids, an electromagnetic wave that measures the conductivity of the liquid to be measured by applying an AC voltage to the excitation coil and detecting the current flowing through the current path including the liquid to be measured as a resistance by the detection coil. Inductive conductivity meters are known.
In this electromagnetic induction type conductivity meter, in order to increase the detection sensitivity in order to measure low conductivity like pure water or ultrapure water, the number of turns of the excitation coil or detection coil that increases the applied AC voltage is increased. A method such as adjusting the value can be considered.
[0003]
[Problems to be solved by the invention]
However, in the electromagnetic induction type conductivity meter, a slight change in magnetic flux due to a mechanical shock to the core and a change in permeability due to a change in ambient temperature appear as noise, which limits the detection accuracy of the conductivity.
For these reasons, it is generally difficult to increase the sensitivity of the electromagnetic induction type conductivity meter, and even if low conductivity is measured, the range of the measurement range is about 0 to 50 [μS / cm].
[0004]
On the other hand, a direct application type conductivity meter that directly applies an AC voltage between a plurality of electrodes and detects a current flowing through the liquid to be measured between the electrodes has no problem caused by a magnetic circuit such as an electromagnetic induction type. Therefore, measurement with relatively high sensitivity and low conductivity is possible.
However, this direct application type conductivity meter is not suitable for measurement of high conductivity because it is influenced by the polarization action of the test solution, unlike the electromagnetic induction type.
Therefore, when measuring a wide range of conductivity, two conductivity meters having different principles are required.
[0005]
Therefore, the present invention intends to provide an electromagnetic induction liquid conductivity measurement sensor that can be accurately measured by a single sensor even in a wide measurement range, and an adapter for the conductivity measurement sensor used in this sensor. Is.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the liquid conductivity measuring sensor according to claim 1 is an induced current flowing in a current path including a liquid to be measured as a resistance by an AC electric field generated by applying an AC voltage to an exciting coil. In a liquid conductivity meter that detects the conductivity of the liquid to be measured by detecting it with a detection coil,
A sensor main body having a cylindrical coil housing portion in which the excitation coil and the detection coil are coaxially incorporated;
A substantially bottomed cylindrical adapter body mounted on the sensor body and having an inner diameter larger than the outer diameter of the coil housing;
A lid plate attached together with the adapter main body so as to sandwich the coil storage portion;
With
The adapter body and the lid plate are made of a conductive material,
While forming a slit between the outer peripheral surface of the lid plate and the outer peripheral surface of the coil housing portion and the inner peripheral surface of the peripheral wall of the adapter body,
The adapter main body, the cover plate, and the liquid to be measured in the slit are present in the path of the induced current due to the AC electric field .
[0007]
The adapter for a conductivity measuring sensor according to claim 2 is attached to a sensor body having a cylindrical coil housing portion in which the excitation coil and the detection coil are coaxially incorporated, and from an outer diameter of the coil housing portion. A substantially bottomed cylindrical adapter body having a large inner diameter,
A lid plate attached together with the adapter main body so as to sandwich the coil storage portion;
With
The adapter body and the lid plate are made of a conductive material,
Forming a slit between the outer peripheral surface of the lid plate and the outer peripheral surface of the coil housing portion and the inner peripheral surface of the peripheral wall of the adapter body;
The adapter main body and the cover plate are present in the path of the induced current by the AC electric field together with the liquid to be measured in the slit .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, FIG. 1 is an exploded perspective view showing an embodiment, and FIG. 2 is a longitudinal sectional view. In these drawings, reference numeral 50 denotes a sensor main body, and a cylindrical coil storage portion 52 having an exciting coil 54 and a detection coil 55 (see FIG. 2) built on the same axis, and lead lines of the coils 54 and 55 are shown. And a rod-like support portion 51 housed therein. Reference numeral 53 denotes a through hole.
[0009]
Reference numeral 10 denotes a substantially bottomed cylindrical adapter body having an inner diameter larger than the outer diameter of the coil housing portion 52, and includes a circular bottom plate 11, a peripheral wall 12, and a boss provided upright at the center of the bottom plate 11. 14. A plurality of drain holes 13 are formed in the peripheral wall 12.
[0010]
Reference numeral 30 denotes a disc-shaped cover plate having an outer diameter substantially equal to that of the coil storage portion 52, and an O-ring receiver 31 is recessed around a through hole penetrating the center. Although not shown, an O-ring receiver is similarly recessed on the inner surface of the cover plate 30 (the surface on the coil housing portion 52 side) and the inner surface of the bottom plate 11 of the adapter body 10.
Here, the adapter main body 10 and the cover plate 30 are made of a conductive material such as metal or glassy carbon.
[0011]
In order to assemble them, the O-ring 21 is disposed on the O-ring receiver of the bottom plate 11 of the adapter main body 10 and the O-ring 22 is disposed on the O-ring receiver of the cover plate 30, and the coil storage portion 52 of the sensor main body 50 is viewed from the left and right. The adapter main body 10 and the cover plate 30 are attached so as to be sandwiched, and the set screw 40 is screwed into the boss 14 of the adapter main body 10 via the O-ring 23 so as to be integrally formed as a whole.
FIG. 2 shows the overall structure of the conductivity measuring sensor assembled in this manner. The gap between the outer peripheral surface of the cover plate 30 and the outer peripheral surface of the coil storage portion 52 and the inner peripheral surface of the peripheral wall 12 of the adapter main body 10 is appropriately selected. Slits 60 having a wide interval are formed.
The drain hole 13 is for improving the flow of the liquid W to be measured that has entered the slit 60 and preventing the retention of impurities and the like.
[0012]
FIG. 3 is an enlarged view of the main part of FIG. 2, and is a diagram for explaining the operation of the slit 60. In addition, the figure has shown the state which immersed the to-be-measured liquid W in the conductivity measuring sensor of the embodiment.
[0013]
Now, when an AC voltage is applied to the exciting coil 54, the slit 30 in the path D passing through the measured liquid W in the lid plate 30, the boss 14, the bottom plate 11, the peripheral wall 12, and the slit 60 made of a conductive material. An alternating electric field appears on both sides of 60, and an alternating current flows along the path D. Here, the path D exists innumerably over the entire circumference of the excitation coil 54 and the detection coil 55, but for convenience, one path D is planarly displayed in FIG. 3.
[0014]
Since this path D is linked to the detection coil 55, a voltage proportional to the alternating current is detected from both ends of the detection coil 55. Since this voltage has a value proportional to the conductivity of the liquid W to be measured existing in the slit 60, the conductivity of the liquid W to be measured can be obtained by measuring the voltage across the detection coil 55.
[0015]
Suppose that the conductivity measuring sensor adapter comprising the adapter main body 10 (the boss 14, the bottom plate 11, the peripheral wall 12) and the cover plate 30 is not used, and only the sensor main body 50 is directly immersed in the liquid W to be measured. The path D is entirely composed of the liquid W to be measured, and the AC electric field formed by the exciting coil 54 acts on the entire length of the path D.
That is, in the embodiment shown in FIG. 3, an AC electric field generated by electromagnetic induction is applied only to the interval d of the slit 60, and when only the sensor body 50 is used without using an adapter, the same electric field is applied to the entire length of the path D. To join.
[0016]
Therefore, when the measured liquid W is the same, the AC current flowing through the measured liquid W becomes larger when the adapter is attached to the sensor body 50 as shown in FIGS. AC voltage also increases.
In other words, since the sensitivity can be increased by increasing the output voltage of the detection coil 55 for the same conductivity of the liquid W to be measured, measurement is also performed for a low conductivity that could not be measured conventionally. It becomes possible.
[0017]
Since the output voltage ratio of the detection coil 55 by attaching the adapter follows the ratio of the distance between the path D and the distance d, the shorter the distance d between the slits 60, the higher the measurement sensitivity of the conductivity and the lower the conductivity. Can be measured.
At the same time, the greater the area of the opposing surfaces on both sides of the slit 60 (the surface indicated by hatching in FIG. 3), the higher the measurement sensitivity of the conductivity, and the measurement range moves to the lower conductivity side.
[0018]
In general, in an electromagnetic induction type conductivity meter, a value proportional to the ratio (L / S) between the axial length L of the through hole 53 of the sensor body 50 and the sectional area S of the through hole 53 is defined as a cell constant. In many cases, the detection sensitivity of the sensor is represented by a constant (the smaller the cell constant, the higher the detection sensitivity).
In this embodiment, the cell constant can be obtained from the ratio between the gap d of the slit 60 described above and the area of the opposite surface to which hatching is applied. For example, the conventional conductivity measuring sensor including only the sensor main body 50 is used. In comparison, the cell constant can be reduced to about 1/100.
For this reason, according to the present embodiment example, it is possible to measure the conductivity of pure water, ultrapure water or the like having a conductivity of 1 [μS / cm] or less, which has conventionally been impossible with the electromagnetic induction method. .
[0019]
In this embodiment, the cell constant can be changed by changing the distance d between the slits 60 and the area of the facing surface.
Therefore, by changing the shape and size of the adapter body 10 and the cover plate 30 or when only the adapter body 10 is mounted without using the cover plate 30, both the cover plate 30 and the adapter body 10 are mounted. Depending on the case of mounting, the detection sensitivity can be changed by changing the cell constant stepwise.
[0020]
【The invention's effect】
As described above, if the conductivity measuring sensor according to claim 1 is used, a wide range of conductivity can be measured by the combination of the sensor main body and the adapter, and low conductivity measurement can be performed even with an electromagnetic induction type. Can do.
Further, according to the adapter for a conductivity measuring sensor according to claim 2, it is possible to improve the measurement sensitivity and change the measurement range by mounting the sensor on the sensor (sensor main body) that is already on the market.
Furthermore, since both the sensor main body and the adapter have an extremely simple structure, there is an advantage that it can be provided at a low cost.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of the invention described in claims 1 and 2;
FIG. 2 is a longitudinal sectional view showing an embodiment of the invention described in claims 1 and 2;
FIG. 3 is an enlarged view of a main part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Adapter main body 11 Bottom plate 12 Perimeter wall 13 Drain hole 14 Boss 21,22,23 O ring 30 Cover plate 31 O ring receiver 40 Set screw 50 Sensor main body 51 Support part 52 Coil accommodating part 53 Through hole 54 Excitation coil 55 For detection Coil 60 Slit W Measured liquid D Path d Distance

Claims (2)

励磁用コイルに交流電圧を印加して発生させた交流電界により被測定液を抵抗として含む電流経路に流れる誘導電流を、検出用コイルにより検出して被測定液の導電率を測定する液体の導電率計において、
前記励磁用コイル及び検出用コイルを同軸上に内蔵した円筒状のコイル収納部を有するセンサ本体と、
前記センサ本体に装着され、かつ、コイル収納部の外径よりも大きい内径を有するほぼ有底円筒状のアダプタ本体と、
前記コイル収納部を挟み込むように前記アダプタ本体と共に取り付けられる蓋板と、
を備え、
前記アダプタ本体及び前記蓋板を導電性材料により構成し、
前記蓋板の外周面及びコイル収納部の外周面と前記アダプタ本体の周壁の内周面との間にスリットを形成すると共に、
前記アダプタ本体、蓋板、及び前記スリット内の被測定液が、前記交流電界による誘導電流の経路に存在することを特徴とする液体の導電率測定センサ。
Liquid conductivity is measured by detecting the induced current flowing in the current path including the liquid to be measured as a resistance by the AC electric field generated by applying an AC voltage to the exciting coil and measuring the conductivity of the liquid to be measured. In the rate meter,
A sensor main body having a cylindrical coil housing portion in which the excitation coil and the detection coil are coaxially incorporated;
A substantially bottomed cylindrical adapter body mounted on the sensor body and having an inner diameter larger than the outer diameter of the coil housing;
A lid plate attached together with the adapter main body so as to sandwich the coil storage portion;
With
The adapter body and the lid plate are made of a conductive material,
While forming a slit between the outer peripheral surface of the lid plate and the outer peripheral surface of the coil housing portion and the inner peripheral surface of the peripheral wall of the adapter body,
A liquid conductivity measurement sensor , wherein the adapter main body, the cover plate, and the liquid to be measured in the slit are present in a path of an induced current due to the AC electric field .
励磁用コイルに交流電圧を印加して発生させた交流電界により被測定液を抵抗として含む電流経路に流れる誘導電流を、検出用コイルにより検出して被測定液の導電率を測定する液体の導電率計において、
前記励磁用コイル及び検出用コイルを同軸上に内蔵した円筒状のコイル収納部を有するセンサ本体に装着され、かつ、コイル収納部の外径よりも大きい内径を有するほぼ有底円筒状のアダプタ本体と、
前記コイル収納部を挟み込むように前記アダプタ本体と共に取り付けられる蓋板と、
を備え、
前記アダプタ本体及び前記蓋板を導電性材料により構成し、
前記蓋板の外周面及びコイル収納部の外周面と前記アダプタ本体の周壁の内周面との間にスリットを形成し、
前記アダプタ本体及び蓋板が、前記スリット内の被測定液と共に前記交流電界による誘導電流の経路に存在することを特徴とする液体の導電率測定センサ用アダプタ。
Liquid conductivity is measured by detecting the induced current flowing in the current path including the liquid to be measured as a resistance by the AC electric field generated by applying an AC voltage to the exciting coil and measuring the conductivity of the liquid to be measured. In the rate meter,
A substantially bottomed cylindrical adapter body that is mounted on a sensor body having a cylindrical coil housing portion in which the excitation coil and the detection coil are coaxially incorporated and has an inner diameter larger than the outer diameter of the coil housing portion. When,
A lid plate attached together with the adapter main body so as to sandwich the coil storage portion;
With
The adapter body and the lid plate are made of a conductive material,
Forming a slit between the outer peripheral surface of the lid plate and the outer peripheral surface of the coil housing portion and the inner peripheral surface of the peripheral wall of the adapter body;
The adapter for a liquid conductivity measurement sensor according to claim 1, wherein the adapter main body and the cover plate are present in a path of an induced current by the AC electric field together with the liquid to be measured in the slit .
JP31047796A 1996-11-21 1996-11-21 Liquid conductivity sensor and adapter for conductivity sensor Expired - Fee Related JP3666703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31047796A JP3666703B2 (en) 1996-11-21 1996-11-21 Liquid conductivity sensor and adapter for conductivity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31047796A JP3666703B2 (en) 1996-11-21 1996-11-21 Liquid conductivity sensor and adapter for conductivity sensor

Publications (2)

Publication Number Publication Date
JPH10153564A JPH10153564A (en) 1998-06-09
JP3666703B2 true JP3666703B2 (en) 2005-06-29

Family

ID=18005718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31047796A Expired - Fee Related JP3666703B2 (en) 1996-11-21 1996-11-21 Liquid conductivity sensor and adapter for conductivity sensor

Country Status (1)

Country Link
JP (1) JP3666703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026036A1 (en) * 2014-08-22 2016-02-25 Rockland Scientific International Inc. Electro-magnetic induction fluid conductivity sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242085B2 (en) * 2007-06-22 2013-07-24 日置電機株式会社 measuring device
KR102124215B1 (en) 2013-02-04 2020-06-17 가부시키가이샤 호리바 어드밴스트 테크노 Conductivity meter, and method for correcting measurement, setting initial state and calibration of conductivity meter
JP6423579B2 (en) * 2013-02-04 2018-11-14 株式会社 堀場アドバンスドテクノ Conductivity meter and method for correcting the measured value

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026036A1 (en) * 2014-08-22 2016-02-25 Rockland Scientific International Inc. Electro-magnetic induction fluid conductivity sensor

Also Published As

Publication number Publication date
JPH10153564A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US6653841B1 (en) Device and method for carrying out a contactless measurement of the conductivity of a liquid situated in a flow channel
EP0293784B1 (en) Acceleration sensor
US4740755A (en) Remote conductivity sensor having transformer coupling in fluid flow path
KR0135219B1 (en) Direct current sensor
US6414493B1 (en) Toroid conductivity sensor
US6441604B1 (en) Apparatus and method for sensing electric current based on electric signal from magneto-electric conversion element
JP2004170091A (en) Current sensor
JP2003315376A (en) Current sensor
JP3666703B2 (en) Liquid conductivity sensor and adapter for conductivity sensor
JP6974898B2 (en) Current converter
US4480484A (en) Flow rate detection device
JPH083421B2 (en) Inclination detector
JP3196296B2 (en) Hydrogen gas detector
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
US5493215A (en) Apparatus for measuring the proportion of paramagnetic substances in cancelling a mixture of substances and including a compensating device for cancelling an unwanted signal
US4716769A (en) Radial field electromagnetic flow meter
ES2199811T3 (en) CURRENT SENSOR
JPS6332391A (en) Magnetic flux detector
JPH05135974A (en) Current transformer
US9021891B2 (en) Vortex flow meter having a magnetic field generating device including a first and a second excitation coil
JPH0121903B2 (en)
SU1024816A1 (en) Hydrogen indicator
SU1150544A1 (en) Device for measuring liquid flow speed gradient
US11486748B2 (en) Electromagnetic flowmeter having concentric coils
RU2149363C1 (en) Apparatus for controlling and measuring level of liquid in reservoir

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees