JP3665640B2 - Mounting method and structure of electronic components on flat cable - Google Patents

Mounting method and structure of electronic components on flat cable Download PDF

Info

Publication number
JP3665640B2
JP3665640B2 JP2003040809A JP2003040809A JP3665640B2 JP 3665640 B2 JP3665640 B2 JP 3665640B2 JP 2003040809 A JP2003040809 A JP 2003040809A JP 2003040809 A JP2003040809 A JP 2003040809A JP 3665640 B2 JP3665640 B2 JP 3665640B2
Authority
JP
Japan
Prior art keywords
flat cable
lead
lead portion
conductor
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003040809A
Other languages
Japanese (ja)
Other versions
JP2004253519A (en
Inventor
憲嗣 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003040809A priority Critical patent/JP3665640B2/en
Publication of JP2004253519A publication Critical patent/JP2004253519A/en
Application granted granted Critical
Publication of JP3665640B2 publication Critical patent/JP3665640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Connections By Means Of Piercing Elements, Nuts, Or Screws (AREA)
  • Multi-Conductor Connections (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器や自動車等の電気配線に使用されるフラットケーブルへの電子部品の実装方法及び実装構造に関するものである。
【0002】
【従来の技術】
周知のように、電子機器の配線回路体としては、実装基板やプリント配線基板が使われており、その入出力回路として従来の丸電線ハーネスに代わり、スペースファクタのよい、撚り導体を平行に並べてフラット絶縁被覆で絶縁被覆したリボン電線と呼ばれるフラットケーブルや、銅やアルミニュウムのような帯状導体よりなる例えば厚さが0.15mm〜0.2mm、幅が1.5mm〜3.0mm程度の複数のフラット導体を平行に並べてフラット絶縁被覆で絶縁被覆したフラットケーブルが用いられるようになってきている。この場合、フラット絶縁被覆は、ポリエチレンテレフタレートの如きプラスチックフィルムの被覆、或いはポリブチレンテレフタレートのようなプラスチック樹脂の押出し被覆により形成されている。
【0003】
このようなフラットケーブルと基板やプリント配線板との接続は、それぞれに設けられたコネクタを介して行われるようになっているが、最近、電子部品を直接フラットケーブルに実装して小型化を図る動きがある。
【0004】
この場合、電子部品とフラットケーブルの接続は、フラットケーブルのフラット絶縁被覆を剥離して露出させた導体と電子部品のリード部を半田付けする方法が一般的であるが、この方法はフラット絶縁被覆の剥離や導体と電子部品のリード部の半田付け等を必要とし、手間がかかるので、図6に示すように、複数のフラット導体1を平行に並設してフラット絶縁被覆2で絶縁被覆したフラットケーブル3の所要の導体1の位置にレーザーで孔4をあけ、図7に示すように、予め導電性接着剤5を付着させた電子部品6の角柱状の各リード部7を、フラットケーブル3の各孔4に通して対応するフラット導体1に接合し、リフロー炉に通して加熱する方法も提案されている(例えば、特許文献1参照。)。
【0005】
しかしながら、このような電子部品とフラットケーブルの接続方法では、フラットケーブル3や電子部品6が熱的に影響を受ける問題点がある。また、この接続方法では、フラットケーブル3に孔4をあける工程が必要となり、且つ電子部品6の各リード部7に導電性接着剤5を付着させる工程が必要となり、手間がかかる問題点がある。
【0006】
そこで、出願人は図8乃至図12に示すような電子部品とフラットケーブルの接続方法を提案した(特願2001−334936号)。
【0007】
この接続方法では、図8に示すように、フラットケーブル3のフラット導体1に対応したフラット絶縁被覆2の上に電子部品6の各リード部7を重ねて配置する。各リード部7をフラットケーブル3のフラット導体1に電気的・機械的に接続する手段として、図9に示すように、凹状把持部8の幅方向の両側に各クリンプ片9を千鳥状に突設した接続子10を用いる。
【0008】
接続に際しては、リード部7を跨いで接続子10の凹状把持部8の幅方向の両側に突設された各クリンプ片9を、図10に示すように、該リード部7の両側に圧入すると共にフラット導体1の箇所でフラットケーブル3に突き刺し貫通させ、フラットケーブル3を突き抜けた各クリンプ片9を曲成加締める。これにより、接続子10の凹状把持部8内でリード部7を把持し、各クリンプ片9をフラット導体1に貫通させて該フラット導体1に導通させて、電子部品6とフラット導体1とを導通接続する。
【0009】
このような接続作業は、図11及び図12に示す接続装置11を用いて行う。この接続装置11は、表面の受け面12aに断面円弧状のクリンプ片曲成加締め凹部13を設けた受け台12を用い、受け面12aの上にフラット導体1がクリンプ片曲成加締め凹部13に対応するように配置し、フラット導体1に対応したフラット絶縁被覆2の上に電子部品6の各リード部7を重ねて配置し、かかる状態でリード部7を跨いで接続子10の各クリンプ片9を配置し、接続子10の凹状把持部8をアンビル14によりガイド部材15で案内しながら加圧して、図11に示すように、各クリンプ片9をリード部7の両側に圧入すると共にフラット導体1の箇所でフラットケーブル3に突き刺し貫通させ、次いで図12に示すように、フラットケーブル3を突き抜けた各クリンプ片9をクリンプ片曲成加締め凹部13で円弧状に曲成して加締める。
【0010】
このような接続方法によれば、フラットケーブル3や電子部品6が熱的に影響を受けない利点がある。また、この接続方法では、フラットケーブル3に孔4をあける工程が不要となり、且つ電子部品6の各リード部7に導電性接着剤5を付着させる工程も不要となり、手間がかからない利点がある。
【0011】
【発明が解決しようとする課題】
しかしながら、図8乃至図12に示すような電子部品とフラットケーブルの接続方法では、接続子10の凹状把持部8とリード部7との電気的接続状態が不十分となり易い問題点があった。
【0012】
本発明の目的は、接続子の凹状把持部と電子部品のリード部との電気的接続状態が十分に得られるフラットケーブルへの電子部品の実装方法及び実装構造を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、導体がフラット絶縁被覆で被覆されたフラットケーブルの導体の上のフラット絶縁被覆の表面に電子部品のリード部を重ね、該リード部を跨いで接続子の凹状把持部の幅方向の両側に突設された各クリンプ片をリード部の両側に圧入すると共に導体の箇所でフラットケーブルに突き刺し貫通させ、フラットケーブルを突き抜けた各クリンプ片を曲成加締めることにより、接続子の凹状把持部内でリード部を把持し、各クリンプ片を導体に導通させて、電子部品と導体とを導通接続するフラットケーブルへの電子部品の実装方法を対象とする。
【0014】
本発明に係るフラットケーブルへの電子部品の実装方法では、各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子を用いて、凹状把持部でリード部を圧着把持することを特徴とする。
【0015】
このように各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子を用いて、凹状把持部でリード部を圧着把持すると、凹状把持部にリード部が密着嵌合されて、凹状把持部に対するリード部の接続が確実に行え、接続子の凹状把持部と電子部品のリード部との電気的接続状態を十分に得ることができる。
【0016】
この場合、リード部の最大幅寸法から凹状把持部の溝幅を差し引いたラップ代が0.05mm以上で、リード部が凹状把持部に圧入困難になる直前のラップ代値以下の範囲になっている接続子を用いて接続を行うことが好ましい。このようにすると、確実な再現性をもって接続子の凹状把持部と電子部品のリード部との電気的接続を行うことができる。ラップ代が0.05mmより小さくなると、これは接続子の凹状把持部の溝幅が大きくなることを意味し、リード部との接触不良が発生する率が多くなり、好ましくない。ラップ代がリード部が凹状把持部に圧入困難になる直前のラップ代値より大きくなると、これは接続子の凹状把持部の溝幅が小さくなることを意味し、リード部が凹状把持部に圧入困難になり好ましくない。
【0017】
また本発明は、導体がフラット絶縁被覆で被覆されたフラットケーブルの導体の上のフラット絶縁被覆の表面に電子部品のリード部が重ねられ、該リード部を跨いで接続子の凹状把持部の幅方向の両側に突設された各クリンプ片がリード部の両側に圧入されると共に導体の箇所でフラットケーブルに突き刺されて貫通状態となり、フラットケーブルを突き抜けた各クリンプ片が曲成加締められ、接続子の凹状把持部内でリード部が把持され、各クリンプ片が導体に導通されて、電子部品と導体とが導通接続されているフラットケーブルへの電子部品の実装構造を対象とする。
【0018】
本発明に係るフラットケーブルへの電子部品の実装構造では、各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子が用いられて、凹状把持部でリード部が圧着把持されていることを特徴とする。
【0019】
このように各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子を用いて、凹状把持部でリード部が圧着把持されていると、凹状把持部にリード部が密着嵌合されて、凹状把持部に対するリード部の接続を確実に行え、接続子の凹状把持部と電子部品のリード部との電気的接続状態を十分に得ることができる。
【0020】
この場合、凹状把持部で把持されたリード部の側面が擦削されていることが好ましい。このようになっていると、所謂ワイピング効果によりリード部の新生面が凹状把持部で把持されて、接触抵抗の少ない良好な電気的導通状態を得ることができる。
【0021】
【発明の実施の形態】
図1及び図2は本発明に係るフラットケーブルへの電子部品の実装方法及び実装構造の実施の形態の第1例を示したもので、図1は本例の接続子と電子部品のリード部の関係を示す縦断面図、図2はフラットケーブルへの電子部品の実装構造の要部横断面図である。なお、前述した図8乃至図12と対応する部分には、同一符号を付けて示している。
【0022】
本例のフラットケーブルへの電子部品の実装方法では、図1に示すように、接続子10として、各クリンプ片9が跨ぐ角柱状のリード部7の最大幅寸法よりも溝幅が狭い凹状把持部8を持つ接続子10を用いる。この場合、図1に示すように、リード部7の最大幅寸法W1 から凹状把持部8の溝幅W2 を差し引いたラップ代(W1 −W2 )は、銅系のリード部7及び凹状把持部8の場合、0.05mm以上で、リード部7が凹状把持部8に圧入困難になる直前のラップ代値以下の範囲になっている接続子10を用いる。凹状把持部8の両側のクリンプ片9の先端側の間隔は、リード部7を入れ易いように凹状把持部8の溝幅W2 よりテーパ状に若干広げられている。
【0023】
そして、図1に示すように、フラット導体1に対応したフラット絶縁被覆2の上に電子部品6のリード部7を重ねて配置し、かかる状態でリード部7を跨いで接続子10の各クリンプ片9を配置し、前述した図11及び図12と同様に、接続子10の凹状把持部8をアンビル14によりガイド部材15で案内しながら加圧して、図2に示すように、各クリンプ片9をリード部7の両側に圧入すると共にフラット導体1の箇所でフラットケーブル3に突き刺し貫通させ、次いでフラットケーブル3を突き抜けた各クリンプ片9を前述したクリンプ片曲成加締め凹部13で円弧状に曲成加締める。
【0024】
このように各クリンプ片9が跨ぐリード部7の最大幅寸法W1 よりも溝幅W2 が狭い凹状把持部8を持つ接続子10を用いて、凹状把持部8でリード部7を圧着把持すると、凹状把持部8にリード部7が密着嵌合されて、凹状把持部8に対するリード部7の接続が確実に行え、接続子10の凹状把持部8と電子部品6のリード部7との電気的接続状態を十分に得ることができる。
【0025】
そして、リード部7の最大幅寸法W1 から凹状把持部8の溝幅W2 を差し引いたラップ代(W1 −W2 )が0.05mm以上で、リード部7が凹状把持部8に圧入困難になる直前のラップ代値以下の範囲になっている接続子10を用いて接続を行うと、確実な再現性をもって接続子10の凹状把持部8と電子部品6のリード部7との電気的接続を行うことができる。ラップ代が0.05mmより小さくなると、これは接続子10の凹状把持部8の溝幅が大きくなることを意味し、リード部7との接触不良が発生する率が多くなり、好ましくない。ラップ代がリード部7が凹状把持部8に圧入困難になる直前のラップ代値より大きくなると、これは接続子10の凹状把持部8の溝幅が小さくなることを意味し、リード部7が凹状把持部8に圧入困難になり好ましくない。銅系のリード部7及び凹状把持部8の場合、ラップ代は、0.05mm以上で、リード部7が凹状把持部8に圧入困難になる直前のラップ代値以下、即ち0.30mm以下(好ましくは、0.10mm以上で、0.20mm以下)の範囲が好ましい。
【0026】
本例のフラットケーブルへの電子部品の実装構造では、フラットケーブル3のフラット導体1の上のフラット絶縁被覆2の表面に電子部品6のリード部7が重ねられ、該リード部7を跨いで接続子10の凹状把持部8の幅方向の両側に突設された各クリンプ片9がリード部7の両側に圧入されると共にフラット導体1の箇所でフラットケーブル3に突き刺されて貫通状態となり、フラットケーブル3を突き抜けた各クリンプ片9が曲成加締められ、接続子10の凹状把持部8内でリード部7が把持され、各クリンプ片9がフラット導体1に導通されて、電子部品6とフラット導体1とが導通接続されている点は、前述した図8ないし図12と同様である。
【0027】
本例のフラットケーブルへの電子部品の実装構造では、各クリンプ片9が跨ぐリード部7の最大幅寸法W1 よりも溝幅W2 が狭い凹状把持部8を持つ接続子10が用いられている。そして、接続子10は、リード部7の最大幅寸法W1 から凹状把持部8の溝幅W2 を差し引いたラップ代(W1 −W2 )が、0.05mm以上で、リード部7が凹状把持部8に圧入困難になる直前のラップ代値以下の範囲になっている。このような凹状把持部8でリード部7が圧着把持されている。
【0028】
凹状把持部8で把持されたリード部7の側面7aは擦削されている。
【0029】
このように各クリンプ片9が跨ぐリード部7の最大幅寸法W1 よりも溝幅W2 が狭い凹状把持部8を持つ接続子10を用いて、凹状把持部8でリード部7が圧着把持されていると、凹状把持部8にリード部7が密着嵌合されて、凹状把持部8に対するリード部7の接続を確実に行え、接続子10の凹状把持部8と電子部品6のリード部7との電気的接続状態を十分に得ることができる。
【0030】
この場合、凹状把持部8で把持されたリード部7の側面が擦削されていると、即ちお互いの強い擦れ合いによる所謂ワイピング効果により酸化皮膜が除去されて、リード部7の新生面が凹状把持部8で強く圧着されて、接触抵抗の少ない良好な電気的導通状態を得ることができる。
【0031】
この場合、凹状把持部8の幅方向の両側のクリンプ片9は、曲成加締め時に互いにぶつかり合わないように千鳥配置が好ましい。
【0032】
図3は、本発明によるラップ代を変化させて実際に接続したサンプルの初期接触抵抗と高温放置後の接触抵抗の変化を測定した結果である。この図で、○が初期抵抗値のバラツキ、×が高温放置後の接触抵抗のバラツキの変化を表している。この図から明らかなように、ラップ代がない(即ち、0)接続サンプルでは高温放置後に接触抵抗が増大し、バラツキが大きくなってしまうが、ラップ代が0.05mm以上では高温放置後の接触抵抗の値が安定している。ラップ代があまり大きくなると、リード部7が凹状把持部8に圧入できなくなってしまうので、ラップ代の最大値はリード部7が凹状把持部8に圧入困難になる直前のラップ代値以下である。本例の場合のラップ代は、0.05mm以上で、0.30mm以下(好ましくは、0.10mm以上、0.20mm以下)の範囲が好ましいことがわかった。
【0033】
一方、接続子10の凹状把持部8によって圧着接続されたリード部7が、外部からの力によって凹状把持部8から容易に抜けないような保持力を維持していることが必要で、その保持力はリード部7が引っ張られたときに破断するリード部7の引っ張り強度の略80%程度を設計目標としている。
【0034】
図4は、本発明によるラップ代を変化させて実際に接続したサンプルのリード部7の保持力を測定した結果である。この結果から明らかなように、ラップ代がない(即ち、0)接続サンプルでは、保持力が極端に不足し、ラップ代が0.05mm以上で略設計目標であるリード部7の保持力が得られていることが判る。
【0035】
以上の実際に必要な電気的、機械的測定結果から、リード部7のラップ代は、0.05mm以上で、リード部7が凹状把持部8に圧入困難になる直前のラップ代値以下の範囲になっている必要があることが判る。
【0036】
なお、この試験に使用したフラットケーブル3は、フラット導体1が銅製で、幅が2.5mm、厚さが0.15mmのもの、リード部7が電子部品6としてのホール素子に取付けられた半田メッキ銅ニッケル製で角型(あるいは丸型)のもので、最大幅寸法W1 が0.50mmのものを使用し、接続子10としては黄銅製で、凹状把持部8の板厚が0.25mmで、凹状把持部8の溝幅W2 を変化させて所要のラップ代としたものを用いた。
【0037】
図5は本発明に係るフラットケーブルへの電子部品の実装方法及び実装構造の実施の形態の第2例での、接続子と電子部品のリード部の関係を示す縦断面図である。なお、前述した図1と対応する部分には、同一符号を付けて示している。
【0038】
この例では、電子部品6のリード部6として断面丸型のものが使用されている。その他の構成は、実施の形態の第1例と同様である。
【0039】
このように断面丸型のリード部6を使用しても、実施の形態の第1例と同様の効果を得ることができる。
【0040】
また、本発明の実施の形態では、フラットケーブル3の導体がフラット導体1の場合で示したが、本発明はこれに限定されるものではなく、フラットケーブル3の導体としては断面丸型の撚線導体であってもよい。
【0041】
【発明の効果】
本発明に係るフラットケーブルへの電子部品の実装方法では、各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子を用いて、凹状把持部でリード部を圧着把持するので、凹状把持部にリード部が密着嵌合されて、凹状把持部に対するリード部の接続が確実に行え、接続子の凹状把持部と電子部品のリード部との電気的接続状態を十分に得ることができる。
【0042】
この場合、リード部の最大幅寸法から凹状把持部の溝幅を差し引いたラップ代が0.05mm以上で、リード部が凹状把持部に圧入困難になる直前の値以下の範囲になっている接続子を用いて接続を行うことが好ましい。このようにすると、確実な再現性をもって接続子の凹状把持部と電子部品のリード部との電気的接続を行うことができる。ラップ代が0.05mmより小さくなると、リード部との接触不良が発生する率が多くなり、好ましくない。ラップ代がリード部が凹状把持部に圧入困難になる直前のラップ代値より大きくなると、リード部が凹状把持部に圧入困難になり好ましくない。
【0043】
また本発明に係るフラットケーブルへの電子部品の実装構造では、各クリンプ片が跨ぐリード部の最大幅寸法よりも溝幅が狭い凹状把持部を持つ接続子が用いられて、凹状把持部でリード部が圧着把持されているので、凹状把持部にリード部が密着嵌合されて、凹状把持部に対するリード部の接続を確実に行え、接続子の凹状把持部と電子部品のリード部との電気的接続状態を十分に得ることができる。
【0044】
この場合、凹状把持部で把持されたリード部の側面が擦削されていることが好ましい。このようになっていると、所謂ワイピング効果によりリード部の新生面が凹状把持部で把持されて、接触抵抗の少ない良好な電気的導通状態を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るフラットケーブルへの電子部品の実装方法及び実装構造の実施の形態の第1例で、接続子と電子部品のリード部の関係を示す縦断面図である。
【図2】本発明に係るフラットケーブルへの電子部品の実装構造の実施の形態の第1例の要部横断面図である。
【図3】本発明によるラップ代を変化させて実際に接続したサンプルの初期接触抵抗と高温放置後の接触抵抗の変化を測定した結果を示す図である。
【図4】本発明によるラップ代を変化させて実際に接続したサンプルのリード部7の保持力を測定した結果を示す図である。
【図5】本発明に係るフラットケーブルへの電子部品の実装方法及び実装構造の実施の形態の第2例で、接続子と電子部品のリード部の関係を示す縦断面図である。
【図6】従来のフラットケーブルへの電子部品の実装構造の一例で用いていたフラットケーブルの正面図である。
【図7】従来のフラットケーブルへの電子部品の実装構造の側面図である。
【図8】従来のフラットケーブルへの電子部品の実装構造の他の例の斜視図である。
【図9】図8で用いている接続子の斜視図である。
【図10】図9のA−A線断面図である。
【図11】従来のフラットケーブルへ電子部品を実装する装置のクリンプ片突き刺し工程を示す縦断面図である。
【図12】従来のフラットケーブルへ電子部品を実装する装置のクリンプ片加締め工程を示す縦断面図である。
【符号の説明】
1 フラット導体
2 フラット絶縁被覆
3 フラットケーブル
4 孔
5 導電性接着剤
6 電子部品
7 リード部
8 凹状把持部
9 クリンプ片
10 接続子
11 接続装置
12 受け台
12a 受け面
13 クリンプ片曲成加締め凹部
14 アンビル
15 ガイド部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mounting method and a mounting structure of an electronic component on a flat cable used for electrical wiring of an electric device or an automobile.
[0002]
[Prior art]
As is well known, mounting boards and printed wiring boards are used as wiring circuit bodies for electronic devices. Instead of conventional round electric wire harnesses, twisted conductors with good space factor are arranged in parallel as their input / output circuits. A flat cable called a ribbon electric wire coated with a flat insulation coating, or a plurality of strip conductors such as copper or aluminum, for example, having a thickness of about 0.15 mm to 0.2 mm and a width of about 1.5 mm to 3.0 mm A flat cable in which flat conductors are arranged in parallel and covered with a flat insulating coating has been used. In this case, the flat insulating coating is formed by coating a plastic film such as polyethylene terephthalate or extrusion coating of a plastic resin such as polybutylene terephthalate.
[0003]
The connection between such a flat cable and a substrate or a printed wiring board is made through a connector provided on each of them, but recently, electronic components are directly mounted on the flat cable to reduce the size. There is movement.
[0004]
In this case, the connection between the electronic component and the flat cable is generally performed by peeling the flat insulation coating of the flat cable and soldering the exposed conductor and the lead part of the electronic component. As shown in FIG. 6, a plurality of flat conductors 1 are arranged in parallel and covered with a flat insulating coating 2. Holes 4 are formed by laser at the position of the required conductor 1 of the flat cable 3, and as shown in FIG. 7, each rectangular columnar lead portion 7 of the electronic component 6 to which the conductive adhesive 5 is previously attached is connected to the flat cable. A method is also proposed in which each of the three holes 4 is joined to the corresponding flat conductor 1 and heated through a reflow furnace (see, for example, Patent Document 1).
[0005]
However, such a method of connecting an electronic component and a flat cable has a problem that the flat cable 3 and the electronic component 6 are thermally affected. In addition, this connection method requires a step of making holes 4 in the flat cable 3 and a step of attaching the conductive adhesive 5 to each lead portion 7 of the electronic component 6, which is troublesome. .
[0006]
Therefore, the applicant has proposed a method for connecting an electronic component and a flat cable as shown in FIGS. 8 to 12 (Japanese Patent Application No. 2001-334936).
[0007]
In this connection method, as shown in FIG. 8, each lead portion 7 of the electronic component 6 is disposed on the flat insulating coating 2 corresponding to the flat conductor 1 of the flat cable 3. As means for electrically and mechanically connecting each lead portion 7 to the flat conductor 1 of the flat cable 3, as shown in FIG. 9, the crimp pieces 9 project in a staggered manner on both sides in the width direction of the concave gripping portion 8. The provided connector 10 is used.
[0008]
When connecting, the crimp pieces 9 projecting on both sides in the width direction of the concave gripping portion 8 of the connector 10 across the lead portion 7 are press-fitted on both sides of the lead portion 7 as shown in FIG. At the same time, the flat conductor 3 is pierced and penetrated at the location of the flat conductor 1, and each crimp piece 9 penetrating the flat cable 3 is bent and crimped. As a result, the lead part 7 is gripped in the concave gripping part 8 of the connector 10, and each crimp piece 9 is passed through the flat conductor 1 to be conducted to the flat conductor 1, and the electronic component 6 and the flat conductor 1 are connected. Make a conductive connection.
[0009]
Such connection work is performed using the connection device 11 shown in FIGS. This connecting device 11 uses a cradle 12 in which a crimping piece bending caulking recess 13 having an arc-shaped cross section is provided on a receiving surface 12a on the surface, and the flat conductor 1 is a crimping piece bending caulking recess on the receiving surface 12a. 13, each lead part 7 of the electronic component 6 is placed on the flat insulating coating 2 corresponding to the flat conductor 1, and in this state, each lead 10 is straddled across the lead part 7. The crimp pieces 9 are arranged, and the concave gripping portion 8 of the connector 10 is pressurized while being guided by the guide member 15 by the anvil 14, and the crimp pieces 9 are pressed into both sides of the lead portion 7 as shown in FIG. At the same time, the flat cable 3 is pierced and penetrated at the location of the flat conductor 1, and then, as shown in FIG. 12, each crimp piece 9 that penetrates the flat cable 3 is formed into an arc shape by the crimp piece bending caulking concave portion 13. Crimped form.
[0010]
According to such a connection method, there is an advantage that the flat cable 3 and the electronic component 6 are not thermally affected. In addition, this connection method eliminates the need for the step of making the hole 4 in the flat cable 3 and the step of attaching the conductive adhesive 5 to each lead portion 7 of the electronic component 6.
[0011]
[Problems to be solved by the invention]
However, in the method for connecting the electronic component and the flat cable as shown in FIGS. 8 to 12, there is a problem that the electrical connection state between the concave gripping portion 8 of the connector 10 and the lead portion 7 tends to be insufficient.
[0012]
The objective of this invention is providing the mounting method and mounting structure of the electronic component to the flat cable from which the electrical connection state of the concave holding part of a connector and the lead part of an electronic component is fully obtained.
[0013]
[Means for Solving the Problems]
In the present invention, a lead portion of an electronic component is superimposed on the surface of a flat insulation coating on a conductor of a flat cable whose conductor is coated with a flat insulation coating, and the width direction of the concave gripping portion of the connector is straddled across the lead portion. Each crimp piece protruding from both sides is press-fitted into both sides of the lead part, and the flat cable is pierced and penetrated at the conductor, and each crimp piece that penetrates the flat cable is bent and crimped to form a concave grip on the connector. A method of mounting an electronic component on a flat cable in which a lead portion is held in the portion and each crimp piece is electrically connected to a conductor to electrically connect the electronic component and the conductor is an object.
[0014]
In the method of mounting the electronic component on the flat cable according to the present invention, the lead portion is connected to the concave grip portion using a connector having a concave grip portion whose groove width is narrower than the maximum width dimension of the lead portion over which each crimp piece straddles. It is characterized by crimping and gripping.
[0015]
Using a connector with a concave gripping part whose groove width is narrower than the maximum width dimension of the lead part over which each crimp piece straddles in this way, when the lead part is crimped and gripped with the concave gripping part, the lead part is in close contact with the concave gripping part By fitting, the lead portion can be reliably connected to the concave gripping portion, and the electrical connection state between the concave gripping portion of the connector and the lead portion of the electronic component can be sufficiently obtained.
[0016]
In this case, the lap allowance obtained by subtracting the groove width of the concave gripping portion from the maximum width dimension of the lead portion is 0.05 mm or more, and is within the range of the lap allowance just before the lead portion becomes difficult to press fit into the concave gripping portion. It is preferable that the connection is performed using the existing connector. If it does in this way, the electrical connection with the concave holding part of a connector and the lead part of an electronic component can be performed with reliable reproducibility. When the lapping margin is smaller than 0.05 mm, this means that the groove width of the concave gripping portion of the connector is increased, and the rate of occurrence of poor contact with the lead portion increases, which is not preferable. If the lap allowance becomes larger than the lap allowance just before the lead part becomes difficult to press-fit into the concave gripping part, this means that the groove width of the concave gripping part of the connector becomes small, and the lead part press-fits into the concave gripping part. It becomes difficult and not preferable.
[0017]
In the present invention, the lead part of the electronic component is superimposed on the surface of the flat insulation coating on the conductor of the flat cable whose conductor is coated with the flat insulation coating, and the width of the concave gripping part of the connector straddling the lead part. Each crimp piece projecting on both sides of the direction is press-fitted on both sides of the lead portion and stabbed into the flat cable at the conductor location to enter a penetration state, and each crimp piece penetrating the flat cable is bent and crimped, The mounting structure of the electronic component on the flat cable in which the lead portion is gripped in the concave gripping portion of the connector, each crimp piece is electrically connected to the conductor, and the electronic component and the conductor are electrically connected is an object.
[0018]
In the mounting structure of the electronic component on the flat cable according to the present invention, a connector having a concave gripping portion whose groove width is narrower than the maximum width dimension of the lead portion over which each crimp piece straddles is used. Is crimped and gripped.
[0019]
When the lead part is crimped and gripped by the concave gripping part using a connector having a concave gripping part whose groove width is narrower than the maximum width dimension of the lead part over which each crimp piece straddles in this way, the lead is connected to the concave gripping part. The parts are closely fitted to each other so that the lead part can be reliably connected to the concave gripping part, and the electrical connection state between the concave gripping part of the connector and the lead part of the electronic component can be sufficiently obtained.
[0020]
In this case, it is preferable that the side surface of the lead portion gripped by the concave grip portion is scraped. With this configuration, the new surface of the lead portion is gripped by the concave gripping portion due to a so-called wiping effect, and a good electrical conduction state with low contact resistance can be obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a first example of an embodiment of a mounting method and mounting structure of an electronic component on a flat cable according to the present invention. FIG. 1 shows a connector and a lead portion of the electronic component of this example. FIG. 2 is a cross-sectional view of an essential part of a structure for mounting an electronic component on a flat cable. Note that portions corresponding to those in FIGS. 8 to 12 described above are denoted by the same reference numerals.
[0022]
In the mounting method of the electronic component on the flat cable of this example, as shown in FIG. 1, as shown in FIG. 1, as a connector 10, a concave grip having a narrower groove width than the maximum width dimension of a prismatic lead portion 7 that each crimp piece 9 straddles. A connector 10 having a part 8 is used. In this case, as shown in FIG. 1, the lap allowance (W1−W2) obtained by subtracting the groove width W2 of the concave gripping portion 8 from the maximum width dimension W1 of the lead portion 7 is the copper lead portion 7 and the concave gripping portion 8. In this case, a connector 10 that is 0.05 mm or more and is in a range equal to or less than the lapping margin immediately before the lead portion 7 becomes difficult to press-fit into the concave gripping portion 8 is used. The distance between the front ends of the crimp pieces 9 on both sides of the concave gripping portion 8 is slightly wider than the groove width W2 of the concave gripping portion 8 so that the lead portion 7 can be easily inserted.
[0023]
Then, as shown in FIG. 1, the lead part 7 of the electronic component 6 is placed on the flat insulating coating 2 corresponding to the flat conductor 1, and in this state, the crimps of the connector 10 are straddled across the lead part 7. As shown in FIG. 11 and FIG. 12, the crimping portion 8 of the connector 10 is pressed while being guided by the anvil 14 with the guide member 15, and as shown in FIG. 9 is press-fitted into both sides of the lead portion 7 and is pierced and penetrated into the flat cable 3 at the location of the flat conductor 1, and then each crimp piece 9 penetrating through the flat cable 3 is formed in an arc shape by the crimp piece bending caulking recess 13 described above. To squeeze the song.
[0024]
When the lead part 7 is crimped and gripped by the concave gripping part 8 using the connector 10 having the concave gripping part 8 having a groove width W2 narrower than the maximum width dimension W1 of the lead part 7 over which each crimp piece 9 straddles, The lead portion 7 is tightly fitted to the concave gripping portion 8 so that the lead portion 7 can be securely connected to the concave gripping portion 8, and the electrical connection between the concave gripping portion 8 of the connector 10 and the lead portion 7 of the electronic component 6 is achieved. A sufficient connection state can be obtained.
[0025]
The lap allowance (W1-W2) obtained by subtracting the groove width W2 of the concave gripping portion 8 from the maximum width dimension W1 of the lead portion 7 is 0.05 mm or more, and immediately before the lead portion 7 is difficult to press-fit into the concave gripping portion 8. When the connection 10 is within the range of the lap allowance, the connection between the concave gripping portion 8 of the connection 10 and the lead portion 7 of the electronic component 6 is performed with a certain reproducibility. be able to. When the lapping margin is smaller than 0.05 mm, this means that the groove width of the concave gripping portion 8 of the connector 10 is increased, and the rate of occurrence of poor contact with the lead portion 7 increases, which is not preferable. If the wrap margin becomes larger than the lap margin value immediately before the lead portion 7 becomes difficult to press-fit into the concave gripping portion 8, this means that the groove width of the concave gripping portion 8 of the connector 10 becomes small. This is not preferable because it is difficult to press fit into the concave gripping portion 8. In the case of the copper-based lead portion 7 and the concave gripping portion 8, the lapping margin is 0.05 mm or more, and is equal to or less than the lapping margin value immediately before the lead portion 7 becomes difficult to press fit into the concave gripping portion 8, that is, 0.30 mm or less ( Preferably, the range is 0.10 mm or more and 0.20 mm or less.
[0026]
In the mounting structure of the electronic component on the flat cable of this example, the lead portion 7 of the electronic component 6 is overlaid on the surface of the flat insulating coating 2 on the flat conductor 1 of the flat cable 3 and connected across the lead portion 7. Each crimp piece 9 protruding from both sides in the width direction of the concave gripping portion 8 of the child 10 is press-fitted into both sides of the lead portion 7 and is pierced by the flat cable 3 at the location of the flat conductor 1 so as to be penetrated. Each crimp piece 9 penetrating the cable 3 is bent and crimped, the lead portion 7 is held in the concave holding portion 8 of the connector 10, and each crimp piece 9 is electrically connected to the flat conductor 1, The point that the flat conductor 1 is conductively connected is the same as in FIGS. 8 to 12 described above.
[0027]
In the mounting structure of the electronic component on the flat cable of this example, the connector 10 having the concave gripping portion 8 whose groove width W2 is narrower than the maximum width dimension W1 of the lead portion 7 over which each crimp piece 9 straddles is used. The connector 10 has a lap allowance (W1−W2) obtained by subtracting the groove width W2 of the concave gripping portion 8 from the maximum width dimension W1 of the lead portion 7 being 0.05 mm or more, and the lead portion 7 is the concave gripping portion 8. The range is less than the lap allowance just before it becomes difficult to press fit. The lead portion 7 is pressure-bonded and held by such a concave holding portion 8.
[0028]
The side surface 7a of the lead portion 7 gripped by the concave gripping portion 8 is scraped.
[0029]
In this way, using the connector 10 having the concave gripping portion 8 whose groove width W2 is narrower than the maximum width dimension W1 of the lead portion 7 over which each crimp piece 9 straddles, the lead portion 7 is crimped and gripped by the concave gripping portion 8. The lead portion 7 is tightly fitted to the concave gripping portion 8 so that the lead portion 7 can be securely connected to the concave gripping portion 8, and the concave gripping portion 8 of the connector 10 and the lead portion 7 of the electronic component 6 are connected. The electrical connection state can be sufficiently obtained.
[0030]
In this case, when the side surface of the lead portion 7 gripped by the concave gripping portion 8 is scraped, that is, the oxide film is removed by the so-called wiping effect due to the strong rubbing of each other, and the new surface of the lead portion 7 is gripped by the concave gripping. It is strongly pressure-bonded at the portion 8, and a good electrical conduction state with little contact resistance can be obtained.
[0031]
In this case, the crimp pieces 9 on both sides in the width direction of the concave gripping portion 8 are preferably arranged in a staggered manner so that they do not collide with each other during bending caulking.
[0032]
FIG. 3 is a result of measuring changes in initial contact resistance and contact resistance after being left at a high temperature for samples actually connected by changing the lapping margin according to the present invention. In this figure, ◯ represents the variation in the initial resistance value, and x represents the variation in the contact resistance variation after being left at a high temperature. As is clear from this figure, the contact resistance increases and the variation increases after leaving at a high temperature in a connection sample having no lapping allowance (that is, 0), but the contact after leaving at a high temperature is left at a lapping allowance of 0.05 mm or more. The resistance value is stable. If the lap allowance becomes too large, the lead portion 7 cannot be press-fitted into the concave gripping portion 8, so the maximum value of the lap allowance is equal to or less than the lap allowance just before the lead portion 7 becomes difficult to press-fit into the concave gripping portion 8. . It has been found that the lapping margin in this example is 0.05 mm or more and 0.30 mm or less (preferably 0.10 mm or more and 0.20 mm or less).
[0033]
On the other hand, it is necessary for the lead part 7 that is crimped and connected by the concave gripping part 8 of the connector 10 to maintain a holding force that does not easily come out of the concave gripping part 8 by an external force. The design target is about 80% of the tensile strength of the lead portion 7 that breaks when the lead portion 7 is pulled.
[0034]
FIG. 4 is a result of measuring the holding force of the lead portion 7 of the sample actually connected by changing the lapping margin according to the present invention. As is clear from this result, in the connection sample having no wrap allowance (that is, 0), the holding force is extremely insufficient, and the holding force of the lead portion 7 which is a design target when the wrap allowance is 0.05 mm or more is obtained. It can be seen that
[0035]
From the above-mentioned actual electrical and mechanical measurement results, the lead part 7 has a lap allowance of 0.05 mm or more, and a range less than or equal to the lap allowance immediately before the lead part 7 is difficult to press fit into the concave gripping part 8. It turns out that it is necessary to become.
[0036]
Note that the flat cable 3 used in this test has a flat conductor 1 made of copper, a width of 2.5 mm, a thickness of 0.15 mm, and a lead 7 attached to a hall element as an electronic component 6 It is made of plated copper nickel and has a square shape (or round shape) with a maximum width dimension W1 of 0.50 mm. The connector 10 is made of brass, and the thickness of the concave gripping portion 8 is 0.25 mm. Then, the groove width W2 of the concave gripping portion 8 was changed to obtain a required lapping allowance.
[0037]
FIG. 5 is a longitudinal sectional view showing the relationship between the connector and the lead part of the electronic component in the second example of the embodiment of the mounting method and the mounting structure of the electronic component on the flat cable according to the present invention. Note that portions corresponding to those in FIG. 1 described above are denoted by the same reference numerals.
[0038]
In this example, the lead part 6 of the electronic component 6 has a round cross section. Other configurations are the same as in the first example of the embodiment.
[0039]
Thus, even when the lead part 6 having a round cross section is used, the same effect as that of the first example of the embodiment can be obtained.
[0040]
Further, in the embodiment of the present invention, the case where the conductor of the flat cable 3 is the flat conductor 1 is shown, but the present invention is not limited to this, and the conductor of the flat cable 3 is a twisted cross section. It may be a line conductor.
[0041]
【The invention's effect】
In the method of mounting the electronic component on the flat cable according to the present invention, the lead portion is connected to the concave grip portion using a connector having a concave grip portion whose groove width is narrower than the maximum width dimension of the lead portion over which each crimp piece straddles. Since the lead is tightly fitted to the concave gripping part, the lead part can be securely connected to the concave gripping part, and the electrical connection between the concave gripping part of the connector and the lead part of the electronic component can be achieved. You can get enough.
[0042]
In this case, the lapping allowance obtained by subtracting the groove width of the concave gripping part from the maximum width dimension of the lead part is 0.05 mm or more, and the connection is within the range just before the lead part becomes difficult to press fit into the concave gripping part. It is preferable to connect using a child. If it does in this way, the electrical connection with the concave holding part of a connector and the lead part of an electronic component can be performed with reliable reproducibility. When the lapping margin is smaller than 0.05 mm, the rate of occurrence of poor contact with the lead portion increases, which is not preferable. If the wrap margin is larger than the lap margin value immediately before the lead portion is difficult to press fit into the concave gripping portion, the lead portion is difficult to press fit into the concave gripping portion, which is not preferable.
[0043]
In the mounting structure of the electronic component on the flat cable according to the present invention, a connector having a concave gripping portion whose groove width is narrower than the maximum width dimension of the lead portion over which each crimp piece straddles is used. Since the lead part is tightly fitted to the concave grip part, the lead part can be securely connected to the concave grip part, and the electrical connection between the concave grip part of the connector and the lead part of the electronic component can be performed. A sufficient connection state can be obtained.
[0044]
In this case, it is preferable that the side surface of the lead portion gripped by the concave grip portion is scraped. With this configuration, the new surface of the lead portion is gripped by the concave gripping portion due to a so-called wiping effect, and a good electrical conduction state with low contact resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a relationship between a connector and a lead portion of an electronic component in a first example of an embodiment of an electronic component mounting method and mounting structure on a flat cable according to the present invention.
FIG. 2 is a cross-sectional view of a main part of a first example of an embodiment of a structure for mounting an electronic component on a flat cable according to the present invention.
FIG. 3 is a diagram showing a result of measuring changes in initial contact resistance of a sample actually connected by changing a lapping margin according to the present invention and contact resistance after being left at a high temperature;
FIG. 4 is a view showing a result of measuring a holding force of a lead portion 7 of a sample actually connected by changing a lapping margin according to the present invention.
FIG. 5 is a longitudinal sectional view showing a relationship between a connector and a lead portion of the electronic component in the second example of the embodiment of the mounting method and the mounting structure of the electronic component on the flat cable according to the present invention.
FIG. 6 is a front view of a flat cable used in an example of a structure for mounting electronic components on a conventional flat cable.
FIG. 7 is a side view of a mounting structure of an electronic component on a conventional flat cable.
FIG. 8 is a perspective view of another example of a structure for mounting an electronic component on a conventional flat cable.
FIG. 9 is a perspective view of the connector used in FIG. 8;
10 is a cross-sectional view taken along line AA in FIG.
FIG. 11 is a longitudinal sectional view showing a crimp piece piercing process of a device for mounting an electronic component on a conventional flat cable.
FIG. 12 is a longitudinal sectional view showing a crimp piece crimping process of a device for mounting electronic components on a conventional flat cable.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat conductor 2 Flat insulation coating 3 Flat cable 4 Hole 5 Conductive adhesive 6 Electronic component 7 Lead part 8 Recessed holding part 9 Crimp piece 10 Connector 11 Connection apparatus 12 Receptacle 12a Receiving surface 13 Crimp piece bending caulking concave part 14 Anvil 15 Guide member

Claims (4)

導体がフラット絶縁被覆で被覆されたフラットケーブルの前記導体の上の前記フラット絶縁被覆の表面に電子部品のリード部を重ね、該リード部を跨いで接続子の凹状把持部の幅方向の両側に突設された各クリンプ片を前記リード部の両側に圧入すると共に前記導体の箇所で前記フラットケーブルに突き刺し貫通させ、前記フラットケーブルを突き抜けた前記各クリンプ片を曲成加締めることにより、前記接続子の前記凹状把持部内で前記リード部を把持し、前記各クリンプ片を前記導体に導通させて、前記電子部品と前記導体とを導通接続するフラットケーブルへの電子部品の実装方法において、
前記各クリンプ片が跨ぐ前記リード部の最大幅寸法よりも溝幅が狭い前記凹状把持部を持つ前記接続子を用いて、前記凹状把持部で前記リード部を圧着把持することを特徴とするフラットケーブルへの電子部品の実装方法。
The lead part of the electronic component is overlaid on the surface of the flat insulation coating on the conductor of the flat cable whose conductor is coated with the flat insulation coating, and across the lead part on both sides in the width direction of the concave gripping part of the connector. The connection is made by press-fitting each protruding crimp piece on both sides of the lead portion and piercing and penetrating the flat cable at the conductor, and bending and crimping each crimp piece penetrating the flat cable. In the method of mounting an electronic component on a flat cable that grips the lead portion in the concave gripping portion of a child, makes each crimp piece conductive to the conductor, and electrically connects the electronic component and the conductor,
A flat, wherein the lead portion is crimped and gripped by the concave gripping portion using the connector having the concave gripping portion whose groove width is narrower than the maximum width dimension of the lead portion straddled by each crimp piece. How to mount electronic components on cables.
前記リード部の最大幅寸法から前記凹状把持部の溝幅を差し引いたラップ代が0.05mm以上で、前記リード部が前記凹状把持部に圧入困難になる直前のラップ代値以下の範囲になっている前記接続子を用いて接続を行うことを特徴とする請求項1に記載のフラットケーブルへの電子部品の実装方法。The lap margin obtained by subtracting the groove width of the concave gripping portion from the maximum width dimension of the lead portion is 0.05 mm or more, and the range is equal to or less than the lap margin value immediately before the lead portion is difficult to press fit into the concave gripping portion. The method of mounting electronic components on a flat cable according to claim 1, wherein the connection is performed using the connector. 導体がフラット絶縁被覆で被覆されたフラットケーブルの前記導体の上の前記フラット絶縁被覆の表面に電子部品のリード部が重ねられ、該リード部を跨いで接続子の凹状把持部の幅方向の両側に突設された各クリンプ片が前記リード部の両側に圧入されると共に前記導体の箇所で前記フラットケーブルに突き刺されて貫通状態となり、前記フラットケーブルを突き抜けた前記各クリンプ片が曲成加締められ、前記接続子の前記凹状把持部内で前記リード部が把持され、前記各クリンプ片が前記導体に導通されて、前記電子部品と前記導体とが導通接続されているフラットケーブルへの電子部品の実装構造において、
前記各クリンプ片が跨ぐ前記リード部の最大幅寸法よりも溝幅が狭い前記凹状把持部を持つ前記接続子が用いられて、前記凹状把持部で前記リード部が圧着把持されていることを特徴とするフラットケーブルへの電子部品の実装構造。
The lead part of the electronic component is superimposed on the surface of the flat insulation coating on the conductor of the flat cable whose conductor is coated with the flat insulation coating, and both sides in the width direction of the concave gripping part of the connector straddling the lead part Each crimp piece projecting from the lead portion is press-fitted on both sides of the lead portion, and is pierced by the flat cable at the location of the conductor to be in a penetrating state, and each crimp piece penetrating the flat cable is bent and crimped Of the electronic component to the flat cable in which the lead portion is gripped in the concave gripping portion of the connector, the crimp pieces are electrically connected to the conductor, and the electronic component and the conductor are electrically connected. In the mounting structure,
The connector having the concave gripping portion whose groove width is narrower than the maximum width dimension of the lead portion straddling each crimp piece is used, and the lead portion is crimped and gripped by the concave gripping portion. The mounting structure of electronic components on the flat cable.
前記凹状把持部で把持された前記リード部の側面が擦削されていることを特徴とする請求項3に記載のフラットケーブルへの電子部品の実装構造。4. The structure for mounting an electronic component on a flat cable according to claim 3, wherein a side surface of the lead portion gripped by the concave grip portion is scraped.
JP2003040809A 2003-02-19 2003-02-19 Mounting method and structure of electronic components on flat cable Expired - Fee Related JP3665640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040809A JP3665640B2 (en) 2003-02-19 2003-02-19 Mounting method and structure of electronic components on flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040809A JP3665640B2 (en) 2003-02-19 2003-02-19 Mounting method and structure of electronic components on flat cable

Publications (2)

Publication Number Publication Date
JP2004253519A JP2004253519A (en) 2004-09-09
JP3665640B2 true JP3665640B2 (en) 2005-06-29

Family

ID=33024555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040809A Expired - Fee Related JP3665640B2 (en) 2003-02-19 2003-02-19 Mounting method and structure of electronic components on flat cable

Country Status (1)

Country Link
JP (1) JP3665640B2 (en)

Also Published As

Publication number Publication date
JP2004253519A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4274381B2 (en) Terminal connection method for micro coaxial cable
US4920642A (en) Method for connecting wires to an electrical connector
JP3679293B2 (en) Terminal structure of flat circuit body
US7084346B2 (en) Method for electrically connecting a conductor to a contact
JP2007087960A (en) Connection part between flat cable and wiring circuit body and connection method of flat cable and wiring circuit body
JP2009037748A (en) Cable connector and cable connection method
JP2002246091A (en) Conducting connection method for flat cable by crimping piece
JP2014075245A (en) Electric wire, and connection structure of the same
JP3665640B2 (en) Mounting method and structure of electronic components on flat cable
JP2003151667A (en) Flat cable connecting terminal and connecting portion between flat cable and connecting terminal
JP2001291541A (en) Structure and method for connecting flat wire harness
JPH09213388A (en) Wire harness and connecting method of printed circuit board to wire in wire harness
JP3923318B2 (en) Connection part between flat cable and wiring circuit body and connecting method between flat cable and wiring circuit body
JP3679295B2 (en) Branch connection structure of flat circuit body
WO2014129605A1 (en) Method for producing connecting structure, connecting structure, and crimping device
JP4807796B2 (en) Cable connector and cable connection method
AU2020104294A4 (en) Method and apparatus for establishing electrical connections
JP2001203015A (en) Electric connector for flat flexible cable
JP5838938B2 (en) Electric wire with terminal
JP4234336B2 (en) Connection method and connection device between flat cable and connection terminal
JP3665604B2 (en) Method for mounting electronic components on a wiring circuit body
JP5195191B2 (en) Terminal fittings and electric wires with terminal fittings
JP3396575B2 (en) Method of connecting conductive film to electric wire and connection terminal thereof
JP3683767B2 (en) Branch terminal structure of flat circuit body
JP3735044B2 (en) Connection method between flat conductor of flat cable and electrical connection terminal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

R151 Written notification of patent or utility model registration

Ref document number: 3665640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees