JP3665186B2 - Continuous hydrothermal synthesis of alumina particles - Google Patents

Continuous hydrothermal synthesis of alumina particles Download PDF

Info

Publication number
JP3665186B2
JP3665186B2 JP22512897A JP22512897A JP3665186B2 JP 3665186 B2 JP3665186 B2 JP 3665186B2 JP 22512897 A JP22512897 A JP 22512897A JP 22512897 A JP22512897 A JP 22512897A JP 3665186 B2 JP3665186 B2 JP 3665186B2
Authority
JP
Japan
Prior art keywords
temperature
alumina particles
hydrothermal synthesis
continuous hydrothermal
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22512897A
Other languages
Japanese (ja)
Other versions
JPH1160237A (en
Inventor
仲道 山崎
雄史 福田
剛 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP22512897A priority Critical patent/JP3665186B2/en
Publication of JPH1160237A publication Critical patent/JPH1160237A/en
Application granted granted Critical
Publication of JP3665186B2 publication Critical patent/JP3665186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、塗料用顔料やセラミックス原料、磁気テープのフィラー、研磨剤等に適した微細板状アルミナ粒子を水熱処理により連続的に製造する方法に関する。
【0002】
【従来の技術】
微細アルミナ粒子の製造方法として、バイヤー法によりアルミナを製造し、得られた粉体を機械的細分化法により微細アルミナ粒子を得る方法が知られている。この方法は、得られる粒子の一つ一つの生成粒子のコントロールが難しい問題を抱えている。この他に、化学的成長法によりアルミナ粒子を得る方法として水熱合成法が知られており、粒子形状や粒度分布の揃ったアルミナ粒子が生成されることが知られている。しかし、この方法では、オートクレーブを使用し、比較的長い反応時間が必要であることが現状である。
【0003】
【発明が解決しようとする課題】
上記従来のアルミナ粒子の製造方法では均一な1次粒子である微細なアルミナ粒子は得られていない。又、反応にも長時間を要しているので、本発明では均一で微細アルミナ粒子を比較的短時間に連続的に製造することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は、水酸化アルミニウム又はアルミナ水和物を水又はアルカリ水溶液とともに、スラリー状にしたものと、水とを用い、水は飽和蒸気温度以上に加熱するとともに、飽和水蒸気圧以下に加圧しながら供給し、一方、スラリーは飽和蒸気温度未満、飽和水蒸気圧以上に加圧しながら供給し、これらを飽和蒸気温度以下にならないように混合比を調整しながら噴霧混合し、反応部において高温高圧条件で水熱合成を行い、合成後、減温減圧してアルミナ粒子を製造することを特徴とするアルミナ粒子の連続水熱合成方法である。
【0005】
上記反応部における高温高圧条件が350℃以上で50kgf/cm2以上、より望ましくは400〜500℃で100〜200kgf/cm2であり、又、噴霧混合後の配管内の流速は、毎分0.2m以上であるとよい。
スラリーは、水又はアルカリ水溶液に対する水酸化アルミニウム又はアルミナ水和物の濃度が1〜50wt%、より好ましくは2〜20wt%である。
【0006】
本発明は出発原料として水酸化アルミニウム又はベーマイト等のアルミナ水和物を予めボールミル等で粉砕してサブミクロンオーダーに粒度調整したものを用い、これを水又は苛性ソーダ、炭酸ソーダ等のアルカリ水溶液とともに濃度を調整し、1ないし50wt%、好ましくは2ないし20wt%で加圧しながら配管中に送り込み、これをもう一方の過熱蒸気で噴霧混合せしめることでスラリーを同時に過熱蒸気と固体分にし、高温高圧雰囲気中を滞留させ、その後降温、減圧するような連続水熱合成により行われる。出発原料である水酸化アルミニウム又はアルミナ水和物をサブミクロンオーダーに粒度調節することは、連続水熱合成において噴霧混合時に原料固体分が浮遊することができずに堆積してしまうことや、噴霧混合時において閉塞となるため、さらに微細粒子を合成するために微細な原料が必要であるからである。温度、出力の条件に関しては、Al23・H2O系状態図で、α−Al23の安定な領域でなければならない。温度を350℃以上と限定する理由は、350℃未満ではα−Al23を得ることができないためである。温度、圧力についての上限は特に限定はしていないが、装置に係るもので、経済性を考慮した範囲内のものが好ましく、好ましくは濃度400〜550℃の条件で圧力50気圧以上好ましくは100ないし200kgf/cm2の条件であり、高温高圧ほどα−Al23の生成速度は大きく、短時間で微細な粒子が得られる。
【0007】
噴霧混合後流速を毎分0.2m以上とする理由は、流速が遅いと配管内の滞留時間を稼ぐことができ、α−Al23を合成することができるが、得られる粒子は一つ一つの形状や大きさにばらつきが見られ均一な微細粒子を得ることにはならず、流速を考慮した合成条件が必要となり、毎時0.2m以上の流速となると、粒子の大きさが微細で一つ一つの粒子が均一で揃ったα−Al23粒子となり、さらに流速が速くなると微細で薄肉板状のアルミナが合成される。
【0008】
本発明の製造方法により、結晶形が六方晶形で特定の結晶面が平板状に成長した微細なα−Al23粒子を得ることができる。さらにこの粒子は、粒子径が0.2〜1μm、アスペクト比(粒子長径/厚さ)1〜50のものとすることができる。特に0.5μm未満の粒子径とすることができ、かかるα−Al23粒子は研磨剤やフィラー等として使用できる。
【0009】
【発明の実施の形態】
本発明は、例えば図1に示すような連続水熱合成装置によって実施される。図1中、1は水質液体タンク、2はスラリータンクであり、3,4はそれぞれ供給するためのポンプである。5は加熱部を示し、6は加熱ヒーターである。ポンプ3により供給された水質液体タンク1内の水質液体(水)は加熱ヒーター6により飽和蒸気温度以上、特には臨界温度以上に加熱され、また、ポンプ4により供給されたスラリータンク2内のスラリーは常温のまま送り込まれる。このように加熱された水質流体と常温のスラリーとは、噴霧混合部8において混合され、ついで加熱ヒーター9により反応温度近くにまで加熱されて、反応部10に送入される。反応部10には加熱ヒーター11が設けてあり、必要により追加加熱する。反応生成物はクーラー12により強制的に冷却され、絞り弁20を通過した後生成物排出部13もしくは細管21に送られる。絞り弁20は無くてもよい。生成物排出部13もしくは細管21は、コック22により切り替えられる。生成物排出部13に切り替えた場合、生成物排出部13の上流側には遮断弁14、下流側には遮断弁15および23が設けられている。生成物はまず遮断弁14を開くことによって生成物排出部13内に生成物を収容し、ついで遮断弁14を閉じて遮断弁15および23を開いて生成物をレシーバー16に送る。生成物は取り出し容器18に排出される。19は遮断弁14を閉じ遮断弁15を開いたとき、系内のスラリー反応生成物の圧力が不足する場合を考慮して設けられた補助装置であり、圧縮ガス供給器である。細管21に切り替えた場合、細管を生成物を通過し、細管内の圧力損失により常圧にまで減圧されレシーバー16に送られ、取り出し容器18に排出される。
【0010】
上記において噴霧混合部8は必要により噴霧装置で微粒子に噴霧した後、粉砕器により微粒子をさらに10μm以下にする。
以下、上記装置を用いて実施した本発明の実施例について述べる。なお、スラリーポンプ能力は2リットル/時間、水ポンプ能力は8リットル/時間、反応部の体積は32リットルとした。
【0011】
実施例1
バイヤー法によって得た水酸化アルミニウムをボールミルにて中心粒径0.4μmに粒度調整したものをイオン交換水により濃度2.5wt%となるよう調整し、毎時2リットルの送り量で送り出し、またイオン交換水を毎時8リットルで送り出すように調整した連続装置で、圧力100kgf/cm2、温度450℃で反応させた。噴霧混合後の流速は毎分1.0mであった。得られた生成物を洗浄、濾過、乾燥して得た粉末をX線回折法により生成物の同定をすると100%のαアルミナが生成しており、このαアルミナの粒子径は0.2μm、アスペクト比は20であった。
【0012】
実施例2
バイヤー法によって得た水酸化アルミニウムをボールミルにて中心粒径0.4μmに粒度調整したものをイオン交換水により濃度10wt%となるよう調整し、毎時2リットルの送り量で送り出し、またイオン交換水を毎時8リットルで送り出すように調整した連続装置で、圧力200kgf/cm2、温度430℃で反応させた。噴霧混合後の流速は毎分0.9mであった。得られた生成物を洗浄、濾過、乾燥して得た粉末をX線回折法により生成物の同定をすると、100%のαアルミナが生成しており、粒子径が0.5μm、アスペクト比が20であった。
【0013】
実施例3
バイヤー法によって得た水酸化アルミニウムをボールミルにて中心粒径0.4μmに粒度調整したものをイオン交換水により濃度10wt%となるように調整し、毎時2リットルの送り量で送り出し、またイオン交換水を毎時8リットルで送り出すように調整した連続装置で、圧力200kgf/cm2、温度500℃で反応させた。噴霧混合後の流速は毎分0.5mであった。得られた生成物を洗浄、濾過、乾燥して得た粉末をX線回折法により生成物の同定をすると、100%のαアルミナが生成しており、粒子径が0.4μm、アスペクト比が10であった。
【0014】
実施例4
バイヤー法によって得た水酸化アルミニウムをボールミルにて中心粒径0.4μmに粒度調整したものをイオン交換水により濃度10wt%となるよう調整し、毎時2リットルの送り量で送り出し、またイオン交換水を毎時8リットルで送り出すように調整した連続装置で、圧力200kgf/cm2、温度550℃で反応させた。噴霧混合後の流速は毎分0.55mであった。得られた生成物を洗浄、濾過、乾燥して得た粉末をX線回折法により生成物の同定をすると、100%のαアルミナが生成しており、粒子径が0.3μm、アスペクト比が5であった。
【0015】
実施例5
バイヤー法によって得た水酸化アルミニウムをボールミルにて中心粒径0.4μmに粒度調整したものをイオン交換水により濃度10wt%となるよう調整し、毎時1リットルの送り量で送り出し、またイオン交換水を毎時4リットルで送り出すように調整した連続装置で、圧力200kgf/cm2、温度500℃で反応させた。噴霧混合後の流速は毎分0.25mであった。得られた生成物を洗浄、濾過、乾燥して得た粉末をX線回折法により生成物の同定をすると100%のαアルミナが生成しており、粒子径が0.4μm、アスペクト比が2であった。
【0016】
上記実施例によれば反応温度範囲が430〜600℃、圧力が200kgf/cm2となっているが、本実施例では上記温度範囲、圧力に限定されるものではなく、350℃以上の温度好ましくは400℃ないし550℃の温度を採用することにより、また圧力範囲を50kgf/cm2以上好ましくは100ないし200kgf/cm2を採用することにより、粒子径やアスペクト比を制御できるαアルミナ粉体を合成することができる。
【0017】
【発明の効果】
本発明によれば、水熱合成を連続的に行うことができるので、時間の短縮化および工程の省力化によって著しい技術的、経済的効果を奏する。従来のバッチ式での合成方法においては、目的とする温度、圧力による合成時間以外に、原料をセットしてからの温度の昇温および降温時間を考慮する必要があり、原料をセットしてから生成物を取り出すまでに長い時間を要する。本発明によれば、連続的に一方から水質液体とスラリーを送入し、加圧、急速加熱されること、また冷却もクーラーにより急速に冷やされるため時間が非常に短く、さらに排出が配管内の圧力を下げることなく常に行われ、合成時間は配管内の滞留時間のみを考慮すればよく、合成粒子も微細化され、微細な板状アルミナ粉体を合成するのに非常に効率的である。
【図面の簡単な説明】
【図1】本発明を実施するに適した装置の一例を示す。
【符号の説明】
1 水質液体タンク
2 スラリータンク
3,4 ポンプ
5 加熱部
6 加熱ヒーター
8 噴霧混合部
9 加熱ヒーター
10 反応部
11 加熱ヒーター
12 クーラー
13 生成物排出部
14,15 遮断弁
16 レシーバー
18 容器
19 圧縮ガス供給器
20 絞り弁
21 細管
22 コック
23 遮断弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuously producing fine plate-like alumina particles suitable for paint pigments, ceramic raw materials, magnetic tape fillers, abrasives, and the like by hydrothermal treatment.
[0002]
[Prior art]
As a method for producing fine alumina particles, a method is known in which alumina is produced by the Bayer method, and fine powder particles are obtained from the obtained powder by a mechanical fragmentation method. This method has a problem that it is difficult to control each of the resulting particles. In addition, a hydrothermal synthesis method is known as a method for obtaining alumina particles by a chemical growth method, and it is known that alumina particles having a uniform particle shape and particle size distribution are produced. However, this method currently uses an autoclave and requires a relatively long reaction time.
[0003]
[Problems to be solved by the invention]
In the conventional method for producing alumina particles, fine alumina particles which are uniform primary particles are not obtained. Further, since a long time is required for the reaction, an object of the present invention is to continuously produce uniform and fine alumina particles in a relatively short time.
[0004]
[Means for Solving the Problems]
The present invention uses a slurry of aluminum hydroxide or alumina hydrate together with water or an alkaline aqueous solution, and water, while heating the water above the saturated vapor temperature and pressurizing it below the saturated water vapor pressure. On the other hand, the slurry is supplied while being pressurized to a temperature lower than the saturated vapor temperature and higher than the saturated vapor pressure, and spray-mixed while adjusting the mixing ratio so that it does not fall below the saturated vapor temperature. A continuous hydrothermal synthesis method of alumina particles, characterized in that hydrothermal synthesis is performed, and after synthesis, the temperature is reduced and reduced to produce alumina particles.
[0005]
The high-temperature and high-pressure conditions in the reaction section are 350 ° C. or more and 50 kgf / cm 2 or more, more preferably 400 to 500 ° C. and 100 to 200 kgf / cm 2 , and the flow rate in the pipe after spray mixing is 0 per minute. .2m or more.
In the slurry, the concentration of aluminum hydroxide or alumina hydrate with respect to water or an aqueous alkali solution is 1 to 50 wt%, more preferably 2 to 20 wt%.
[0006]
The present invention uses as a starting material alumina hydrate such as aluminum hydroxide or boehmite, which has been previously pulverized with a ball mill or the like and adjusted in particle size to a submicron order, and this is mixed with water or an alkaline aqueous solution such as caustic soda or sodium carbonate. The slurry is fed into the pipe while being pressurized at 1 to 50 wt%, preferably 2 to 20 wt%, and this is spray mixed with the other superheated steam to simultaneously make the slurry into superheated steam and solids, and a high temperature and high pressure atmosphere It is carried out by continuous hydrothermal synthesis in which the inside is retained, and then the temperature is lowered and the pressure is reduced. Adjusting the particle size of the starting raw material, aluminum hydroxide or alumina hydrate, to the submicron order means that the raw material solids cannot be suspended during spray mixing in continuous hydrothermal synthesis, This is because clogging occurs during mixing, and a fine raw material is required to further synthesize fine particles. Temperature, for the conditions of the output, in Al 2 O 3 · H 2 O phase diagram, must be stable region of α-Al 2 O 3. The reason why the temperature is limited to 350 ° C. or higher is that α-Al 2 O 3 cannot be obtained at a temperature lower than 350 ° C. Although the upper limit about temperature and pressure is not particularly limited, it is related to the apparatus and is preferably within the range in consideration of economy. Preferably, the pressure is 50 atm or higher, preferably 100 at a concentration of 400 to 550 ° C. The condition is 200 kgf / cm 2 , and the higher the temperature and the higher the pressure, the higher the production rate of α-Al 2 O 3 , and fine particles can be obtained in a short time.
[0007]
The reason why the flow rate after spray mixing is 0.2 m / min or more is that if the flow rate is low, the residence time in the pipe can be increased, and α-Al 2 O 3 can be synthesized. It is not possible to obtain uniform fine particles due to variations in the shape and size of each one, and it is necessary to have a synthesis condition that takes into account the flow rate. When the flow rate is 0.2 m / h or more, the size of the particles is fine. Thus, each particle becomes α-Al 2 O 3 particles which are uniform and aligned, and when the flow rate is further increased, fine and thin plate-like alumina is synthesized.
[0008]
According to the production method of the present invention, fine α-Al 2 O 3 particles having a hexagonal crystal form and a specific crystal plane grown in a flat plate shape can be obtained. Further, the particles may have a particle diameter of 0.2 to 1 μm and an aspect ratio (particle long diameter / thickness) of 1 to 50. In particular, the particle diameter can be less than 0.5 μm, and such α-Al 2 O 3 particles can be used as an abrasive or a filler.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is implemented by a continuous hydrothermal synthesizer as shown in FIG. In FIG. 1, 1 is a water quality liquid tank, 2 is a slurry tank, and 3 and 4 are pumps for supplying each. Reference numeral 5 denotes a heating unit, and 6 is a heater. The water quality liquid (water) in the water quality liquid tank 1 supplied by the pump 3 is heated to a temperature equal to or higher than the saturated vapor temperature, particularly the critical temperature, by the heater 6, and the slurry in the slurry tank 2 supplied by the pump 4. Is sent in at room temperature. The heated water fluid and the normal temperature slurry are mixed in the spray mixing unit 8, then heated to near the reaction temperature by the heater 9, and sent to the reaction unit 10. The reaction unit 10 is provided with a heater 11, which is additionally heated as necessary. The reaction product is forcibly cooled by the cooler 12, passes through the throttle valve 20, and then sent to the product discharge unit 13 or the thin tube 21. The throttle valve 20 may be omitted. The product discharger 13 or the thin tube 21 is switched by a cock 22. When switching to the product discharger 13, a shutoff valve 14 is provided upstream of the product discharger 13, and shutoff valves 15 and 23 are provided downstream. The product first contains the product in the product discharger 13 by opening the shut-off valve 14, then closes the shut-off valve 14 and opens the shut-off valves 15 and 23 to send the product to the receiver 16. The product is discharged into a take-out container 18. Reference numeral 19 denotes an auxiliary device provided in consideration of a case where the pressure of the slurry reaction product in the system is insufficient when the shut-off valve 14 is closed and the shut-off valve 15 is opened, and is a compressed gas supplier. When switching to the thin tube 21, the product passes through the thin tube, is reduced to normal pressure by the pressure loss in the thin tube, is sent to the receiver 16, and is discharged to the take-out container 18.
[0010]
In the above, the spray mixing unit 8 sprays the fine particles with a spray device as necessary, and then further reduces the fine particles to 10 μm or less with a pulverizer.
Examples of the present invention implemented using the above apparatus will be described below. The slurry pump capacity was 2 liters / hour, the water pump capacity was 8 liters / hour, and the volume of the reaction part was 32 liters.
[0011]
Example 1
Aluminum hydroxide obtained by the Bayer method, adjusted to a particle size of 0.4 μm with a ball mill using a ball mill, is adjusted to a concentration of 2.5 wt% with ion-exchanged water, and sent at a feed rate of 2 liters per hour. The reaction was carried out at a pressure of 100 kgf / cm 2 and a temperature of 450 ° C. using a continuous device adjusted so that the exchanged water was delivered at 8 liters per hour. The flow rate after spray mixing was 1.0 m / min. When the product obtained by washing, filtering and drying the obtained product was identified by X-ray diffraction, 100% α-alumina was produced, and the particle size of this α-alumina was 0.2 μm, The aspect ratio was 20.
[0012]
Example 2
Aluminum hydroxide obtained by the Bayer method, adjusted to a particle size of 0.4 μm with a ball mill, is adjusted to a concentration of 10 wt% with ion-exchanged water, sent at a feed rate of 2 liters per hour, and ion-exchanged water Was reacted at a pressure of 200 kgf / cm 2 and a temperature of 430 ° C. in a continuous apparatus adjusted to deliver 8 liters per hour. The flow rate after spray mixing was 0.9 m / min. When the product obtained by washing, filtering and drying the obtained product was identified by X-ray diffraction, 100% α-alumina was produced, the particle diameter was 0.5 μm, and the aspect ratio was It was 20.
[0013]
Example 3
Aluminum hydroxide obtained by the Bayer method, adjusted to a particle size of 0.4 μm with a ball mill, is adjusted to a concentration of 10 wt% with ion-exchanged water, sent at a feed rate of 2 liters per hour, and ion exchange The reaction was carried out at a pressure of 200 kgf / cm 2 and a temperature of 500 ° C. using a continuous device adjusted to feed water at 8 liters per hour. The flow rate after spray mixing was 0.5 m / min. The powder obtained by washing, filtering and drying the obtained product was identified by X-ray diffraction. As a result, 100% α-alumina was produced, the particle diameter was 0.4 μm, and the aspect ratio was 10.
[0014]
Example 4
Aluminum hydroxide obtained by the Bayer method, adjusted to a particle size of 0.4 μm with a ball mill, is adjusted to a concentration of 10 wt% with ion-exchanged water, sent at a feed rate of 2 liters per hour, and ion-exchanged water Was reacted at a pressure of 200 kgf / cm 2 and a temperature of 550 ° C. in a continuous apparatus adjusted to deliver 8 liters per hour. The flow rate after spray mixing was 0.55 m / min. When the product obtained by washing, filtering and drying the obtained product is identified by X-ray diffraction, 100% α-alumina is produced, the particle diameter is 0.3 μm, and the aspect ratio is It was 5.
[0015]
Example 5
Aluminum hydroxide obtained by the Bayer method, adjusted to a particle size of 0.4 μm with a ball mill, is adjusted to a concentration of 10 wt% with ion-exchanged water, sent at a feed rate of 1 liter per hour, and ion-exchanged water Was reacted at a pressure of 200 kgf / cm 2 and a temperature of 500 ° C. with a continuous apparatus adjusted to deliver 4 liters per hour. The flow rate after spray mixing was 0.25 m / min. When the product obtained by washing, filtering and drying the obtained product was identified by X-ray diffraction, 100% α-alumina was produced, the particle diameter was 0.4 μm, and the aspect ratio was 2. Met.
[0016]
According to the above example, the reaction temperature range is 430 to 600 ° C. and the pressure is 200 kgf / cm 2 , but in this example, the temperature range and pressure are not limited, and a temperature of 350 ° C. or more is preferable. by employing the temperature of 400 ° C. to 550 ° C. is also to preferably 100 to 50 kgf / cm 2 or more pressure range by employing a 200 kgf / cm 2, the α-alumina powder which can control the particle size and aspect ratio Can be synthesized.
[0017]
【The invention's effect】
According to the present invention, since hydrothermal synthesis can be performed continuously, significant technical and economic effects can be achieved by shortening the time and saving labor of the process. In the conventional batch-type synthesis method, it is necessary to consider the temperature rise and fall times after setting the raw materials in addition to the target temperature and pressure synthesis time. It takes a long time to remove the product. According to the present invention, water quality liquid and slurry are continuously fed from one side, pressurized and rapidly heated, and the cooling is also rapidly cooled by the cooler, so that the time is very short, and the discharge is in the pipe. It is always performed without lowering the pressure, and the synthesis time only needs to take into account the residence time in the piping, the synthesized particles are also refined, and it is very efficient to synthesize fine plate-like alumina powder .
[Brief description of the drawings]
FIG. 1 shows an example of an apparatus suitable for practicing the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water quality liquid tank 2 Slurry tanks 3 and 4 Pump 5 Heating part 6 Heating heater 8 Spray mixing part 9 Heating heater 10 Reaction part 11 Heating heater 12 Cooler 13 Product discharge part 14, 15 Shut-off valve 16 Receiver 18 Container 19 Compressed gas supply 20 Throttle valve 21 Narrow tube 22 Cock 23 Shut-off valve

Claims (8)

水酸化アルミニウム又はアルミナ水和物を水又はアルカリ水溶液とともにスラリー状にしたものと、水とを用い、水は飽和蒸気温度以上に加熱するとともに、飽和水蒸気圧以下に加圧しながら供給し、一方、スラリーは飽和蒸気温度未満、飽和水蒸気圧以上に加圧しながら供給し、これらを飽和蒸気温度以下にならないように混合比を調整しながら噴霧混合し、反応部において高温高圧条件で水熱合成を行い、合成後、減温減圧してアルミナ粒子を製造することを特徴とするアルミナ粒子の連続水熱合成方法。Using aluminum hydroxide or alumina hydrate slurryed with water or an alkaline aqueous solution and water, water is heated to the saturated vapor temperature or higher and supplied while being pressurized to the saturated vapor pressure or lower, The slurry is supplied while being pressurized to below the saturated steam temperature and above the saturated steam pressure, and these are spray mixed while adjusting the mixing ratio so that the temperature does not fall below the saturated steam temperature. A method of continuous hydrothermal synthesis of alumina particles, characterized in that after the synthesis, the alumina particles are produced by reducing the temperature and reducing the pressure. 水酸化アルミニウム又はアルミナ水和物はサブミクロオーダーに粒度調整したものである請求項1記載のアルミナ粒子の連続水熱合成方法。The method for continuous hydrothermal synthesis of alumina particles according to claim 1, wherein the aluminum hydroxide or the alumina hydrate has a particle size adjusted to the sub-micro order. 上記反応部における高温高圧条件が350℃以上で50kgf/cm2以上である請求項1又は2記載のアルミナ粒子の連続水熱合成方法。The method for continuous hydrothermal synthesis of alumina particles according to claim 1 or 2, wherein the high-temperature and high-pressure conditions in the reaction section are 350 ° C or higher and 50 kgf / cm 2 or higher. 上記反応部における高温高圧条件が400〜500℃で100〜200kgf/cm2である請求項3記載のアルミナ粒子の連続水熱合成方法。The continuous hydrothermal synthesis method of alumina particles according to claim 3, wherein the high-temperature and high-pressure conditions in the reaction section are 100 to 200 kgf / cm 2 at 400 to 500 ° C. 噴霧混合後の配管内の流速は、毎分0.2m以上である請求項1記載のアルミナ粒子の連続水熱合成方法。The continuous hydrothermal synthesis method of alumina particles according to claim 1, wherein the flow velocity in the pipe after spray mixing is 0.2 m / min or more. スラリーは、水又はアルカリ水溶液に対する水酸化アルミニウム又はアルミナ水和物の濃度が1〜50wt%である請求項1記載のアルミナ粒子の連続水熱合成方法。The continuous hydrothermal synthesis method of alumina particles according to claim 1, wherein the slurry has a concentration of aluminum hydroxide or alumina hydrate with respect to water or an aqueous alkali solution of 1 to 50 wt%. 上記濃度が2〜20wt%である請求項6記載のアルミナ粒子の連続水熱合成方法。The continuous hydrothermal synthesis method of alumina particles according to claim 6, wherein the concentration is 2 to 20 wt%. 製造されるアルミナ粒子が、粒子径0.2〜1μm、アスペクト比(粒子長径/厚さ)1〜50である請求項1ないし7のいずれかに記載の連続水熱合成方法。The continuous hydrothermal synthesis method according to any one of claims 1 to 7, wherein the alumina particles to be produced have a particle size of 0.2 to 1 µm and an aspect ratio (particle long diameter / thickness) of 1 to 50.
JP22512897A 1997-08-21 1997-08-21 Continuous hydrothermal synthesis of alumina particles Expired - Fee Related JP3665186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22512897A JP3665186B2 (en) 1997-08-21 1997-08-21 Continuous hydrothermal synthesis of alumina particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22512897A JP3665186B2 (en) 1997-08-21 1997-08-21 Continuous hydrothermal synthesis of alumina particles

Publications (2)

Publication Number Publication Date
JPH1160237A JPH1160237A (en) 1999-03-02
JP3665186B2 true JP3665186B2 (en) 2005-06-29

Family

ID=16824409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22512897A Expired - Fee Related JP3665186B2 (en) 1997-08-21 1997-08-21 Continuous hydrothermal synthesis of alumina particles

Country Status (1)

Country Link
JP (1) JP3665186B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2201030T3 (en) * 2000-01-10 2004-03-16 Albemarle Corporation PROCESS FOR THE PRODUCTION OF ALUMINUM HYDROXIDE OF IMPROVED THERMAL STABILITY.
AU2007314134B2 (en) * 2006-10-30 2013-11-07 Alcoa Of Australia Limited Method for alumina production
JP5324112B2 (en) * 2008-03-19 2013-10-23 関東電化工業株式会社 Boehmite fine particles and method for producing the same
CN110040752A (en) * 2019-04-29 2019-07-23 贵州大学 A method of improving digesting efficiency of alumina in high titanium bauxite

Also Published As

Publication number Publication date
JPH1160237A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US8052788B2 (en) Method of producing silica sols with controllable broad size distribution and minimum particle size
KR101196041B1 (en) Process for production of pcc
CN103831074B (en) Counter current mixing reactor
US20090081112A1 (en) Process and apparatus for producing suspensions of solid matter
CN1032129C (en) Liquid carbon dioxide injection in exothermic chemical reactions
CA2290816C (en) Seeding of aragonite calcium carbonate and the product thereof
WO2015149518A1 (en) System for preparing nanoparticles by supercritical hydrothermal synthesis
JP5603935B2 (en) Method for producing calcium carbonate
CN101898776A (en) New process for co-producing ultra-fine white carbon black and calcium carbonate
JP2002533294A (en) Concentrated carbonate suspension
JP3665186B2 (en) Continuous hydrothermal synthesis of alumina particles
JPH0532326B2 (en)
CN107089676A (en) A kind of preparation method of high-purity boehmite
CN103031508A (en) Liquid feedstock plasma spraying device
JPH1121125A (en) Fine thin platy boehmite particles and their production
JP3484025B2 (en) Continuous hydrothermal synthesis method and apparatus
KR0133232B1 (en) Process of preparation of a powder of porous silicagel with low density
CA2543875A1 (en) Methods and apparatus for producing precipitated calcium carbonate
EP0319578A1 (en) Process for producing xonotlite fibers
CN109734104A (en) A kind of device and method of the periodic off-gases system production ammonium hydroxide using synthesis ammonia
CN1320962C (en) Process for conversion and size reduction of solid particles
NO821805L (en) PROCEDURE FOR THE PREPARATION OF SOLID CRYSTALLINIC WATER-FREE Sodium Metasilicate
WO2024078272A1 (en) Heavy ash production process system and production process thereof
CN109607587A (en) A kind of manufacturing equipment and manufacturing method of ultrafine aluminium hydroxide
JP3265203B2 (en) Method and apparatus for pulverizing raw material particles in continuous hydrothermal reaction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees